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Abstract: AlGaN is attractive for fabricating deep ultraviolet (DUV) optoelectronic and electronic
devices of light-emitting diodes (LEDs), photodetectors, high-electron-mobility field-effect transistors
(HEMTs), etc. We investigated the quality and optical properties of AlxGa1−xN films with high
Al fractions (60–87%) grown on sapphire substrates, including AlN nucleation and buffer layers,
by metal–organic chemical vapor deposition (MOCVD). They were initially investigated by high-
resolution X-ray diffraction (HR-XRD) and Raman scattering (RS). A set of formulas was deduced to
precisely determine x(Al) from HR-XRD data. Screw dislocation densities in AlGaN and AlN layers
were deduced. DUV (266 nm) excitation RS clearly exhibits AlGaN Raman features far superior to
visible RS. The simulation on the AlGaN longitudinal optical (LO) phonon modes determined the
carrier concentrations in the AlGaN layers. The spatial correlation model (SCM) analyses on E2(high)
modes examined the AlGaN and AlN layer properties. These high-x(Al) AlxGa1−xN films possess
large energy gaps Eg in the range of 5.0–5.6 eV and are excited by a DUV 213 nm (5.8 eV) laser for
room temperature (RT) photoluminescence (PL) and temperature-dependent photoluminescence
(TDPL) studies. The obtained RTPL bands were deconvoluted with two Gaussian bands, indicating
cross-bandgap emission, phonon replicas, and variation with x(Al). TDPL spectra at 20–300 K of
Al0.87Ga0.13N exhibit the T-dependences of the band-edge luminescence near 5.6 eV and the phonon
replicas. According to the Arrhenius fitting diagram of the TDPL spectra, the activation energy
(19.6 meV) associated with the luminescence process is acquired. In addition, the combined PL and
time-resolved photoluminescence (TRPL) spectroscopic system with DUV 213 nm pulse excitation
was applied to measure a typical AlGaN multiple-quantum well (MQW). The RT TRPL decay spectra
were obtained at four wavelengths and fitted by two exponentials with fast and slow decay times
of ~0.2 ns and 1–2 ns, respectively. Comprehensive studies on these Al-rich AlGaN epi-films and a
typical AlGaN MQW are achieved with unique and significant results, which are useful to researchers
in the field.

Keywords: AlGaN-GaN; high x(Al); metal–organic chemical vapor deposition; spectroscopic
ellipsometry; X-ray diffraction; Raman scattering; photoluminescence; temperature-dependent and
time-resolved photoluminescence
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1. Introduction

Wide-bandgap nitride-based semiconductors, devices, and applications have been
greatly developed in recent decades [1–3]. Ultra-wide-gap (UWG) semiconductors (Eg > 5 eV),
including AlN, diamond, β-Ga2O3, and AlGaN with high Al compositions, possess excel-
lent material properties for promoting the development of the next generation of power
electronics. AlxGa1−xN materials cover the energy range between 3.4 eV (x = 0) and 6.2 eV
(x = 1) and high-x (x > 50%). AlxGa1−xN is very attractive in deep ultraviolet (DUV) de-
vices and applications. In the past two decades, intense research and development (R&D)
emerged on high-x AlxGa1−xN epi-materials [4–14], Al-rich AlGaN multiple-quantum
wells (MQWs) [15,16], AlGaN DUV light-emitting diodes (LEDs) [17,18], AlGaN DUV
laser diodes (LDs) [19], high-x(Al) AlGaN field-effect transistors (FETs) [20,21], Al-rich
high-electron-mobility transistors (HEMTs) [22–25], and so on. R&D on Al-rich AlGaN
materials and devices are the current frontiers and hot points in the field [9–14,16–19,22–25].

In the current work, we investigated the optical and structural properties of AlxGa1−xN
films with high x(Al) (60%, 71%, 75%, 81%, 87%) fractions grown on C-plane sapphire
substrates with a 20 nm AlN nucleation layer and an AlN buffer layer by metal–organic
chemical vapor deposition (MOCVD). To characterize these AlGaN/AlN/sapphire struc-
tures well via high-resolution X-ray diffraction (HR-XRD), we deduced a set of formulas
to precisely determine the x(Al) from three orders of HR-XRD data. Screw dislocation
densities in AlGaN and AlN layers were deduced. The AlGaN/AlN/sapphire structures
were also characterized by visible and DUV Raman scattering (RS). The DUV (266 nm)
excitation RS clearly exhibited AlGaN Raman features far superior to visible RS. Two types
of simulation methods were applied to analyze the Raman longitudinal optical (LO) and
E2(high) phonon modes. The carrier concentrations in the AlGaN layers were determined
via simulation on the AlGaN longitudinal optical (LO) phonon modes. The Raman line
shapes of E2(high) modes were analyzed by the spatial correlation model (SCM), which
qualitatively investigated the AlGaN and AlN layer properties. Room temperature (RT)
photoluminescence (PL) and temperature-dependent photoluminescence (TDPL) measure-
ments were carried under the excitation from a DUV 213 nm (5.8 eV) laser to investigate
these high-x(Al) AlxGa1−xN films with energy gaps Eg between 5.0 and 5.6 eV. The obtained
PL bands were deconvoluted with Gaussian bands, indicating cross-bandgap emission,
phonon replicas, and variation with x(Al). TDPL spectra at 20–300 K of Al0.87Ga0.13N
exhibit the T-dependences of the band-edge luminescence near 5.6 eV and the phonon
replicas. According to the Arrhenius fitting diagram of the TDPL spectra, the activation
energy (19.6 meV) associated with the luminescent process is acquired. In addition, a
combined PL and time-resolved photoluminescence (TRPL) spectroscopic system with
DUV 213 nm pulse excitation was applied to investigate AlGaN multiple-quantum wells
(MQWs). RT TRPL decay spectra were measured at four wavelengths and fitted by two
exponentials, with fast and slow decay times obtained. Comprehensive findings on the
material qualities and optical properties of Al-rich AlGaN epi-films and a typical AlGaN
MQW are achieved with attractive results, which provide useful references to the R&D in
AlGaN and related materials.

2. Materials and Methods

For the material growth procedure on the C-plane sapphire substrate by metal–organic
chemical vapor deposition (MOCVD), a low-temperature (LT)-AlN nucleation layer of
20 nm was first grown at 600 ◦C. Then, an HT-AlN buffer layer was grown at an increased
temperature of 1050 ◦C; subsequently, AlxGa1−xN layers with different x(Al) compositions
were grown at the same temperature of 1050 ◦C. Precursors of trimethyl-aluminum (TMAl),
trimethyl-gallium (TMGa), and ammonia (NH3) were used for Al, Ga, and N, respectively.
The growth details are like those reported in [26]. The experimental samples are named
A60, A71, A75, A81, and A87, with x(Al) in AlxGa1−xN of 60.2%, 71.4%, 75.3%, 81.1%,
and 87.7% determined in this study, respectively. An additional sample A35 with lower
x(Al) of 35.0% is used for reference as performing XRD measurements. The AlGaN layer
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thicknesses are in the range of 400–600 nm, determined from spectroscopic ellipsometry
(SE) measurements, like those reported in [27].

In the present work, high-resolution X-ray diffraction (HR-XRD) measurements were
conducted from a system of Bruker D8 Discover, Ettlingen, Germany. SE measurements
were carried out by using a Mueller matrix ellipsometer, model ME-L, from Wuhan Eoptics
Technology Co. Ltd., Wuhan, China, with five or three incident angles of 50–70◦. DUV
266 nm excitation Raman scattering measurements were performed at room temperature
(RT), by using a confocal microscope optical system, including two lasers of 266 nm
and 532 nm, and a spectrometer of iHR550 (Horiba, Irvine CA, USA) with gratings of
600 g/mm and 2400 g/mm. A combined photoluminescence (PL) and time-resolved
photoluminescence (TRPL) spectroscopic system with deep ultraviolet (DUV) 213 nm
excitation was built up and applied to measure AlGaN multiple quantum wells (MQWs)
and high Al-composition AlGaN epi-films as well as other ultrawide bandgap (UBG)
materials and structures. In DUV 213 nm excitation steady-state photoluminescence (SS-
PL), temperature-dependent (TD) PL, and time-resolved PL (TRPL) experiments, samples
were excited by a CNI FL-213-Pico 213 nm picosecond laser. The PL decay curves were
recorded by a time-correlated single-photon-counting (TCSPC) system, as in [28]. DUV
193 nm excitation PL measurements were also conducted with a 193 nm laser source,
and UV–visible optical transition measurements were carried out using a UV–visible
spectrophotometer (Zolix OmniAs, Beijing, China) with deuterium lamps, as described
in [29].

3. Results and Discussions
3.1. High-Resolution X-Ray Diffraction Analysis

Figure 1 shows high-resolution X-ray diffraction (HR-XRD) scans of four AlGaN/AlN/
sapphire samples, with the substrate sapphire (0006) peaking at 41.70◦ for calibration.
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Figure 2 exhibits the first and third fine scans of four AlGaN samples. Figure 2a
presents the first-order XRD fine scan with the (0002) AlGaN and AlN peaks very close,
especially for high x(Al) samples. The Gaussian fittings are made in Figure 2(a1). The fitted
values for AlGaN (0002) and AlN (0002) peaks and widths are A35: 35.077, 0.126; A71:
35.749, 0.129 and 36.070, 0.157; A81: 35.749, 0.129 and 36.070, 0.157; A87: 35.884, 0.137 and
36.094, 0.141, respectively, which are used for calculations in the later part of this section.
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Figure 2. HR-XRD fine scans of four AlGaN/AlN/sapphire samples. (a) The first order with the sap-
phire (0006) peak at 41.70° for calibration, (a1) Gaussian fits for AlGaN (0002) peaks with red lines 
and for AlN (0002) peaks with green lines, and (b) the third-order scans. 
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Figure 3. HR-XRD fine scans and Gaussian fits of the AlGaN (0006) peaks for three AlGaN samples, 
with high x(Al) compositions of 71.4%, 81.1%, and 87.7%, respectively. 
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Based upon the Bragg rule for crystals, 

nλ = 2d sinθ (1)

with c = d = nλ/2sinθ, where c is the lattice constant along c-axis, λ is the X-ray wavelength 
of 0.154056 nm, θ the X-ray incident angle, for n = 2, 

c(GaN) = λ/sinθGaN, c(AlN) = λ/sinθAlN, and c(AlGaN) = λ/sinθAlGaN. (2)

Figure 2. HR-XRD fine scans of four AlGaN/AlN/sapphire samples. (a) The first order with the
sapphire (0006) peak at 41.70◦ for calibration, (a1) Gaussian fits for AlGaN (0002) peaks with red lines
and for AlN (0002) peaks with green lines, and (b) the third-order scans.

In addition, Figure 3 exhibits HR-XRD fine scans and Gaussian fits of the AlGaN (0006)
peaks for three AlGaN samples, which are confirmed with their high x(Al) composition
values of 71.4%, 81.1%, and 87.7%, respectively, from calculations below.
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Figure 3. HR-XRD fine scans and Gaussian fits of the AlGaN (0006) peaks for three AlGaN samples,
with high x(Al) compositions of 71.4%, 81.1%, and 87.7%, respectively.

A set of formulas can be deduced to calculate the x(Al) for experimental samples.
Based upon the Bragg rule for crystals,

nλ = 2d sinθ (1)

with c = d = nλ/2sinθ, where c is the lattice constant along c-axis, λ is the X-ray wavelength
of 0.154056 nm, θ the X-ray incident angle, for n = 2,

c(GaN) = λ/sinθGaN, c(AlN) = λ/sinθAlN, and c(AlGaN) = λ/sinθAlGaN. (2)
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As it is applied to the AlGaN lattice:

c(AlGaN) = c(GaN) − x[c(GaN) − c(AlN)], (3)

using c(GaN) = 0.5185 nm, c(AlN) = 0.4978 nm [30]. We can have

x = [c(GaN) − c(AlGaN)]/[c(GaN) − c(AlN)]
= [{λ/sinθGaN} − {λ/sinθAlGaN}]/[{λ/sinθGaN} − {λ/sinθAlN}]
= [{1/sinθGaN} − {1/sinθAlGaN}]/[{1/sinθGaN} − {1/sinθAlN}]

(4)

From XRD values of GaN with 2θGaN1(0002) = 34.60◦, 2θGaN3(0006) = 126.20◦ [31], and
AlN data with 2θAlN1(0002) = 36.10◦, 2θAlN3(0006) = 136.30◦ [32,33], we can deduce brief
calculation expressions based upon (0002) and (0006) XRD patterns as follows:

(0002), x(Al) = 7.19 × [3.367 − (1/sinθAlGaN1)]; (0006), x(Al) = 22.7 × [1.121 − (1/sinθAlGaN3)] (5)

By using Equation (5) and the XRD data of (0002) and (0006) patterns, we can obtain the
x(Al) values in AlxGa1−xN samples of 35.0%, 60.2%, 71.4%, 75.3%, 81.1%, and 87.7% for
A35, A60, A71, A75, A81, and A87, respectively, with error bars of about ±0.2%. These
values are marked in the related graphs and mentioned in Section 2. These formulas can be
useful for people working in the field, although we only apply them in a limited manner in
this paper.

Next, we process how to determine dislocation densities in our AlGaN layers. Refer-
ring to [14,33], the dislocation densities of AlxGa1−xN thin films can be determined by

Dscrew = β2/(4.36b2), (6)

where β is the FWHM of XRD (0002) peak and b = 5.1855 Å is the Burgers vector length
for the screw-type threading dislocation (TD) along the c-axis. We can calculate the screw
dislocation densities of four AlGaN films with x(Al) of 35.0%, 71.4%, 81.1%, and 87.7%,
listed in Table 1. It is obtained that three AlGaN films with x(Al) of 35%, 71.4%, and 81.1%
have their screw dislocation densities of about 4 × 1018 cm−3, while the high x(Al) (87.7%)
sample possesses a high dislocation density beyond 7 × 1018 cm−3.

Table 1. Values of AlxGa1−xN (0002) 2θ peak/FWHM, and calculated results of screw dislocation
density of four AlGaN films with x(Al) of 35.0%, 71.4%, 81.1%, and 87.7%.

Sample Name (x%) A35 (35.0%) A71 (71.4%) A81 (81.1%) A87 (87.7%)

AlGaN Peak 2θ (0002) (◦) 35.077 35.749 35.749 35.884
AlGaN FWHM 2θ (0002) (◦) 0.126 0.129 0.129 0.137

AlGaN β: (2θFWHM*π/180, Rad) 0.002198 0.002179 0.002179 0.002913
AlGaN β2 (×10−6) 4.83 4.75 4.75 8.49

AlGaN N (×1018 cm−3) 4.12 4.05 4.05 7.24

Note: for AlGaN, b = 0.5185 nm = 0.5185 × 10−7 cm, b2 = 0.2688 × 10−14 cm2, 4.36b2 = 1.172 × 10−14 cm2.

Further, we can calculate the screw dislocation densities of AlN layers in three
AlxGa1−xN/AlN/sapphire samples with x(Al) of 71.4%, 81.1%, and 87.7%. In this case of
AlN, b = 0.4982 nm [33] for calculations in Table 2.

It is obtained that three AlGaN/AlN/sapphire samples with x(Al) of 71.4%, 81.1%,
and 87.7% have their AlN buffer screw dislocation densities of 6–7 × 1018 cm−3, while the
high x(Al) (87.7%) sample possesses a lowest AlN dislocation density of 6 × 1018 cm−3.
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Table 2. Values of AlN (0002) 2θ peak/FWHM, and calculated results of screw dislocation density of
three AlGaN films with x(Al) of 71.4%, 81.1%, and 87.7%.

Sample Name (x%) A71 (71.4%) A81 (81.1%) A87 (87.7%)

AlN Peak 2θ (0002) (◦) 36.070 36.070 36.094
AlN FWHM 2θ (0002) (◦) 0.157 0.157 0.141

AlN β: (2θFWHM*π/180, Rad) 0.002739 0.002739 0.002460
AlN β2 (×10−6) 7.50 7.50 6.05

AlN N (×1018 cm−3) 6.93 6.93 5.59

Note: for AlN, b = 0.4982 nm = 0.4982 × 10−7 cm, b2 = 0.2482 × 10−14 cm2, 4.36b2 = 1.082 × 10−14 cm2.

3.2. Spectroscopic Ellipsometry Analysis

Variable angle (VA) spectroscopic ellipsometry (SE) measurements were conducted
for five AlGaN-GaN HEMTs in the wavelength range of 193–1650 nm and with vari-
able incident angles between 50 and 70 degrees, on each sample. Figure 4 shows typical
VASE psi (Ψ) and delta (∆) spectra at 60◦–70◦ incidences from an AlxGa1−xN sample of
x = 60.2%. Through the CompleteEASE software simulation (https://www.jawoollam.
com/ellipsometry-software/completeease, accessed on 29 October 2024), displayed with
dotted lines for all curves in the figure, the thicknesses for AlGaN layer of 470 nm and AlN
buffer/nucleation layer of 70 nm were obtained, like those reported in [27]. We employed
the SE technology to deduce the relationships of refraction index n and extinction coefficient
k versus wavelength λ, i.e., n~λ and k~λ, like previously for other epitaxial AlGaN [27]. In
the present investigation, all AlGaN/AlN/sapphire samples were performed for SE mea-
surements and simulations with the AlGaN layer thicknesses in the range of 400–600 nm
and AlN buffer/nucleation layer thickness of 70–80 nm.
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Figure 4. Typical SE psi (Ψ) and delta (∆) spectra at 60◦–70◦ incidences from an AlxGa1−xN sample
A60 with x = 60.2%.

3.3. Raman Spectroscopy Analysis

Figure 5 shows Raman scattering spectra under the 266 nm laser excitation for five
AlGaN/AlN/sapphire samples with x(Al) between 60.2% and 87.7%, respectively.

As we performed the visible 532 nm excitation Raman experiments on these samples,
sapphire features at 320–460 cm−1, 580 cm−1, and 750 cm−1 are extremely stronger, leading
to the nitride Raman features of AlGaN E2(high), AlN E2(high), and AlGaN A1(LO) being
unrecognized or weak. These difficulties can be overcome by using DUV 266 nm excitation,
as observed at Figure 5, in which Raman modes of AlGaN E2(high), AlN E2(high), and
AlGaN A1(LO), are well recognized. In Figure 5, on the right, between 800 cm−1 and
930 cm−1, a single mode is displayed, which is the A1(LO) mode from five AlxGa1−xN with
the peak frequency varied on x(Al) from ~840 cm−1 to ~880 cm−1 as x(Al) increases from
60.2% to 87.7%.

https://www.jawoollam.com/ellipsometry-software/completeease
https://www.jawoollam.com/ellipsometry-software/completeease
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Based upon theoretical analyses on Raman LO mode, the carrier concentrations can be
calculated by way of the LO-phonon and plasma coupling (LOPC). To measure the free
carrier concentration in wide bandgap semiconductors, a set of formulas on the Raman
intensity of LOPC mode are presented as [30] follows:

ILOPC =
d2S

dωdΩ

∣∣∣∣
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16πhn2
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0 n1

ω4
2

C4

(
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)
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(
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∆ = ω2
pγ

[(
ω2

T − ω2
)2

+ (ωη)2
]
+ ω2η

(
ω2

L − ω2
T

)(
ω2 + γ2

)
(9)

In Equation (7), n1 and n2 are refractive indices at incident frequency ω1 and scatter-
ing frequency ω2, respectively; C is Faust–Henry coefficient, here the value is about
0.35; α is polarizability; E is macroscopic electric field; nω is the Bose–Einstein factor.
In Equations (8) and (9), ωp is the plasma frequency, ωL is the longitudinal optical mode
frequency; ωT is transverse optical mode frequency; η is phonon damping constant; γ is
plasma damping constant.
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Followed, the dielectric function can be described as

ε = ε∞

(
1 +

ω2
L − ω2

T
ω2

T − ω2 − iωη
−

ω2
p

ω(ω + iγ)

)
(10)

ω2
p =

4πne2

ε∞m∗ (11)

where ωp is the plasma frequency; n is free carrier concentration; m* is effective mass while
e is unit charge; ε∞ is high frequency dielectric constant. Equation (10) of the dielectric
function has been widely used in Raman studies on various semiconductors [30]. In
addition, Equation (10) was employed by D.T. Talwar et al. to investigate BeTe, BexZn1−xTe,
p-BeTe epilayers, and BeTe/ZnTe/GaAs superlattices [34], and GeC/Si [35].

For polar semiconductors, there exists strong coupling between the LO phonon and
the free carrier plasmon. By way of fitting parameter simulations, the AlGaN A1(LO) line
shape in Figure 5, as the LO-phonon–plasmon coupled mode, can be fitted like that in [30],
to obtain the carrier concentrations in GaN, AlN, and SiC binary semiconductors. In the
present article, we applied this optical method to acquire the electronic carrier densities in
ternary AlGaN compounds successfully.

Figure 6 shows fitted AlGaN A1(LO) modes from Raman scattering data (ex. 266 nm)
of five AlxGa1−xN/AlN/sapphire samples with high x(Al) between 60.2% and 87.7%,
respectively, by using the above Formulas (7)–(11).
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Sample Name (x%) A60 (60.2%) A71 (71.4%) A75 (75.3%) A81 (81.1%) A87 (87.7%) 
A1(LO) peak (cm−1) 845.77  864.05  868.25  871.98  884.32  

A1(LO) FWHM (cm−1) 25.88 20.82  16.67  10.64 17.26  
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Figure 6. Fitted AlGaN A1(LO) modes from DUV 266 nm excitation Raman scattering spectra of five
AlxGa1−xN/AlN/sapphire samples with high x(Al) between 60.2% and 87.7%, respectively. Fitted
values and calculated results of plasmon frequency/damping constant, phonon lifetime, and carrier
concentration are listed in Table 3.
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Table 3. Values of AlxGa1−xN A1(LO) peak/FWHM, and calculated results of plasmon fre-
quency/damping constant, phonon lifetime, and carrier concentration of five AlGaN films with high
x(Al) between 60.2 and 87.7%.

Sample Name (x%) A60 (60.2%) A71 (71.4%) A75 (75.3%) A81 (81.1%) A87 (87.7%)

A1(LO) peak (cm−1) 845.77 864.05 868.25 871.98 884.32
A1(LO) FWHM (cm−1) 25.88 20.82 16.67 10.64 17.26

ωp (THz) 0.159 0.163 0.164 0.164 0.167
γp (THz) 4.88 3.92 3.14 2.01 3.25

τphonon (ps) 0.205 0.255 0.318 0.498 3.07
Fitting Accuracy 97.01% 87.24% 79.92% 77.21% 87.92%
N (×1018 cm−3) 7.51 9.17 10.9 12.2 15.5

Note: ωp (plasmon frequency), γp (plasmon damping constant), τphonon (phonon lifetime), N (carrier
concentration).

It is shown in Figure 5 that the A60 (x = 60.2%) sample has its AlGaN A1(LO) mode
between 800 and 80 cm−1 with heavy asymmetric line shape. Indeed, this is indicative of
an additional mode involved in the left wing of the AlGaN A1(LO) peak. A. K. Sivadasan
et al. [4] demonstrated the surface optical phonon modes in hexagonal-shaped Al0.97Ga0.03N
nanostructures, located below the AlGaN A1(LO) peak. Figure 7 presents Raman spectral
data at 700–900 cm−1 from the A60 (x = 60.2%) sample under the 266 nm excitation, and
Voigt fittings of three modes including sapphire at 753 cm−1, AlGaN A1(LO) at 846 cm−1,
and the surface optical (SO) mode between them (at 822 cm−1). Because of the influence of
the SO mode, our above calculations on the plasmon frequency and carrier concentration
from the A60 sample could be deviated. Therefore, we repeat the fitting on the A60’s
AlGaN A1(LO) mode separated from Voigt fits in Figure 7 to add into Figure 6.
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Figure 7. Raman spectral data at 700–900 cm−1 from the A60 (x = 60.2%) sample under the 266 nm 
excitation, and Voigt fittings of three modes of sapphire at 753 cm−1, AlGaN A1(LO) at 846 cm−1, and 
the surface optical (SO) mode between them (at 822 cm−1). 

In Figure 5, between 600 cm−1 and 700 cm−1, i.e., between two strong modes at ~578 
cm−1 and ~750 cm−1 from the sapphire substrate [30,33], there are two modes observed. 
These are the AlN E2(high) mode located at ~650 cm−1 and an AlGaN E2(high) mode with 
the peak frequency varied on x(Al) from ~600 cm−1 to ~630 cm−1 as x(Al) increases from 
60.2% to 87.7% in five AlxGa1−xN. To investigate these two E2(high) modes in depth and 
clearly, we perform Voigt mode fittings on them. 

Figure 8 displays these Voigt contours for five AlxGa1−xN/AlN hetero-structural sam-
ples on sapphire substrates. The A60 (x = 60.2%) sample, due to the big influence of the 
sapphire 580 cm−1 mode, is fitted with three Voigt modes, while the other four samples are 
all fitted with two Voigt mode contours. It is found that three samples with x(Al) of 71.4%, 
75.3%, and 81.1% have the AlN E2(high) mode located at 650 ± 1 cm−1 only, while the A60 
(x = 60.2%) sample has its AlN E2(high) mode at ~3 cm−1 lower than the standard AlN 
E2(high) of 650 cm−1, and the A87 (x = 87.7%) sample has its AlN E2(high) at ~7 cm−1 higher 

Figure 7. Raman spectral data at 700–900 cm−1 from the A60 (x = 60.2%) sample under the 266 nm
excitation, and Voigt fittings of three modes of sapphire at 753 cm−1, AlGaN A1(LO) at 846 cm−1,
and the surface optical (SO) mode between them (at 822 cm−1).

In Figure 5, between 600 cm−1 and 700 cm−1, i.e., between two strong modes at
~578 cm−1 and ~750 cm−1 from the sapphire substrate [30,33], there are two modes ob-
served. These are the AlN E2(high) mode located at ~650 cm−1 and an AlGaN E2(high)
mode with the peak frequency varied on x(Al) from ~600 cm−1 to ~630 cm−1 as x(Al)
increases from 60.2% to 87.7% in five AlxGa1−xN. To investigate these two E2(high) modes
in depth and clearly, we perform Voigt mode fittings on them.
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Figure 8 displays these Voigt contours for five AlxGa1−xN/AlN hetero-structural
samples on sapphire substrates. The A60 (x = 60.2%) sample, due to the big influence of the
sapphire 580 cm−1 mode, is fitted with three Voigt modes, while the other four samples
are all fitted with two Voigt mode contours. It is found that three samples with x(Al) of
71.4%, 75.3%, and 81.1% have the AlN E2(high) mode located at 650 ± 1 cm−1 only, while
the A60 (x = 60.2%) sample has its AlN E2(high) mode at ~3 cm−1 lower than the standard
AlN E2(high) of 650 cm−1, and the A87 (x = 87.7%) sample has its AlN E2(high) at ~7 cm−1

higher than the standard AlN E2(high) of 650 cm−1. Also, the AlGaN E2(high) mode has
its peak frequency varied at 599–615–613–618–633 cm−1 as x(Al) increases from 60.2% to
87.7% in five AlxGa1−xN. These phenomena might be caused by the differences in layer
axial stresses and lattice constants in AlxGa1−xN with different x(Al) amounts. This reveals
that in the sample A60, the AlN buffer layer has a tensile stress, because of its AlN E2(high)
with ~3 cm−1 lower than the standard AlN E2(high) value, which might be due to its larger
lattice difference with the top Al0.6Ga0.4N thicker layer, while in the sample A87, the AlN
buffer layer has a compressive stress, indicated by its AlN E2(high) that is ~7 cm−1 higher
than the standard AlN E2(high) value.
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Figure 8. Experimental Raman (ex. 266 nm) data and Voigt mode fittings for AlGaN and AlN 
E2(high) modes in five AlxGa1−xN/AlN/sapphire samples with x(Al) of 60.2%, 71.4%, 75.3%, 81.1%, 
and 87.7%, respectively. 
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Figure 8. Experimental Raman (ex. 266 nm) data and Voigt mode fittings for AlGaN and AlN E2(high)
modes in five AlxGa1−xN/AlN/sapphire samples with x(Al) of 60.2%, 71.4%, 75.3%, 81.1%, and
87.7%, respectively.

Our five AlxGa1−xN/AlN/sapphire samples possess AlN buffer layers (mixed with
the AlN nucleation layer). By way of the spatial correlation model (SCM) analyses on AlN
E2(high) modes, the Raman spectral intensity, characteristics of AlN layer quality, can be
presented as

I(ω) ∝
∫ 1

0
exp
(
−q2L2

4

)
d3q

[ω − ω(q)]2 + (Γ0/2)2 (12)
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where q is in units of 2π/a, a is the lattice constant, L is the correlation length, indicating the
phonon propagation length which characterizes the material crystalline perfection, and Г0
is the damping constant. The dispersion relation for optical phonons has an analytical form:

ω2(q) = A + {A2 − B [1 − con(πq)]}1/2, (13)

or ω(q) = A − Bq2 (14)

where A and B are adjustable parameters [30]. This spatial correlation model (SCM) was
employed by us to investigate some semiconductors and oxides, including InGaN [36],
SiC [37], InAlN [38], GaN-AlN superlattices [39], GaN/GaAs [40], and so on [30]. From
Figures 5 and 8, it is obvious that the AlGaN E2(high) and AlN E2(high) modes are over-
lapped partially for all samples and that for the A60 (x(Al) = 60.2%) sample, the AlGaN
E2(high) mode is overlapped with both the sapphire 580 cm−1 mode in the left wing and
the AlN E2(high) mode in the right wing. Therefore, we conduct the SCM fits on each
separated E2(high) mode fitted from Voigt contours in Figure 8.

Figure 9 exhibits DUV 266 nm excitation Raman spectral information of AlN E2(high)
modes, with experimental data (fitted from Voigt contours at Figure 8) in blue symbols
and SCM fits by red lines, for our five AlxGa1−xN/AlN/sapphire samples. The calculated
parameters based upon SCM are listed in Table 4. It is found that the correlation length L
values are increasing gradually as x(Al) increases from 60.2% to 87.7%.
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Figure 9. DUV 266 nm excitation Raman spectral information of AlN E2(high) modes, with experi-
mental data (fitted from Voigt contours at Figure 8) in blue symbols and SCM fits by red lines, for our
five AlxGa1−xN/AlN/sapphire samples. The calculated parameters based upon SCM are listed in
Table 2.
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Table 4. AlN E2(high) peak, FWHM, and calculated parameters based upon the spatial correlation
model (SCM).

Sample Name (x%) A60 (60.2%) A71 (71.4%) A75 (75.3%) A81 (81.1%) A87 (87.7%)

A (cm−1) 646.6 651.6 649.6 650.5 657.1
B (cm−1) 103 107 109 110 111

L (Å) 10 12 13 13.5 15
Г0 (cm−1) 22 18 19 19.5 20

Figure 10 exhibits DUV 266 nm excitation Raman spectral information of AlGaN
E2(high) modes, with experimental data (fitted from Voigt contours at Figure 8) in blue
symbols and SCM fits by red lines, for five AlxGa1−xN/AlN/sapphire samples. Because
the A60 (x = 60.2%) sample has its AlGaN E2(high) mode mixed with the sapphire 578 cm−1

mode, its AlGaN E2(high) mode spectrum is from Voigt fitted contours in Figure 8. The
calculated parameters based upon SCM are listed in Table 5. It is found that both the corre-
lation length L and damping constant Г0 values are gradually increased with x(Al) = 60.2%
to 87.7% for these five AlxGa1−xN/AlN samples.
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in Table 5.
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Table 5. AlGaN E2(high) peak, FWHM, and calculated parameters based upon the spatial correlation
model (SCM).

Sample Name (x%) A60 (6.2%) A71 (71.4%) A75 (75.3%) A81 (81.1%) A87 (87.7%)

A (cm−1) 599 614.7 614.9 619.2 638.5
B (cm−1) 108 108.5 109 110 112

L (Å) 12 13 13.5 14 14.5
Г0 (cm−1) 25 26 26.5 27 32

3.4. Photoluminescence Analysis

Because of tough limitations and difficulties in the experimental setup, there appear
big challenges in the literature for DUV PL measurements beyond 5 eV, or shorter than
248 nm, on Al-rich AlGaN materials [6,8,9,14,41], including cathodoluminescence (CL) [12]
and electroluminescence (EL) [17,18,42]. Figure 11 presents the RT photoluminescence (PL)
spectra under 213 nm excitation for five AlxGa1−xN/AlN/sapphire samples with x(Al)
between 60.2 and 87.7%, respectively. All PL peaks are fitted using Gaussians, with all fitted
peak energy in eV and full width at half maximum (FWHM), i.e., “w: in meV”, marked
inside the figure. These values are also displayed in Figure 12, in which a data point at
x(Al) = 1.0 is included from an AlN/sapphire, measured under the excitation of 193 nm
and reported by us in 2021 [29].
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Figure 11. RT photoluminescence (PL) spectra under 213 nm excitation for five
AlxGa1−xN/AlN/sapphire samples with x(Al) between 60.2 and 87.7%, respectively.
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Figure 12. Relationships of the PL peak energy and full width at half maximum (FWHM, i.e., w in
Figure 11) values vs. x(Al) for AlxGa1−xN/AlN/sapphire, in which an E peak point of x = 1.0 is from
previously measured AlN/sapphire under 193 nm excitation [29]. Red open circles are for PL peaks
and black stars are for FWHM. Red line and blue dashed line are guides for eye.

Figure 12 shows the relationship of PL peak energy (eV) vs. x(Al) as follows:

EPL = 3.606 + 1.97x + 0.24x2 (eV) (15)

Also, the dependence of full width at half maximum (FWHM, i.e., w in Figure 11)
values vs. x(Al) in Figure 12 obeys a relationship:

W = 1119 − 3006x + 2459x 2 (meV) (16)

In addition, we measured RT PL spectra under the excitation of 193 nm for two
AlxGa1−xN/AlN/sapphire samples, with highest x(Al) values of 81.1% and 87.7%. Com-
pared with Figure 11 under the 213 nm excitation, the PL peak energies are slightly lower,
with 25 meV and 51 meV, i.e., only 0.5% and 1%, respectively, within experimental errors.
The PL band widths are narrower than 7 meV for the 81.1% sample and wider than 20 meV
for the 87.7% sample, i.e., 7–8%. Therefore, these measured data under the 193 nm excitation
are not shown here.

3.5. Temperature-Dependent Photoluminescence Analysis

Figure 13a presents temperature-dependent photoluminescence (TDPL) spectra with
variable temperature (VT) between 20 and 300 K for the Al0.87Ga0.13N/AlN/C-sapphire
sample. The light-emitting peak at 5.6 eV is band-edge luminescence, and the luminescence
peak at 3.4 eV may be defects-related emissions. On the main band, the relationship of
normalized integrated PL intensity vs. 1/T is fitted with Arrhenius formulism, obtaining
the activation energy of Eact = 19.6 meV for this sample, displayed in Figure 13b. Recently,
R. Ishii et al. [43] conducted TDPL and time-resolution (TR) PL over 10–500 K for an
Al0.48Ga0.52N MQW on AlN/sapphire, obtained with the radiative process activation
energy of 14 meV and nonradiative process 253 meV, respectively.

Furthermore, the main bands near 5.6 eV at Figure 13a seem asymmetrical; based
upon these TDPL data (ex. 213 nm), we conducted Gaussian fits on the main PL bands at
20, 50, 100, 200, 250, and 300 K, respectively, for this Al0.87Ga0.13N/AlN/sapphire sample
(displayed in Figure 14). All spectra are deconvoluted to two bands, with the strong one
at 5.60–5.59 eV and the weaker one at 5.49–5.48 eV for 20–250 K, respectively. For the
spectrum at 300 K, the weak intensity one is seen, with the peak at 5.435 eV.
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Figure 13. (a) Variable temperature (20–300 K) PL spectra of the Al0.87Ga0.13N/AlN/sapphire sample.
(b) Normalized integrated PL intensity vs. 1/T, fitted with Arrhenius formulism, obtaining the
activation energy of Eact = 19.6 meV.
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Figure 14. Gaussian fits on the main PL bands at 20, 50, 100, 200, 250, and 300 K, respectively, for
the Al0.87Ga0.13N/AlN/sapphire sample. Each spectrum is deconvoluted to two bands, with the
strong one at 5.60–5.59 eV and a weaker one at 5.49–5.48 eV for 20–250 K and at ~5.44 eV for 300 K,
respectively.
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3.6. Time-Resolved Photoluminescence Analysis

Deep ultraviolet (DUV) time-resolved photoluminescence (TRPL) spectroscopy is a
powerful and attractive technology in the investigation of AlN and Al-rich AlGaN mate-
rials [44] and high x(Al) AlGaN MQWs [28,43,45,46]. J.W. Lee etc. [45] used the 266 nm
pulsed laser excitation to study the PL decays from DUV LED. We established a combined
photoluminescence (PL) and time-resolved photoluminescence (TRPL) spectroscopic sys-
tem with deep ultraviolet (DUV) 213 nm excitation to measure AlGaN multiple quantum
wells (MQWs) and related AlGaN epi-films [28,46]. Figure 15a–c show the room tem-
perature (RT) PL and TRPL of an AlGaN MQW, W10. The RT PL of an AlGaN MQW
with MQW emission peak at 350 nm, AlGaN-barrier peak at 295 nm, and a broad band
over 400–580 nm is exhibited in Figure 15a. Figure 15b displays RT TRPL decay spectra
from the 213 nm pulse laser (red) and the AlGaN MQW sample W10, detected at 440 nm
(blue). Figure 15c presents RT TRPL decay curves, detected at four wavelengths from the
AlGaN MQW sample W10. Each decay spectrum can be fitted with a double-exponential
function [28,46]:

I(t) = I10exp(−t/τ1) + I20exp(−t/τ2) (17)

with two carrier lifetimes of τ1 and τ2 obtained, which are listed inside the insert table of
Figure 15c. It can be seen that fast decay times of 0.24–0.29 ns (10−9 s) and slow decay times
of 0.95–2.0 ns are obtained. These values are comparable with those reported previously
for other AlGaN MQW samples [43,45].
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Figure 15. (a) RT PL of an AlGaN MQW with MQW emission peak at 350 nm, AlGaN-barrier peak 
at 295 nm, and a broad band over 400–580 nm. (b) RT TRPL decay spectra from the 213 nm pulse 
laser (red) and the AlGaN MQW sample W10, detected at 440 nm (blue). (c) RT TRPL detected at 
four wavelengths for AlGaN MQW sample W10. 

4. Conclusions 
In summary, a series of AlxGa1−xN films with high x(Al) (60%, 71%, 75%, 81%, 87%) 

fractions grown on C-plane sapphire substrates with AlN nucleation layer and AlN buffer 
layer by metal–organic chemical vapor deposition (MOCVD) were prepared and investi-
gated. They were initially characterized by high-resolution X-ray diffraction (HR-XRD) 
and Raman scattering (RS). We deduced a set of formulas for precisely determining the 
x(Al) in AlGaN from three orders of HR-XRD data. It was identified that DUV (266 nm) 
excitation RS clearly exhibits AlGaN Raman features much better than visible RS. Via 
Voigt fitting, the surface optical (SO) mode in the AlGaN sample with the lowest x(Al) = 
60% is revealed. From the simulation on the AlGaN longitudinal optical (LO) phonon 
modes, the carrier concentrations of AlGaN layers in this set of high x(Al) samples were 
determined. The Voigt fittings separate the AlGaN and AlN E2(high) modes in overcom-
ing their overlaps. Subsequently, the spatial correlation model (SCM) analyses were ap-
plied on the AlGaN and AlN E2(high) modes independently and probing two-layer prop-
erties. The DUV 213 nm (5.8 eV) laser was employed to study the room temperature (RT) 
photoluminescence (PL) and temperature-dependent photoluminescence (TDPL) proper-
ties of these high x(Al) AlxGa1−xN films with large energy gaps Eg in the range of 5.0–5.6 
eV. The obtained PL bands were deconvoluted with Gaussian bands, indicating the cross-
band gap emission and phonon replicas as well as variation with x(Al). TDPL spectra at 
20–300 K of an Al0.87Ga0.13N exhibited the T-dependences of the band-edge luminescence 
near 5.6 eV and the phonon replicas. According to the Arrhenius fitting diagram of the 
TDPL spectra, the activation energy (19.6 meV) associated with the luminescent process 
was acquired. Further, the combined PL and time-resolved photoluminescence (TRPL) 
spectroscopic system with DUV 213 nm pulse excitation was applied to measure AlGaN 
multiple quantum wells (MQWs). RT TRPL decay spectra were obtained at four wave-
lengths and fitted by two exponentials, with fast decay times of 0.24–0.29 ns and slow 
decay times of 0.95–2.0 ns obtained. Comprehensive studies on the crystalline and optical 
properties of Al-rich AlGaN epi-films and a typical AlGaN MQW were achieved with 
unique and significant results, which provides useful references to growers and investi-
gators in the III-nitrides and other materials fields. 
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Figure 15. (a) RT PL of an AlGaN MQW with MQW emission peak at 350 nm, AlGaN-barrier peak
at 295 nm, and a broad band over 400–580 nm. (b) RT TRPL decay spectra from the 213 nm pulse
laser (red) and the AlGaN MQW sample W10, detected at 440 nm (blue). (c) RT TRPL detected at
four wavelengths for AlGaN MQW sample W10.

4. Conclusions

In summary, a series of AlxGa1−xN films with high x(Al) (60%, 71%, 75%, 81%, 87%)
fractions grown on C-plane sapphire substrates with AlN nucleation layer and AlN buffer
layer by metal–organic chemical vapor deposition (MOCVD) were prepared and investi-
gated. They were initially characterized by high-resolution X-ray diffraction (HR-XRD) and
Raman scattering (RS). We deduced a set of formulas for precisely determining the x(Al) in
AlGaN from three orders of HR-XRD data. It was identified that DUV (266 nm) excitation
RS clearly exhibits AlGaN Raman features much better than visible RS. Via Voigt fitting,
the surface optical (SO) mode in the AlGaN sample with the lowest x(Al) = 60% is revealed.
From the simulation on the AlGaN longitudinal optical (LO) phonon modes, the carrier
concentrations of AlGaN layers in this set of high x(Al) samples were determined. The
Voigt fittings separate the AlGaN and AlN E2(high) modes in overcoming their overlaps.
Subsequently, the spatial correlation model (SCM) analyses were applied on the AlGaN and
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AlN E2(high) modes independently and probing two-layer properties. The DUV 213 nm
(5.8 eV) laser was employed to study the room temperature (RT) photoluminescence (PL)
and temperature-dependent photoluminescence (TDPL) properties of these high x(Al)
AlxGa1−xN films with large energy gaps Eg in the range of 5.0–5.6 eV. The obtained PL
bands were deconvoluted with Gaussian bands, indicating the cross-band gap emission
and phonon replicas as well as variation with x(Al). TDPL spectra at 20–300 K of an
Al0.87Ga0.13N exhibited the T-dependences of the band-edge luminescence near 5.6 eV and
the phonon replicas. According to the Arrhenius fitting diagram of the TDPL spectra, the
activation energy (19.6 meV) associated with the luminescent process was acquired. Further,
the combined PL and time-resolved photoluminescence (TRPL) spectroscopic system with
DUV 213 nm pulse excitation was applied to measure AlGaN multiple quantum wells
(MQWs). RT TRPL decay spectra were obtained at four wavelengths and fitted by two
exponentials, with fast decay times of 0.24–0.29 ns and slow decay times of 0.95–2.0 ns
obtained. Comprehensive studies on the crystalline and optical properties of Al-rich AlGaN
epi-films and a typical AlGaN MQW were achieved with unique and significant results,
which provides useful references to growers and investigators in the III-nitrides and other
materials fields.
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