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Abstract: Conventional antibiotics are limited by drug resistance, poor penetration, and inadequate
targeting in the treatment of bacterial biofilm-associated infections. Microbubble-based ultrasound
(US)-responsive drug delivery systems can disrupt biofilm structures and enhance antibiotic pene-
tration through cavitation effects. However, currently developed US-responsive microbubbles still
depend on antibiotics and lack targeting capability. In this work, magnetic field/ultrasound (MF/US)-
responsive Fe3O4 microbubbles (FMB) were constructed based on Fe3O4 nanoparticles (NPs) with
superparamagnetic and peroxidase-like catalytic properties. In vitro experiments demonstrated that
FMB can be targeted to methicillin-resistant Staphylococcus aureus (MRSA) biofilms by the direction
of MF. Upon US irradiation, FMB collapse due to inertial cavitation and generate mechanical forces
to disrupt the structure of MRSA biofilms and releases Fe3O4 NPs, which catalyze the generation of
reactive oxygen species (ROS) from H2O2 in the biofilm microenvironment and kill the bacteria within
the biofilm. In a mouse biofilm infection model, FMB efficiently destroyed MRSA biofilms grown in
subcutaneous catheters with the MF and US. Magnetic-targeted mechanical/catalytic therapy based
on FMB provides a promising strategy for effectively combating bacterial biofilm infection.

Keywords: bacterial biofilm infection; ultrasound; microbubbles

1. Introduction

Bacterial biofilms are densely arranged bacterial communities where bacteria encap-
sulate themselves by forming extracellular polymeric substances (EPS) [1,2]. Biofilms
can form on the surface of human tissues and implanted devices, leading to persistent
infectious diseases [3]. Clinically, more than 80% of chronic bacterial infections are associ-
ated with biofilm formation [4,5]. The physicochemical barriers of EPS provide multiple
protective functions. They enhance the mechanical strength of the biofilm, impede the
penetration of antibiotics, and lead to high drug resistance, which poses a great challenge
to the traditional antibiotic treatment of biofilm infections [6]. Currently, clinical treatments
of bacterial biofilm infections mainly involve surgical removal and the use of high doses
of antibiotics [7–9]. However, these methods have limited effectiveness and serious side
effects. Therefore, there is an urgent need for alternative non-antibiotic methods to destroy
biofilms and kill the bacteria within them.
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Recently, US-responsive drug delivery systems with mechanical disruption properties
have demonstrated their potential for eliminating bacterial biofilms [10–14]. US not only
offers advantages, such as tissue penetration, biosafety, and controllability, but can also en-
hance the penetration of antibacterial agents through the cavitation effect-induced biofilm
disruption [15]. He et al. and Dong et al. demonstrated that US-responsive microbubbles
can facilitate the penetration of vancomycin into Staphylococcus epidermidis biofilms and
improve the antibacterial effect [16,17]. Huang et al. loaded meropenem onto polymer-
modified perfluoropentane nanodroplets, which effectively enhanced drug penetration
under US exposure and improved the clearance of Pseudomonas aeruginosa biofilms [18].
Our group fabricated US-responsive Fe3O4-piperacillin composite microbubbles for biofilm
eradication. Under US stimulation, these drug-loaded microbubbles disrupted the Pseu-
domonas aeruginosa biofilm structure through mechanical force and enhanced the pene-
tration of piperacillin within the biofilm, effectively treating chronic pulmonary infections
in mice [19]. Nevertheless, US-responsive antibiofilm agents still suffer from the lack of
biofilm targeting and reliance on antibiotics. Therefore, there is an urgent need to develop
novel antibiofilm agents and strategies that can target and destroy the biofilm without
inducing drug resistance.

Nanocatalytic therapy (NCT) is an emerging therapeutic modality that employs
nanocatalysts to generate ROS for pathogen elimination [20,21]. ROS can kill bacteria
by oxidizing their vital biological molecules and can prevent the development of bacterial
drug resistance [22]. For instance, Fe3O4 NPs possess peroxidase-like activity and can cat-
alyze the generation of hydroxyl radicals (•OH) from H2O2 under slightly acidic conditions,
leading to bacterial death [10,23]. Gao et al. reported that Fe3O4 NPs with peroxidase-like
activity degraded the main components of bacterial biofilms [24]. Fe3O4 NPs exhibited an
antibacterial rate of over 99.999% (5 Log) against Streptococcus mutans biofilms in the pres-
ence of H2O2. Dong et al. prepared porous Fe3O4 nanoparticles (p-Fe3O4), which achieved
an antibacterial rate of over 99.99% against Escherichia coli and Bacillus cereus biofilms
with 100 mM H2O2 [23]. Du et al. prepared Fe3O4 NPs-glucose oxidase nanomaterials that
can initiate a cascade catalytic reaction in the acidic biofilm microenvironment (pH~5.5)
and generate •OH for biofilm removal. Despite the promising potential of NCT in the
clearance of bacterial biofilms, current nanocatalysts still suffer from issues, such as the
lack of targeting and insufficient permeability, which limit the efficiency of NCT in biofilm
eradication. Therefore, the development of US-responsive antibiofilm agents that combine
biofilm targeting, mechanical disruption, and catalytic antibacterial capabilities is expected
to address these problems.

In this work, we assemble Fe3O4 NPs with superparamagnetic and peroxidase-like
catalytic properties to construct US-responsive FMB for MRSA biofilm elimination. Under
the guidance of MF, FMB target and accumulate at the biofilm site. Upon US irradiation,
FMB undergo inertial cavitation, generate mechanical force, disrupt the biofilm structure,
and enhance the penetration of Fe3O4 NPs into biofilms (Figure 1a). The released Fe3O4
NPs can catalyze H2O2 to generate ROS for killing bacteria. As depicted in Figure 1b,
FMB utilizes both the acoustic effects of microbubble and the catalytic effects of Fe3O4 NPs
for MF-targeted biofilm elimination. The biofilm elimination performance of FMB was
evaluated using both the in vitro and in vivo biofilm models.
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Figure 1. Schematic diagram of magnetic field/ultrasound (MF/US)-responsive Fe3O4 microbubbles 
(FMB) for bacterial biofilm removal. (a) Mechanism of action of FMB for MF-targeted mechani-
cal/catalytic removal of bacterial biofilms. (b) FMB target the MRSA biofilm of mouse subcutaneous 
catheter under the guidance of MF, destroy the biofilm structure by ultrasound cavitation effect, 
and catalyze the production of ROS from H2O2 to kill the bacteria in the biofilm. 

2. Materials and Methods 
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Anhydrous glucose, sodium chloride (NaCl), Triton X-100 (Triton), methylene blue 
(MB), and hydrogen peroxide (H2O2, 10 M) were purchased from Sinopharm, Shanghai, 
China. Sodium dodecyl sulfate (SDS) and 3,3′,5,5′-tetramethylbenzidine (TMB) were sup-
plied by Sigma-Aldrich, St. Louis, MO, USA. Luria–Bertani (LB) medium, LB agarose me-
dium, and CCK-8 cell proliferation and cytotoxicity kits were purchased from Beyotime 
Biotechnology, Haimen, China. Iron oxide nanoparticles (Fe3O4 NPs, 50–100 nm) were 
purchased from Alfa Aesar, Ward Hill, MA, USA and were used without surface func-
tionalization. Crystal violet staining solution (2%), Calcein acetoxymethyl ester (Calcein–
AM), DMEM medium, and PBS buffer were provided by Keygen Biotech, Nanjing, China. 
Fetal bovine serum (FBS) was purchased from Gibco, Grand Island, NY, USA. Universal 
tissue fixative was purchased from Wuhan Google Biotechnology, Wuhan, China. Ul-
trapure water was used in all experiments of this study. 

2.2. Preparation of FMB 
In a centrifuge tube, 30.0 mg of Fe3O4 NPs and 400 μL of ultrapure water were added 
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ring (10,000 rpm, 3 min) through a homogenizer (D-160, DLAB). The FMB were allowed 
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Figure 1. Schematic diagram of magnetic field/ultrasound (MF/US)-responsive Fe3O4 microbubbles
(FMB) for bacterial biofilm removal. (a) Mechanism of action of FMB for MF-targeted mechani-
cal/catalytic removal of bacterial biofilms. (b) FMB target the MRSA biofilm of mouse subcutaneous
catheter under the guidance of MF, destroy the biofilm structure by ultrasound cavitation effect, and
catalyze the production of ROS from H2O2 to kill the bacteria in the biofilm.

2. Materials and Methods
2.1. Materials and Reagents

Anhydrous glucose, sodium chloride (NaCl), Triton X-100 (Triton), methylene blue
(MB), and hydrogen peroxide (H2O2, 10 M) were purchased from Sinopharm, Shanghai,
China. Sodium dodecyl sulfate (SDS) and 3,3′,5,5′-tetramethylbenzidine (TMB) were sup-
plied by Sigma-Aldrich, St. Louis, MO, USA. Luria–Bertani (LB) medium, LB agarose
medium, and CCK-8 cell proliferation and cytotoxicity kits were purchased from Beyotime
Biotechnology, Haimen, China. Iron oxide nanoparticles (Fe3O4 NPs, 50–100 nm) were
purchased from Alfa Aesar, Ward Hill, MA, USA and were used without surface function-
alization. Crystal violet staining solution (2%), Calcein acetoxymethyl ester (Calcein–AM),
DMEM medium, and PBS buffer were provided by Keygen Biotech, Nanjing, China. Fetal
bovine serum (FBS) was purchased from Gibco, Grand Island, NY, USA. Universal tissue
fixative was purchased from Wuhan Google Biotechnology, Wuhan, China. Ultrapure water
was used in all experiments of this study.

2.2. Preparation of FMB

In a centrifuge tube, 30.0 mg of Fe3O4 NPs and 400 µL of ultrapure water were added
sequentially and mixed for 30 s using a vortex mixer. Then, 150 µL of SDS aqueous solution
(10.0 mM), and 150 µL of ultrapure water were added sequentially. The centrifuge tubes
were placed in an ice-water bath, and the bubbles were formed by high-speed stirring
(10,000 rpm, 3 min) through a homogenizer (D-160, DLAB). The FMB were allowed to stand
at 4 ◦C for 8 h and were finally magnetically separated. The resulting FMB was washed
three times using ultrapure water.

2.3. MF/US-Responsive Properties of FMB

MF-responsive properties: FMB (Fe3O4 NPs: 1.0 mg/mL) was dispersed in a glass vial
containing 2 mL of ultrapure water, and the movement of FMB was photographed under
MF using a magnet (8 mT) close to the bottom of the vial.
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MF-targeting properties: FMB (Fe3O4 NPs: 0.5 mg) was added to a medical silicone
catheter filled with ultrapure water, and after bending the silicone catheter into a complex
structure, a permanent magnet (8 mT) was used to attract FMB through the bend to reach
the targeting position.

US-responsive properties: FMB (Fe3O4 NPs: 1.0 mg/mL) were dispersed in a glass vial
containing 2 mL of ultrapure water and were irradiated under the US for 5 min at 1.0 W/cm2,
1 MHz, and 50% duty cycle, and the morphology change of FMB was photographed.

2.4. Catalytic Effects of FMB

TMB was used as a chemical probe to verify the catalytic effect of FMB. TMB solution
(10 mg/mL), NaAc–HAc buffer (pH 4.0), H2O2 solution (10.0 M), and FMB aqueous
dispersion (Fe3O4 NPs: 1.0 mg/mL) were used. For the TMB + H2O2 + FMB + US group,
FMB dispersion, NaAc–HAc buffer, H2O2 solution, and TMB solution were added to
centrifuge tubes and irradiated by US (1.5 W/cm2, 1 MHz, 50% duty cycle, 5 min). The
centrifuge tubes were shaken (600 rpm, 5 min) at 37 ◦C. After the reaction was completed,
the supernatant was taken after magnetic separation. The ultraviolet-visible absorption
spectra of the supernatant were measured.

2.5. MF-Targeted Mechanical Disruption of Biofilms

The destructive properties of FMB on MRSA biofilms were investigated under different
conditions. The 96-well plates with MRSA biofilms were grouped as follows: Saline group,
100 µL saline; FMB group, 50 µL saline + 50 µL FMB (Fe3O4 NPs: 1.0 mg/mL). The
ultrasound probe (5 cm2) covered with medical ultrasound coupling agents was placed
to the bottom of 96-well plates with MRSA biofilms to apply the ultrasound (1.0 W/cm2,
1 MHz, 50% duty cycle). At the same time, the ring magnet was placed around the
ultrasound probe to provide a magnetic field (32 mT). After treatment, saline (100 µL) was
added for rinsing. The residual Fe3O4 NPs on the surface of the biofilm were removed by
using a magnetic bar, and the washing was repeated three times. Afterwards, the solution
in the wells was removed, and 4% paraformaldehyde solution was added for fixation.
Then, the supernatant was removed and the plates were allowed to dry naturally at room
temperature. Crystal violet staining solution was added to each well to stain the biofilm.
Then, the staining solution was removed and the plate was rinsed by a slow stream of
water. The MRSA biofilm was imaged by an inverted fluorescence microscope.

For the relative biofilm biomass assay of MRSA biofilms, ethanol (95%) was added to
each well to decolorize the crystal violet-stained MRSA biofilm and the absorbance of the
solution at 590 nm was measured.

2.6. Mechanical/Catalytic Destruction of MRSA Biofilms

MF-targeted catalytic disruption of MRSA biofilms by FMB with the presence of
MF, US, and H2O2. MRSA biofilms in 96-well plates were grouped according to the
concentration of H2O. The procedures and parameters used in this experiment were the
same as those used in Section 2.5, except for the addition of H2O2.

2.7. Antibacterial Effect on MRSA Biofilms

To study the antibacterial effect of FMB on MRSA biofilms, the 96-well plates with
MRSA biofilms were divided into Control, MF + US, FMB, H2O2, FMB + H2O2, and
FMB + H2O2 + MF + US groups. The concentration of FMB saline dispersion and H2O2
solution was 1 mg/mL (Fe3O4 NPs) and 600 mM, respectively. After the FMB was added to
the well, MF was exerted by a magnet (32 mT), and US (1.0 W/cm2, 1 MHz, 50% duty cycle)
was used for a total action time of 10 min. Subsequently, the 96-well plate was incubated at
37 ◦C for 6 h. After incubation, the liquid in the well was removed and added to a sterilized
centrifuge tube. Then, saline was added to repeatedly rinse the biofilm, and the dispersion
was transferred to the centrifuge tube. Subsequently, the well was sonicated in a water
bath, and the biofilm dispersion after sonication was transferred to the centrifuge tube.
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The above steps were repeated until the dispersion was clear. The biofilm dispersion was
sonicated in a water bath, vortexed, and diluted. The number of viable bacteria in the
MRSA biofilm was determined by the plate counting method.

2.8. Fluorescence Imaging of MRSA Biofilms

MRSA biofilms were grown in laser confocal dishes and divided into six groups
according to the treatment conditions: the Control group and the US + MF group were
added with PBS; the FMB group was added with PBS and FMB dispersion; the H2O2 + FMB
group was added with PBS, FMB dispersion, and H2O2; and the H2O2 + FMB + US + MF
group was added with PBS and FMB. After treatment, the confocal dish was incubated
at 37 ◦C for 30 min. Calcein–AM solution (4 µM) was added and incubated for 30 min
at 37 ◦C. The fluorescence image was observed and photographed on a confocal laser
scanning microscope (CLSM).

2.9. Culture of MRSA Biofilms on Catheters

Sterilized medical silicone catheters were incubated with FBS solution (1%). After the
FBS solution was removed, MRSA bacterial suspension (107 CFU/mL) was added into the
catheter and incubated at 37 ◦C for 48 h to obtain the MRSA biofilm.

2.10. Removal of MRSA Biofilms from Catheters In Vitro

The medium was removed from the silicone catheter with biofilms and sterilized
saline was added. The magnet was placed near the catheter. After the addition of FMB
dispersion, the magnet was moved to the inner part of the catheter with biofilms. The
ultrasound (1 MHz, 50% duty cycle) was performed at 1.0 W/cm2 for 10 min. For crystal
violet staining, the liquid in the catheter was removed, and 4% paraformaldehyde was
added. After fixation, the fixative was removed, and the catheter was left to dry. Then,
the crystal violet staining solution was added to the catheter. After 30 min, the staining
solution was removed. The catheter was repeatedly rinsed with saline. The crystal violet in
the biofilm was dissolved by ethanol. The absorbance of the decolorized solution at 590 nm
was measured.

For the antibacterial effect study, the liquid inside the catheter after treatment was
transferred to a sterilized centrifuge tube. Subsequently, saline was added to the catheter,
sonicated for 3 min, and transferred to the centrifuge tube. The washing procedure was
repeated several times until all the biofilms were collected. Finally, the biofilm dispersions
were diluted, sonicated, and vortexed. The number of viable bacteria in the MRSA biofilm
was investigated by plate counting method.

2.11. Removal of MRSA Biofilms from Catheters In Vivo

All animal experiments were performed following the guidelines for the care and use
of laboratory animals from the Nanjing First Hospital, Nanjing Medical University, and
approved by the Animal Ethics Committee of Nanjing First Hospital, Nanjing Medical
University. A mouse catheter biofilm model was established subcutaneously in BALB/c
mice (female, 6–8 weeks). Catheters with MRSA biofilms were washed with saline and
implanted under the skin of mice. Sixteen mice with catheters were randomly divided
into two groups: the Control group and the FMB + US + MF group, with eight mice in
each group.

For the FMB + US + MF group, the magnet was placed close to one end of the catheter.
FMB and H2O2 were injected into the other end of the catheter by using a syringe. Then,
US (1.0 W/cm2, 1 MHz, 50% duty cycle) was performed with a 5 min interval. For the
Control group, catheters were rinsed twice using saline. After treatment, the mice were
anesthetized and executed. The catheters were removed and rinsed using saline. Catheters
from four mice were used for crystal violet staining study, and catheters from the other
four mice were used for the antibacterial effect study.
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For the crystal violet staining study, the liquid in the catheters was removed, and 4%
paraformaldehyde solution was added. After the fixative was removed, the catheter was
dried naturally. Afterward, crystal violet staining solution was added for 30 min. After the
staining solution was removed, the catheter was rinsed by adding saline, and the MRSA
biofilm was photographed with a camera. Subsequently, the crystal violet in the biofilm
was decolorized with ethanol, and the absorbance of the decolorized solution at 590 nm
was measured to calculate the relative biofilm biomass.

To investigate the antibacterial effect, the catheter was washed and sonicated repeat-
edly to disperse the biofilm in saline. Then, the biofilm dispersions were transferred to a
centrifuge tube, sonicated for 5 min, and vortexed for 20 s. Finally, the number of viable
bacteria was determined by the plate counting method.

2.12. Statistical Analysis

All data are presented as means ± standard deviations (S.D.). One-way analysis of
variance (ANOVA) with Tukey’s post hoc test was used for statistical analysis (* p < 0.05,
** p < 0.01, and *** p < 0.001).

3. Results
3.1. Characterization of FMB

As shown in Figure 2a, hydrophobic Fe3O4 NPs self-assemble to form FMB at the
air-water interface, assisted by SDS under high-speed rotary shear in the homogenizer.
FMB exhibited a uniformly distributed spherical morphology with an average diameter of
23.5 ± 7.2 µm (Figure 2b,c). The Fe content in varying volumes of FMB aqueous dispersions
increased proportionally with the volume. Each 50 µL of FMB aqueous dispersion contained
approximately 0.14 mg Fe (Figure 2d).

SEM elemental mapping images showed that Fe and O elements were uniformly
distributed in the FMB, indicating the successful assembly of Fe3O4 NPs (Figure 2e). As
shown in Figure 2f, the XRD patterns of FMB exhibited strong diffraction peaks at 29.8◦,
35.1◦, and 56.4◦, corresponding to the (220), (311), and (511) crystal planes of Fe3O4 (PDF#04-
006-0424), respectively, indicating that there was no obvious change in Fe3O4 before and
after the assembly.

3.2. US and MF Response Performance of FMB

As shown in Figure 3a, before the application of US, the FMB had a spherical structure
with a shell of Fe3O4 NPs wrapped around an air core, allowing them to float on the
water surface. After US irradiation (1.0 W/cm2, 1 MHz, 50% duty cycle, 5 min), the FMB
underwent inertial cavitation, causing the shell layer to rupture and release the Fe3O4 NPs
before settling at the bottom of the glass vial. Before applying the MF, the FMB floated
due to their microbubble structure. After applying the MF, the FMB overcame the upward
buoyancy force and rapidly gathered near the permanent magnet at the bottom of the glass
vial (Figure 3b). The magnetic saturation of the FMB was 78.7 emu/g, indicating that they
have superparamagnetic properties (Figure 3c). As shown in Figure 3d, the FMB were
added into a catheter filled with water. Under the influence of the MF, the FMB changed
from a dispersed state to an aggregated state, advanced along the preset path, and finally
arrived at the target location. Thus, the FMB has excellent US/MF-responsive properties.

3.3. Catalytic Properties of FMB

Fe3O4 NPs have peroxidase-like properties and can catalyze the generation of •OH
from H2O2. The •OH can oxidize TMB to produce blue TMB oxides. As shown in Figure 4a,
the blue product in the Petri dish containing PBS buffer indicates that the FMB catalyzed
the generation of •OH during their movement from the P1 to P2 position. The yellow curve
represents the trajectory of the FMB under the direction of the permanent magnet. The FMB
after ultrasonication showed higher catalytic activity than those without ultrasonication
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(Figure 4b), which can be attributed to the disruption of the FMB structure and release of
Fe3O4 NPs from the microbubbles, providing more catalytic sites.
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Figure 2. Preparation and characterization of FMB. (a) Schematic of the preparation process of
FMB. (b) Bright-field microphotograph of FMB. (c) Size distribution histogram of FMB with a
statistical number greater than 200. (d) Content of Fe in different volumes of FMB aqueous dispersion.
(e) Scanning electron microscopy (SEM) images and elemental mapping images of FMB. (f) X-ray
diffraction (XRD) spectra of Fe3O4 NPs, FMB, and standard powder diffraction pattern of Fe3O4

(PDF#04-006-0424).

3.4. Destruction of MRSA Biofilms by FMB in 96-Well Plates

We examined the destructive effect of Fe3O4 NPs on the MRSA biofilm structure
under MF and US. As shown in Figure S1, Fe3O4 NPs could not effectively destruct MRSA
biofilms under US and MF. We further examined the destructive effect of FMB on the MRSA
biofilm structure under the influence of MF and US. As shown in Figure 5a,b, no significant
damage to the biofilm structure was observed when MF, US, or MF + US treatments were
applied without the addition of FMB. Similarly, in the FMB + MF group, no significant
damage to the biofilm structure was observed. When US treatment was used, the biofilm
structure was partially disrupted, indicating that mechanical forces generated by FMB can
damage the biofilm structure. When both MF and US were simultaneously applied, the MF
guided the FMB to bind to the biofilm surface, and the mechanical force generated under
US could act directly on the nearby biofilm, thus, disrupting the biofilm more effectively.
The relative biofilm biomass of the FMB + MF + US group was reduced the most (21.5%),
which further demonstrates that FMB combined with MF/US can effectively destroy the
biofilm structure (Figure 5c).
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taining 300 mM H2O2. P1 and P2 represent the locations of FMB at different time points. The yellow
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tion spectra of FMB dispersions after reaction with TMB under different conditions; insets from left to
right are photographs of TMB + H2O2, TMB + H2O2 + FMB, and TMB + H2O2 + FMB + US groups.

Fe3O4 NPs have peroxidase-like activity and can catalyze the production of •OH
from H2O2 in acidic microenvironments. As shown in Figure 6a,b, without the addition
of FMB, there was no significant damage to the biofilm structure after treatment, even
with increasing the H2O2 concentration. However, in the presence of FMB, damage to the
biofilm structure became more significant as the H2O2 concentration increased. As shown
in Figure 6c, when the H2O2 concentration increased from 0 mM to 300 mM, the relative
biomass reduction of MRSA biofilms increased from 21.9% to 47.9% under FMB + MF + US
treatment. These results demonstrate that MF/US-responsive FMB can effectively catalyze
the production of •OH from H2O2 to degrade MRSA biofilms.
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As shown in Figure 7a,b, the biofilm thickness in the Control and MF + US groups
did not change significantly, indicating that US or MF alone does not destroy the MRSA
biofilms. Among the FMB, H2O2, and FMB + H2O2 groups, the smallest biofilm thickness
of approximately 18 µm was observed in the FMB + H2O2 group, indicating that FMB
combined with H2O2 can destroy the biofilm. In the FMB + H2O2 + MF + US group,
the biofilm was extensively destroyed, and the biofilm thickness was reduced to about
7 µm, suggesting that FMB can efficiently remove MRSA biofilms through MF-targeted
mechanical/catalytic effects with the combined action of the MF/US.

The antibacterial effect of FMB with or without MF/US on MRSA biofilms was further
investigated. As shown in Figure 8a,b, in the US + MF group, there was no significant
change in the number of bacterial colonies, indicating the neglectable antibacterial effect
of US and MF. In the FMB group and H2O2 group, the number of MRSA was reduced by
1.0 Log (90.7%) and 1.2 Log (93.7%), respectively, indicating low antibacterial efficiency
of FMB or H2O2 alone. In the FMB + H2O2 group, the number of MRSA decreased by
1.6 Log (97.3%), which was higher than the antibacterial rate of FMB or H2O2 alone. This
enhancement can be attributed to the Fe3O4 NPs producing •OH under the acidic biofilm
microenvironment. In the FMB + H2O2 + US + MF group, the number of colonies in
the biofilm was reduced by 5.0 Log (99.999%), significantly higher than that of the other
groups. This indicates that after the FMB are bound to the biofilm surface by the MF and
US is applied, the microjets and shock waves generated by the microbubbles can act on
the biofilm at close proximity. Simultaneously, the Fe3O4 NPs released from the ruptured
FMB can penetrate the biofilm under the influence of mechanical forces and generate •OH,
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which realizes the combination of mechanical disruption and catalytic killing. These results
suggest that FMB can efficiently remove MRSA biofilms under MF and US.
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3.5. Destruction of MRSA Biofilms by FMB in Catheter In Vitro

Medical catheter infections are closely associated with bacterial biofilm formation.
In this study, we used silicone catheters with MRSA biofilms to further evaluate the
biofilm removal ability of FMB. As shown in Figure S2a, the MRSA biofilm in the Control
group showed a distinct purple color after crystal violet staining. In contrast, the MRSA
biofilm in the FMB + H2O2 + US + MF group appeared a light purple, indicating that
FMB can effectively disrupt the biofilm structure. The relative biofilm biomass in the
FMB + H2O2 + US + MF group was 71.2%, significantly lower than that of the Control
group (Figure S2b). The number of viable bacteria in biofilms was reduced by 5.6 Log
(99.999%) in the FMB + H2O2 + MF + US group (Figure S2c,d), much better than that in
the Control group. These results demonstrate that FMB have excellent biofilm removal
capabilities under the combined action of US and MF.

3.6. Treatment of Catheter MRSA Biofilms Infection by FMB in Mice

As shown in Figure 9a, a mouse catheter biofilm infection model was constructed to
investigate the antibiofilm effect of FMB under the combined action of US and MF. The
MRSA biofilm in the Control group showed a distinct purple color after crystal violet
staining, while the catheter in the FMB + H2O2 + MF + US group appeared significantly
lighter in color. This indicates that FMB can effectively disrupt the biofilm under the
MF/US. The relative biofilm biomass in the catheter was reduced by 42.7% (Figure 9b,c).
The number of viable bacteria within the MRSA biofilm in the FMB + H2O2 + MF + US
group was reduced by about 3.0 Log (99.9%) (Figure 9d,e). These results indicate that FMB
can effectively target and remove the catheter-associated MRSA biofilm in mice under the
combined effects of MF and US.

3.7. Biosafety of FMB

Biocompatibility of materials is an important prerequisite for determining whether
they can be used in biomedical applications. First, the cytotoxicity of FMB to human
umbilical vein endothelial cells (HUVEC) was investigated by using CCK-8 assay. As
shown in Figure S3a, after incubating FMB with HUVEC for 24 h, the cell viability of
HUVEC remained above 90% when the concentration of Fe3O4 NPs in FMB was up to
2 mg/mL, indicating low cytotoxicity of FMB. Next, murine red blood cells (RBCs) were
incubated with FMB for 3 h to assess their hemolytic activity. As shown in Figure S3b, the
hemolysis rate of RBCs was less than 5% even when the concentration of Fe3O4 NPs in
FMB was as high as 2 mg/mL, suggesting that FMB have a low hemolysis effect.
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MRSA biofilm. ** p < 0.01, and *** p < 0.001.

4. Conclusions

In this work, we prepared Fe3O4 microbubbles (FMB) with mechanical and catalytic
properties for the efficient removal of MRSA biofilms using MF and US. FMB have su-
perparamagnetic properties and can be targeted to the biofilm sites in catheters under
the guidance of MF. FMB has a nanoparticle shell–air core structure with excellent US-
responsive properties, which can be used to destroy the biofilm structure through the
cavitation effect. Simultaneously, the released Fe3O4 NPs provide numerous catalytic sites
to generate ROS from H2O2 and kill the bacteria within the biofilm. In vitro experimental
results show that FMB can remove 71.2% of catheter MRSA biofilms using MF/US with
H2O2, and reduce the number of viable bacteria in biofilms by 5.6 Log (99.999%). This work
develops a magnetic field-targeted mechanical/catalytic dual-mode removal strategy for
bacterial biofilms, which provides a promising solution for effectively addressing bacterial
biofilm infection issues.
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