Facile Doping and Functionalization of Molybdic Acid into Nanobiochar to Enhance Mercury Ion Removal from Water Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Facile Microwave-Assisted Doping of Molybdic Acid onto Nanobiochar (MA@NBAL)
2.3. Sorption Investigation of Hg(II) by MA@NBAL Nanobiosorbent
3. Results and Discussion
3.1. Structural and Surface Characterization
3.2. Adsorption of Hg(II) by MA@NBAL Nanobiosorbent Under Diverse Optimized Parameters
3.2.1. Reaction pH
3.2.2. Reaction Time and Kinetics Evaluation
3.2.3. MA@NBAL Nanobiosorbent Dosage
3.2.4. Initial Concentration of Hg(II) and Adsorption Isotherms
3.2.5. Reaction Temperature and Thermodynamic Parameters
3.2.6. Ionic Strength and Regeneration of MA@NBAL After Initial Removal of Hg(II) Pollutants
3.2.7. Potential Applications of MA@NBAL in Recovery of Hg(II) from Real Water Matrices
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muliwa, A.M.; Oyewo, O.A.; Maity, A. Recent progress on the removal of aqueous mercury by carbon-based adsorbents: A review. Inorg. Chem. Commun. 2023, 156, 111207. [Google Scholar] [CrossRef]
- Wang, J.; Gao, J.; Zheng, L.; Fu, Y.; Ji, L.; Wang, C.; Yuan, S.; Yang, J.; Liu, J.; Li, G.; et al. Abscisic acid alleviates mercury toxicity in wheat (Triticum aestivum L.) by promoting cell wall formation. J. Hazard. Mater. 2023, 449, 130947. [Google Scholar] [CrossRef]
- Mahbub, K.R.; Krishnan, K.; Naidu, R.; Andrews, S. Mallavarapu Megharaj Mercury toxicity to terrestrial biota. Ecol. Ind. 2017, 74, 451–462. [Google Scholar] [CrossRef]
- Drouillard, K.G.; Campbell, L.; Otieno, D.; Achiya, J.; Getabu, A.; Mwamburi, J.; Sitoki, L.; Omondi, R.; Shitandi, A.; Owuor, B.; et al. Increasing mercury bioaccumulation and biomagnification rates of Nile perch (Lates niloticus L.) in Winam Gulf, Lake Victoria, Kenya. Sci. Total Environ. 2024, 916, 170059. [Google Scholar] [CrossRef]
- Pavithra, K.G.; Sundar, R.P.; Kumar, P.S.; Rangasamy, G. Mercury sources, contaminations, mercury cycle, detection and treatment techniques: A review. Chemosphere 2023, 312 Pt 1, 137314. [Google Scholar] [CrossRef]
- Albatrni, H.; Qiblawey, H. Evaluation of sodium thiosulfate activated carbon for high-performance mercury removal from aqueous solutions. Environ. Technol. Innov. 2024, 34, 103621. [Google Scholar] [CrossRef]
- Cheng, X.; Luo, T.; Chu, F.; Feng, B.; Zhong, S.; Chen, F.; Dong, J.; Zeng, W. Simultaneous detection and removal of mercury (II) using multifunctional fluorescent materials. Sci. Total Environ. 2023, 905, 167070. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Qin, K.; Mao, J.; Gong, Y.; Cao, Q.; Zhang, Y.; Duan, C.; Xiao, H. Post-synthetic modification on metal organic frameworks composite for efficient removal and sensitive detection of mercury ions in water. Chem. Eng. Sci. 2024, 297, 120286. [Google Scholar] [CrossRef]
- Xu, J.; Wei, X.; Han, J.; Qin, W. Synthesis and optimisation mechanism of functionalised adsorption materials for lithium-ion extraction from salt water: A review. Sep. Purif. Technol. 2024, 339, 126237. [Google Scholar] [CrossRef]
- Attari, M.; Bukhari, S.S.; Kazemian, H.; Rohani, S. A low-cost adsorbent from coal fly ash for mercury removal from industrial wastewater. J. Environ. Chem. Eng. 2017, 5, 391–399. [Google Scholar] [CrossRef]
- Sivaranjanee, R.; Kumar, P.S.; Chitra, B.; Rangasamy, G. A critical review on biochar for the removal of toxic pollutants from water environment. Chemosphere 2024, 360, 142382. [Google Scholar] [CrossRef] [PubMed]
- Leng, L.; Lei, X.; Al-Dhabi, N.A.; Wu, Z.; Yang, Z.; Li, T.; Zhang, W.; Liu, W.; Zhan, H.; Peng, H.; et al. Machine-learning-aided prediction and engineering of nitrogen-containing functional groups of biochar derived from biomass pyrolysis. Chem. Eng. J. 2024, 485, 149862. [Google Scholar] [CrossRef]
- Liu, J.; Jia, H.; Xu, Z.; Wang, T.; Mei, M.; Chen, S.; Li, J.; Zhang, W. An impressive pristine biochar from food waste digestate for arsenic(V) removal from water: Performance, optimization, and mechanism. Bioresour. Technol. 2023, 387, 129586. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Bian, S.; Liu, J.; Li, J.; Xu, S.; Liang, Z. Highly adsorptive pristine and magnetic biochars prepared from crayfish shell for removal of Cu(II) and Pb(II). J. Taiwan Inst. Chem. Eng. 2021, 127, 175–185. [Google Scholar] [CrossRef]
- Shin, J.; Lee, Y.; Kwak, J.; Kim, S.; Lee, S.; Park, Y.; Lee, S.; Chon, K. Adsorption of radioactive strontium by pristine and magnetic biochars derived from spent coffee grounds. J. Environ. Chem. Eng. 2021, 9, 105119. [Google Scholar] [CrossRef]
- El-Naggar, A.; Mosa, A.; Ahmed, N.; Niazi, N.K.; Yousaf, B.; Sarkar, B.; Rinklebe, J.; Cai, Y.; Chang, S.X. Modified and pristine biochars for remediation of chromium contamination in soil and aquatic systems. Chemosphere 2022, 303 Pt 1, 134942. [Google Scholar] [CrossRef]
- Na, P.T.L.; Tuyen, N.D.K.; Dang, B. Sorption of four antibiotics onto pristine biochar derived from macadamia nutshell. Bioresour. Technol. 2024, 394, 130281. [Google Scholar] [CrossRef]
- Bhatia, D.; Saroha, A.K. Biochar derived from pyrolysis of rice straw as an adsorbent for removal of phenol from water. J. Water Process Eng. 2024, 59, 105003. [Google Scholar] [CrossRef]
- Rubangakene, N.O.; Elwardany, A.; Fujii, M.; Sekiguchi, H.; Elkady, M.; Shokry, H. Biosorption of Congo Red dye from aqueous solutions using pristine biochar and ZnO biochar from green pea peels. Chem. Eng. Res. Des. 2023, 189, 636–651. [Google Scholar] [CrossRef]
- Zhang, X.; Bhattacharya, T.; Wang, C.; Kumar, A.; Nidheesh, P.V. Straw-derived biochar for the removal of antibiotics from water: Adsorption and degradation mechanisms, recent advancements and challenges. Environ. Res. 2024, 237 Pt 2, 116998. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, W.; Dong, X.; Wang, F.; Yang, W.; Liu, C.; Chen, D. A review on recent advances of biochar from agricultural and forestry wastes: Preparation, modification and applications in wastewater treatment. J. Environ. Chem. Eng. 2024, 12, 111638. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, J.; Liu, W.; Huang, S.; Chen, X.; Zhang, N.; Huang, Y. Mercury speciation transformation mediated by thiolated biochar in high salinity groundwater: Interfacial processes, influencing factors, and mechanisms. Chem. Eng. J. 2024, 484, 149443. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, J.; Wei, S.; Xiong, Z.; Xiao, R.; Chuai, X.; Zhao, Y. Effect of hydrothermal pretreatment on mercury removal performance of modified biochar prepared from corn straw. Fuel 2023, 339, 126958. [Google Scholar] [CrossRef]
- Nejad, M.S.; Sheiban, H. Super-efficient removal of arsenic and mercury ions from wastewater by nanoporous biochar-supported poly 2-aminothiophenol. J. Environ. Chem. Eng. 2022, 10, 107363. [Google Scholar] [CrossRef]
- Shi, Q.; Zhang, X.; Shen, B.; Ren, K.; Wang, Y.; Luo, J. Enhanced elemental mercury removal via chlorine-based hierarchically porous biochar with CaCO3 as template. Chem. Eng. J. 2021, 406, 126828. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, P.; Wang, Y.; Liu, W.; Liu, Y.Y.; Finfrock, Y.Z. Mechanistic investigation of mercury removal by unmodified and Fe-modified biochars based on synchrotron-based methods. Sci. Total Environ. 2020, 719, 137435. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, T.; Sui, Z.; Zhang, Y.; Sun, B.; Pan, W. Enhanced mercury removal by transplanting sulfur-containing functional groups to biochar through plasma. Fuel 2019, 253, 703–712. [Google Scholar] [CrossRef]
- Huang, S.; Liang, Q.; Geng, J.; Luo, H.; Wei, Q. Sulfurized biochar prepared by simplified technic with superior adsorption property towards aqueous Hg(II) and adsorption mechanisms. Mater. Chem. Phys. 2019, 238, 121919. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; El-Bahy, S.M.; Elweshahy, S.M.T. Decorated Mn-ferrite nanoparticle@Zn–Al layered double hydroxide@Cellulose@ activated biochar nanocomposite for efficient remediation of methylene blue and mercury (II). Bioresour. Technol. 2021, 342, 126029. [Google Scholar] [CrossRef]
- Sun, T.; Sun, Y.; Xu, Y.; Wang, L.; Liang, X. Effective removal of Hg2+ and Cd2+ in aqueous systems by Fe–Mn oxide modified biochar: A combined experimental and DFT calculation. Desalination 2023, 549, 116306. [Google Scholar] [CrossRef]
- Sebenik, R.F.; Burkin, A.R.; Dorfler, R.R.; Laferty, J.M.; Leichtfried, G.; Meyer-Grünow, H.; Mitchell, P.C.H.; Vukasovich, M.S.; Church, D.A.; Van Riper, G.G.; et al. Molybdenum and Molybdenum Compounds. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH GmbH & Co.: Hoboken, NJ, USA, 2020. [Google Scholar] [CrossRef]
- Kaushik, J.; Sharma, C.; Lamba, N.K.; Sharma, P.; Das, G.S.; Tripathi, K.M.; Joshi, R.K.; Sonkar, S.K. 3D Porous MoS2-Decorated Reduced Graphene Oxide Aerogel as a Heterogeneous Catalyst for Reductive Transformation Reactions. Langmuir 2023, 39, 12865–12877. [Google Scholar] [CrossRef] [PubMed]
- Tambat, V.S.; Patel, A.K.; Singhania, R.R.; Chen, C.-W.; Pandey, A.; Chang, J.-S.; Dong, C.-D. A sustainable microalgae-mediated molybdenum(V) bioremediation: Effective removal and biofuel production potential. J. Taiwan Inst. Chem. Eng. 2024; 105351, (in press, corrected proof). [Google Scholar]
- Abbasi, A.M.; Zaman, W.Q.; Anwer, H.; Azad, F.; Long, X.; Miran, W.; Khan, M. Two-dimensional MXene and molybdenum disulphide for the removal of hexavalent chromium from water: A comparative study. Desalination Water Treat. 2024, 320, 100693. [Google Scholar] [CrossRef]
- Ullah, H.; Bhatti, T.S.; Alomar, M.T.; Najla, A.; Moazzam, H.; Ajmal, M.; Nazar, Z.; Nadeem, M.; Asif, H.M.; Sohail, M. Nanoarchitectonics of molybdenum rich crown shaped polyoxometalates based ionic liquids reinforced on magnetic nanoparticles for the removal of microplastics and heavy metals from water. J. Environ. Chem. Eng. 2024, 12, 114257. [Google Scholar] [CrossRef]
- Mizushima, T.; Fukushima, K.; Ohkita, H.; Kakuta, N. Synthesis of β-MoO3 through evaporation of HNO3-added molybdic acid solution and its catalytic performance in partial oxidation of methanol. Appl. Catal. A 2007, 326, 106–112. [Google Scholar] [CrossRef]
- Abdallah, M.A.M. Mercury speciation in aquatic environment south eastern coast of the Mediterranean Sea, Egypt. Emerg. Contam. 2020, 6, 194–203. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Nabil, G.M.; Althobaiti, S.A.; Elsayed, S.M. Effective solid–solid and microwave-assisted formation of folic acid@titanium oxide nanoparticles for enhanced batch adsorptive uptake of toxic Cd(II) and Cu(II) pollutants. Inorg. Chem. Commun. 2024, 162, 112242. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Khalifa, M.A.; Attia, A.A.; Helmy, M.W.; Al-Sherady, M.A.B. Effective adsorptive uptake of hexavalent chromium ions from aqueous systems utilizing a superior activated nanobentonite@cobalt ferrite@ carboxymethylcellulose nanocomposite. J Mol Liq. 2024, 407, 125172. [Google Scholar] [CrossRef]
- Li, M.; Liu, H.; Chen, T.; Dong, C.; Sun, Y. Synthesis of magnetic biochar composites for enhanced uranium(VI) adsorption. Sci. Total Environ. 2019, 651, 10. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Wan, M. Macromolecular Nanotechnology Molybdic acid doped polyaniline micro/nanostructures via a self-assembly process. Eur. Polym. J. 2008, 44, 2040–2045. [Google Scholar] [CrossRef]
- Perkins, C.L.; Lee, S.; Li, X.; Asher, S.E.; Coutts, T.J. Identification of nitrogen chemical states in N-doped ZnO via X-ray photoelectron spectroscopy. J. Appl. Phys. 2005, 97, 034907. [Google Scholar] [CrossRef]
- Patino, Y.; Diaz, E.; Ordonez, S.; Gallegos-Suarez, E.; Guerrero-Ruiz, A.; Rodriguez-Ramos, I. Adsorption of emerging pollutants on functionalized multiwall carbon Nanotubes. Chemosphere 2015, 136, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, S.E.L.M.E.; Ursueguia, D.; Mahmoud, M.E.; Abdel-Fattah, T.M.; Díaz, E. Functional surface homogenization of nanobiochar with cation exchanger for improved removal performance of methylene blue and lead pollutants. Biomass Convers. Biorefin. 2023, 14, 19107–19127. [Google Scholar] [CrossRef]
- Gholtash, J.E.; Farahi, M.; Karami, B.; Abdollahi, M. Molybdic Acid-Functionalized Nano-Fe3O4@TiO2 as a Novel and Magnetically Separable Catalyst for the Synthesis of Coumarin-Containing Sulfonamide Derivatives. Acta Chim. Slov. 2020, 67, 866–875. [Google Scholar] [CrossRef] [PubMed]
- Kaveh, R.; Mortazavi, M.; Alijani, H.; Abdouss; Dehkalani, A.S.; Mazinani, S. Ternary nanohybrid of biochar/NiFe2O4/Ag3PO4 for simultaneous adsorption of Hg(II) and photodegradation of methylene blue; modeling, kinetic and isotherm studies. J. Solid. State Chem. 2024, 331, 124503. [Google Scholar] [CrossRef]
- Isa, S.A.; Hafeez, M.A.; Singh, B.K.; Kwon, S.Y.; Choung, S.; Um, W. Efficient mercury sequestration from wastewaters using palm kernel and coconut shell derived biochars. Environ. Adv. 2022, 8, 100196. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, B.; Jia, L.; Qiao, X.; Li, Z. Study on adsorption mechanism of mercury on Ce-Cu modified iron-based biochar. Chem. Eng. J. Adv. 2022, 10, 100259. [Google Scholar] [CrossRef]
- Tang, J.; Ptacek, C.J.; Blowes, D.W.; Liu, Y.Y.; Feng, Y.; Finfrock, Y.Z.; Liu, P. Mercury adsorption kinetics on sulfurized biochar and solid-phase digestion using aqua regia: A synchrotron-based study. Chem. Eng. J. 2022, 428, 131362. [Google Scholar] [CrossRef]
- Li, B.; Li, K. Effect of nitric acid pre-oxidation concentration on pore structure and nitrogen/oxygen active decoration sites of ethylenediamine -modified biochar for mercury(II) adsorption and the possible mechanism. Chemosphere 2019, 220, 28–39. [Google Scholar] [CrossRef]
- Liu, Z.; Zhen, F.; Zhang, Q.; Qian, X.; Li, W.; Sun, Y.; Zhang, L.; Qu, B. Nanoporous biochar with high specific surface area based on rice straw digestion residue for efficient adsorption of mercury ion from water. Bioresour. Technol. 2022, 359, 127471. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Wang, L. Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon. Front. Environ. Sci. Eng. China 2009, 3, 320–324. [Google Scholar] [CrossRef]
- Marimón-Bolívar, W.; Tejeda-Benítez, L.; Herrera, A.P. Removal of mercury (II) from water using magnetic nanoparticles coated with amino organic ligands and yam peel biomass. Env. Nanotechnol Monit Manag. 2018, 10, 486–493. [Google Scholar] [CrossRef]
- Meenu; Rani, M.; Shanker, U. Efficient photodegradation of hexabromocyclododecane leached from polystyrene by biochar and sulfur doped CuO nanocomposite: Optimization factors, kinetics, and photoactivity. Environ. Pollut. 2024, 340 Pt 1, 122818. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, M.E.; El-Ghanam, A.M.; Saad, S.R. Sequential removal of chromium (VI) and prednisolone by nanobiochar-enriched-diamine derivative. Biomass Convers. Biorefin. 2024, 14, 7011–7030. [Google Scholar] [CrossRef]
- Maneechakr, P.; Mongkollertlop, S. Investigation on adsorption behaviors of heavy metal ions (Cd2+, Cr3+, Hg2+ and Pb2+) through low-cost/active manganese dioxide-modified magnetic biochar derived from palm kernel cake residue. J. Environ. Chem. Eng. 2020, 8, 104467. [Google Scholar] [CrossRef]
- Wen, C.; Liu, T.; Wang, D.; Wang, Y.; Chen, H.; Luo, G.; Zhou, Z.; Li, C.; Xu, M. Biochar as the effective adsorbent to combustion gaseous pollutants: Preparation, activation, functionalization and the adsorption mechanisms. Prog. Energy Combus Sci. 2023, 99, 101098. [Google Scholar] [CrossRef]
- Qian, X.; Wang, R.; Zhang, Q.; Sun, Y.; Li, W.; Zhang, L.; Qu, B. A delicate method for the synthesis of high-efficiency Hg (II) The adsorbents based on biochar from corn straw biogas residue. J. Clean. Prod. 2022, 355, 131819. [Google Scholar] [CrossRef]
- Kumar, V.K.; Sivanesan, S. Prediction of optimum sorption isotherm: Comparison of linear and non-linear method. J. Hazard. Mater. 2005, 126, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Dad, F.P.; Khan, W.; Sharif, F.; Nizami, A.S. Adsorption of trace heavy metals through organic compounds enriched biochar using isotherm adsorption and kinetic models. Environ. Res. 2024, 241, 117702. [Google Scholar] [CrossRef] [PubMed]
- Moureen, A.; Waqas, M.; Khan, N.; Jabeen, F.; Magazzino, C.; Jamila, N.; Beyazli, D. Untapped potential of food waste derived biochar for the removal of heavy metals from wastewater. Chemosphere 2024, 356, 141932. [Google Scholar] [CrossRef]
- Tharayil, J.M.; Chinnaiyan, P. Sustainable waste valorisation: Novel Areca catechu L. husk biochar for anthraquinone dye adsorption—Characterization, modelling, kinetics, and isotherm studies. Result. Eng. 2023, 20, 101624. [Google Scholar] [CrossRef]
- Nnadozie, E.C.; Ajibade, P.A. Data for experimental and calculated values of the adsorption of Pb(II) and Cr(VI) on APTES functionalized magnetite biochar using Langmuir, Freundlich and Temkin equations. Data Brief. 2020, 32, 106292. [Google Scholar] [CrossRef] [PubMed]
- Mustapha, L.S.; Obayomi, O.V.; Yahya, M.D.; Lau, S.Y.; Obayomi, K.S. Exploring the synergistic effects of calcium chloride modification on stem bark eucalyptus biochar for Cr(VI) and Pb(II) ions removal: Kinetics, isotherm, thermodynamic and optimization studies. Bioresour. Technol. Rep. 2024, 25, 101699. [Google Scholar] [CrossRef]
- Gupta, S.V.; Kulkarni, V.V.; Ahmaruzzaman, M. Fabrication of a bio-adsorbent material by grafting CeO2 quantum dots (QDts) over Areca nut shell biochar using Saccharum officinarum extract as a solvent/capping agent for adsorption of Methylene blue dye: Synthesis, material analyses, adsorption kinetics and isotherms studies. Colloids Surf. A 2024, 680, 132611. [Google Scholar]
- Isaac, R.; Siddiqui, S. Adsorption of divalent copper from aqueous solution by magnesium chloride co-doped Cicer arietinum husk biochar: Isotherm, kinetics, thermodynamic studies and response surface methodology. Bioresour. Technol. Rep. 2022, 18, 101004. [Google Scholar] [CrossRef]
- Isaac, R.; Siddiqui, S. Sequestration of Ni(II) and Cu(II) using FeSO4 modified Zea mays husk magnetic biochar: Isotherm, kinetics, thermodynamic studies and RSM. J. Hazard. Mater. Adv. 2022, 8, 100162. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, Y.; Wang, F.; Chen, Z.; Zhao, X.; Duan, W.; Yin, G.; Yang, X.; Li, J.; Yin, Q.; et al. Preparation of biomass-based hydrogels and their efficient heavy metal removal from aqueous solution. Front. Chem. 2022, 10, 1054286. [Google Scholar] [CrossRef]
- Georgieva, V.G.; Gonsalvesh, L.; Tavlieva, M.P. Thermodynamics and kinetics of the removal of nickel (II) ions from aqueous solutions by biochar adsorbent made from agro-waste walnut shells. J. Mol. Liq. 2020, 312, 112788. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Kamel, N.K.; Amira, M.F.; Fekry, N.A. Nitrate removal from wastewater by a novel co-biochar from guava seeds/beetroot peels-functionalized-Mg/Al double-layered hydroxide. Sep. Purif. Technol. 2024, 344, 127067. [Google Scholar] [CrossRef]
- Ge, Y.; Zhu, S.; Wang, K.; Liu, F.; Zhang, S.; Wang, R.; Ho, S.; Chang, J. One-step synthesis of a core-shell structured biochar using algae (Chlorella) powder and ferric sulfate for immobilizing Hg(II). J. Hazard. Mater. 2024, 469, 133991. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, Z.; Xin, Y.; Xiao, R.; Gao, F.; Wu, H.; Wang, W.; Guan, Q.; Lu, K. Na2S-modified biochar for Hg(II) removal from wastewater: A techno-economic assessment. Fuel 2024, 356, 129641. [Google Scholar] [CrossRef]
- Jeon, C.; Solis, K.L.; An, H.; Hong, Y.; Igalavithana, A.D.; Ok, Y.S. Sustainable removal of Hg(II) by sulfur-modified pine-needle biochar. J. Hazard. Mater. 2024, 388, 122048. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-H.; Wang, J.J.; Zhou, B.; Mikhael, J.E.R.; DeLaune, R.D. Removing mercury from aqueous solution using sulfurized biochar and associated mechanisms. Environ. Pollut. 2024, 244, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimpour, E.; Kazemi, A. Mercury(II) and lead(II) ions removal using a novel thiol-rich hydrogel adsorbent; PHPAm/Fe3O4@SiO2-SH polymer nanocomposite. Environ. Sci. Pollut. Res. 2024, 30, 13605–13623. [Google Scholar] [CrossRef]
- Tene, T.; Arias, F.A.; Guevara, M.; Nuñez, A.; Villamagua, L.; Tapia, C.; Pisarra, M.; Torres, F.J.; Caputi, L.S.; Gomez, C.V. Removal of mercury (II) from aqueous solution by partially reduced graphene oxide. Sci. Rep. 2024, 12, 6326. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhu, S.; Xi, C.; Jiang, B.; Zhang, F. Adsorption and Removal of Mercury(II) by a Crosslinked Hyperbranched Polymer Modified via Sulfhydryl. ACS Omega 2024, 7, 12231–12241. [Google Scholar] [CrossRef]
- Awad, F.S.; Abou Zied, K.M.; Abou El-Maaty, W.M.; El-Wakil, A.M.; El-Shall, M.S. Effective removal of mercury(II) from aqueous solutions by chemically modified graphene oxide nanosheets. Arab. J. Chem. 2024, 13, 2659–2670. [Google Scholar] [CrossRef]
Initial Hg(II) Concentration | Determined Hg(II) Capacity Values (mg/g) by MA@NBAL at Different pHs | ||||
---|---|---|---|---|---|
pH 2 | pH 3 | pH 4 | pH 5 | pH 6 | |
5 mmol/L | 110.3 | 90.3 | 80.2 | 140.4 | 140.4 |
10 mmol/L | 481.4 | 842.5 | 320.9 | 1303.8 | 1444.3 |
Kinetic Model | Hg(II) | |
---|---|---|
5 mmol/L | 10 mmol/L | |
Pseudo-first-order | ||
qe (mg g−1)(exp.) | 220.64 | 516.52 |
qe (mg g−1)(calc.) | 93.822 | 523.11 |
k1 (min.−1) | 0.1135 | 0.1131 |
R2 | 0.973 | 0.981 |
Pseudo-second-order | ||
qe (mg g−1)(exp.) | 220.64 | 516.52 |
qe (mg g−1)(calc.) | 227.27 | 588.23 |
k2 (g mg−1 min.−1) × 102 | 2.58 × 10−3 | 0.247 × 10−3 |
R2 | 0.999 | 0.993 |
Intraparticle diffusion | ||
Kid (mg·g−1 min−1/2) | 8.738 | 51.013 |
C | 162.77 | 177.65 |
R2 | 0.788 | 0.776 |
Elovich | ||
α (mg g−1 min−1) | 16,425.78 | 186.366 |
β (mg g−1) | 0.047 | 0.008 |
R2 | 0.902 | 0.898 |
Isotherm Model | Isotherm Parameters | Computed Values |
---|---|---|
Langmuir | qmax (mg/g) | 666.6 |
b (L mg−1) | 5.675 × 10−5 | |
RL | 0.936–0.988 | |
R2 | 0.810 | |
Freundlich | n | 1.724 |
Kf (L·mg−1) | 1.119 | |
R2 | 0.962 | |
Temkin | aT (L·g−1) | 6.094 × 10−4 |
bT (J/mol) | 17.826 | |
B | 138.98 | |
R2 | 0.886 | |
Dubinin–Radushkevich | qs (mg/g) | 305.82 |
Kad (mol2/j2) | 1.839 | |
Es (kJ mol−1) | 0.521 | |
R2 | 0.688 |
Initial Hg(II) Concentration | Determined Hg(II) Capacity Values (mg/g) at Different Reaction Temperatures (°C) | |||||||
---|---|---|---|---|---|---|---|---|
25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | |
5 mmol/L | 20.6 | 30.1 | 40.1 | 80.2 | 90.3 | 90.3 | 100.3 | 110.3 |
10 mmol/L | 80.2 | 120.4 | 421.2 | 441.3 | 441.3 | 461.4 | 461.4 | 481.4 |
Temp. (K) | Kd (L/g) | Adsorption Thermodynamic Parameters | ||||||
---|---|---|---|---|---|---|---|---|
ΔG° (KJ/mol) | ΔS° (J/mol·K) | ΔH° (KJ/mol) | ||||||
5 mmol/L | 10 mmol/L | 5 mmol/L | 10 mmol/L | 5 mmol/L | 10 mmol/L | 5 mmol/L | 10 mmol/L | |
298 | 0.081 | 0.011 | 6.214 | 11.014 | 35.392 | 31.149 | 16.795 | 11.466 |
303 | 0.088 | 0.016 | 6115 | 10.381 | ||||
308 | 0.095 | 0.018 | 6.021 | 10.153 | ||||
313 | 0.125 | 0.0194 | 5.411 | 10.253 | ||||
318 | 0.132 | 0.0199 | 5.335 | 10.352 | ||||
323 | 0.141 | 0.0204 | 5.260 | 10.449 | ||||
328 | 0.149 | 0.0209 | 5.185 | 10.545 | ||||
333 | 0.157 | 0.0214 | 5.110 | 10.639 |
Adsorbent | Preparation Method | Optimized Controlling Factor | Maximum Capacity (mg/g) | Application on Real Sample | Ref. |
---|---|---|---|---|---|
Modified biochar with ferric sulfate | pH = 3.8–7.2 time = 24 h mass = 10 mg T = 20 °C | 95.51 | It was not applied | [71] | |
Na2S-modified biochar | 2 h preparation and pyrolysis at 300 °C | pH = 7.0 time = 12 h mass =150 mg/L T = 25 °C | 54.34 | It was not applied | [72] |
Sulfur-modified pine-needle biochar | Long-duration synthetic approach | pH = 7.0 time = 24 h mass =10 mg T = 5–40 °C | 32.0–48.2 | It was not applied | [73] |
Wood biochar and sulfurized wood biochar | Long-duration synthetic approach | pH = 6.0 time = 0.5–2.0 h mass = 50 mg T = 25 °C | 57.8–107.5 | It was not applied | [74] |
PHPAm/Fe3O4@SiO2-SH | Long-duration synthetic approach | pH = 6.11 time = 115 min mass = 25 mg T = 288–318 K | 256.41 | It was not applied | [75] |
Partially reduced graphene oxide | Long-duration synthetic approach | pH > 4.0 time = 20 min mass = 200 mg T = 298 K | 110.21 | It was not applied | [76] |
Crosslinked hyperbranched polymer modified via sulfhydryl | Long-duration synthetic approach | pH = 4.5 time = 100 min mass = 1.0 g/L T = 318 K. | 282.74 | It was not applied | [77] |
Modified graphene oxide | Long-duration synthetic approach | pH = 5.0 time = 120 min mass = 10 mg T = 273 K | 230.0 | It was not applied | [78] |
MA@NBAL | Rapid and facile microwave-assisted synthesis | pH = 6.0 time = 30.0 min mass = 20 mg T = 20 °C | 1444.25 | Applied for removal of Hg(II) from wastewater, sea water, and tap water | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, S.E.M.E.; Abdel-Fattah, T.M.; Mahmoud, M.E.; Díaz, E. Facile Doping and Functionalization of Molybdic Acid into Nanobiochar to Enhance Mercury Ion Removal from Water Systems. Nanomaterials 2024, 14, 1789. https://doi.org/10.3390/nano14221789
Mahmoud SEME, Abdel-Fattah TM, Mahmoud ME, Díaz E. Facile Doping and Functionalization of Molybdic Acid into Nanobiochar to Enhance Mercury Ion Removal from Water Systems. Nanomaterials. 2024; 14(22):1789. https://doi.org/10.3390/nano14221789
Chicago/Turabian StyleMahmoud, Safe ELdeen M. E., Tarek M. Abdel-Fattah, Mohamed E. Mahmoud, and Eva Díaz. 2024. "Facile Doping and Functionalization of Molybdic Acid into Nanobiochar to Enhance Mercury Ion Removal from Water Systems" Nanomaterials 14, no. 22: 1789. https://doi.org/10.3390/nano14221789
APA StyleMahmoud, S. E. M. E., Abdel-Fattah, T. M., Mahmoud, M. E., & Díaz, E. (2024). Facile Doping and Functionalization of Molybdic Acid into Nanobiochar to Enhance Mercury Ion Removal from Water Systems. Nanomaterials, 14(22), 1789. https://doi.org/10.3390/nano14221789