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Abstract: Industrial CO2 emissions contribute to pollution and greenhouse effects, highlighting the
importance of carbon capture. Potassium carbonate (K2CO3) is an effective CO2 absorbent, yet its
liquid-phase absorption faces issues like diffusion resistance and corrosion risks. In this work, the
solid adsorbents were developed with K2CO3 immobilized on the selected porous supports. Al2O3

had an optimum CO2 adsorption capacity of 0.82 mmol g−1. After further optimization of its pore
structure, the self-prepared support Al2O3-2, which has an average pore diameter of 11.89 nm and
a pore volume of 0.59 cm3 g−1, achieved a maximum CO2 adsorption capacity of 1.12 mmol g−1

following K2CO3 impregnation. Additionally, the relationship between support structure and CO2

adsorption efficiency was also analyzed. The connectivity of the pores and the large pore diameter
of the support may play a key role in enhancing CO2 adsorption performance. During 10 cycles of
testing, the K2CO3-based adsorbents demonstrated consistent high CO2 adsorption capacity with
negligible degradation.

Keywords: CO2; potassium carbonate; adsorbent; aluminum oxide

1. Introduction

The increasing concentration of CO2 in flue gas from coal-fired power plants, a crit-
ical driver of the greenhouse effect, has led to the recognition that Carbon Capture and
Storage (CCS) technology, particularly post-combustion capture, is regarded as a promis-
ing solution for the reduction of carbon dioxide emissions [1–6]. Although the liquid
amine absorption method has been widely utilized in post-combustion capture, it still
faces several challenges, including corrosiveness to containment vessels, potential amine
volatility leading to environmental contamination, and significant mass transfer resistance
within the liquid phase [7–10]. Recently, the incorporation of organic amines into porous
supports has been extensively studied by many researchers [11–24]. Solid amine adsor-
bents, utilizing materials with high porosity such as polymers [11–13], carbon materials
(e.g., carbon nanotube [14,15], activated carbon [16,17], and mesoporous carbon [18]), and
mesoporous molecular sieves (e.g., SBA-15 [19–21], MCM-41 [22,23], and KIT-6 [24]), have
been a focal point of research. These adsorbents incorporate various amine groups (e.g.,
primary, secondary, and tertiary amines) to enhance CO2 capture capabilities [25]. However,
despite their high adsorption capacity, the surface utilization rate of amine groups is still
quite low. This is mainly because the organic amine has high viscosity and large molecular
diameter, making it hard to penetrate evenly in the pores, which can lead to aggregation,
pore blockage, and ultimately fewer active sites on the surface. Furthermore, there is
significant amine loss during the adsorption–desorption cycles due to the facts that amines
are inherently volatile organic compounds. Thus, it is necessary to develop innovative
technologies or materials to overcome the current limitations in efficiency and cost.
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In recent years, numerous studies have reported the use of potassium carbonate as
an active component impregnated onto support materials to fabricate K2CO3-based ad-
sorbents, which serve as a substitute for amine-based adsorbents for CO2 capture [26–28].
Alkali carbonate-based adsorbents exhibit superior stability and are free from issues of
secondary environmental pollution. They are more difficult to decompose, even when
the temperature is increased to 800 ◦C. Generally, a temperature of 350 ◦C is adequate to
fully regenerate the adsorbent. The inherent alkalinity of potassium carbonate confers a
significantly enhanced CO2 adsorption capacity upon the adsorbent, particularly effective
for the capture of low-concentration CO2, such as the 10–15% found in flue gasses. Current
research on K2CO3-based adsorbents predominantly focuses on the in-depth exploration
of the underlying reaction mechanisms and the selection of appropriate support mate-
rials [29–43]. The carbonation reaction induced by K2CO3-based sorbents was found to
consist of two steps: first, the hydration reaction takes place, and then the produced KHCO3
reacts rapidly. During the CO2 sorption process, the carbonation reaction coexists with the
adsorption process, indicating that both chemical and physical adsorption occur [28]. The
support material in K2CO3-based sorbents facilitates not only physical CO2 adsorption but
also the dispersion of alkaline active sites. Consequently, the choice of support material
and the optimization of its pore structure are crucial for enhancing the CO2 adsorption
performance of the sorbents.

Activated carbon was first considered as a superior support material due to its high
surface area, abundant porosity, and controllable pore structure. It was reported that
the K2CO3/AC sorbent exhibits high CO2 capture capacities and rapid carbonation re-
action rates [28–30]. Zeolites have also been widely investigated because they possess
well-defined pore structures that can accommodate both the immobilized alkali metal
carbonates and the adsorbed CO2 [31–38]. In addition, activated alumina, with its high
porosity, large surface area, and diverse pore channels, also has great potential for use as
a support material [39–43]. Zhao et al. [40–43] have conducted extensive research on the
supports for K2CO3-based sorbents. They impregnated potassium carbonate onto several
supports and compared the conversion rates using thermogravimetric analysis (TGA) and
a bubbling fluidized-bed reactor. However, the pore structure of the support materials
requires additional refinement to optimize performance. There is an imperative to elucidate
the correlation between the pore structural attributes and CO2 adsorption efficacy, which is
pivotal for informing the strategic design of advanced support materials. In this study, the
performance of adsorbents prepared with various support materials was systematically
compared, and the pore structure was further improved by strategically selecting the most
suitable support. Additionally, the research endeavored to delineate the principal factors
that influence CO2 adsorption capacity.

2. Materials and Methods
2.1. Acquisition of the Support Materials

The porous solid materials, including ZSM-5, zeolite 5A, zeolite β, zeolite NaY, and
MCM-41, served as supports and were obtained from Nanjing XFNANO Materials Tech
Co., Ltd., Nanjing, China. The activated carbons, namely, CSAC and CAC, were purchased
from Kecheng Activated Carbon Co., Ltd., Beijing, China. Aluminum oxide (Al2O3) was
supplied by J&K Scientific. Moreover, two additional aluminum oxide supports were
self-synthesized using the following procedures:

Scheme 1 [44]: In the preparation of Al2O3-1, 2.38 g of sodium aluminate, 20.23 g of
urea, and 1 g of F127 were combined and dissolved in 70 mL of distilled water under vigor-
ous stirring to form a homogeneous solution. This solution was subsequently transferred
to a 100 mL Teflon-lined stainless steel autoclave, sealed, and subjected to hydrothermal
treatment at 140 ◦C for 24 h. After that, the autoclave was cooled to ambient temperature,
and then a white precipitate was formed. The resulting white precipitate was isolated from
the supernatant and extensively washed with deionized water followed by ethanol in a
sequential manner. The precipitate was then dried in a vacuum oven at 80 ◦C for 12 h.
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Finally, the dried powder was calcined at 450 ◦C for 4 h in static air to yield the desired
γ-Al2O3 product.

Scheme 2 [45]: For the synthesis of Al2O3-2, a mixture of Al(NO3)3·9H2O (0.014 mol)
and CO(NH2)2 (0.028 mol, 0.021 mol, or 0.056 mol) was dissolved in 70 mL of distilled
water and stirred vigorously for 30 min to form a clear solution. The solution was then
poured into a 100 mL Teflon-lined autoclave and heated at 180 ◦C (160 ◦C or 200 ◦C) for
4 h (3 h or 5 h), followed by natural cooling to room temperature. The resulting white
precipitate was collected by vacuum filtration, washed sequentially with distilled water
and anhydrous alcohol, and dried at 80 ◦C for 12 h in a vacuum oven. The boehmite
precursor was calcined at 550 ◦C for 4 h, with a heating rate of 4 ◦C min−1, to yield the final
γ-Al2O3 product.

All the reagents used in the two schemes were of analytical grade without any fur-
ther purification.

2.2. Preparation of K2CO3-Based Adsorbents

To prepare K2CO3-based sorbents, designated as x K2CO3/support, where x represents
the weight percentage of K2CO3 in the adsorbents, a given amount of K2CO3 was first
dissolved in 40 mL of methanol with stirring for 30 min at room temperature. Then, 2 g
of the supports was added into the above K2CO3 methanol solution. After that, it was
mixed with a magnetic stirrer at 40 ◦C until most of the methanol evaporated. Finally, the
resultant x K2CO3/support adsorbents were further dried at 80 ◦C for 12 h under vacuum.

2.3. Characterization of the Self-Synthesized Al2O3

X-ray diffraction (XRD) spectra were obtained by an X’Pert PRO diffractor (PANalyti-
cal, Almelo, Holland, Cu Kα, λ = 0.15406 nm, 40 kV, 40 mA). The micro-morphology of the
Al2O3 supports was observed by a scanning electron microscope (SEM, Hitachi SU8010,
Tokyo, Japan). Before the measurements, the samples were degassed at 100 ◦C for 12 h
under vacuum. Nitrogen adsorption–desorption isotherms were measured at 77 K using a
Tristar II 3020 analyzer (Micromeritics, Norcross, GA, USA). The Brunauer–Emmett–Teller
(BET) method was utilized to calculate the specific surface area. The total pore volume
and pore size distribution were derived from the isotherm desorption branches using the
Barrett–Joyner–Halenda (BJH) model. A thermogravimetric analysis (TGA, Netzsch STA
449F5, Selby, Germany) of samples was performed in a highly pure N2 atmosphere at a flow
rate of 70 mL/min. About 10 mg of the sample was heated at a constant rate of 10 ◦C/min
from room temperature to 600 ◦C.

2.4. Evaluation for CO2 Adsorption over K2CO3-Based Adsorbents

A fixed-bed flow sorption system, equipped with gas flow controllers and an in-
tegrated online gas chromatograph, was designed and constructed for the purpose of
evaluating adsorbent performance in CO2 adsorption, as depicted in Figure 1. The process
involved packing 2 g of adsorbent into a U-shaped quartz reactor, which was placed in a
programmable furnace for precise temperature control. Prior to each measurement, the
sample was heated to 100 ◦C in a highly pure Ar stream at the flow rate of 100 mL min−1

for 60 min to eliminate the physically adsorbed H2O and CO2, and then the sample was
cooled to 25 ◦C. The gas stream was rapidly switched to the 10% CO2/air with 30% relative
humidity (RH) at the desired flow rate of 10 mL min−1. The moisture was produced by bub-
bling air into water, and the relative humidity was measured using a hygrometer. The flow
rate of the gas was controlled by electronic flow control instruments. The concentrations of
CO2 at the inlet and outlet of the reactor were monitored by an online gas chromatograph
(GC-7890II, Techcomp, Beijing, China) equipped with a methane converter, and the flame
ionization detector was used. The sorption capacity of the adsorbent was calculated by the
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integration of the area above the breakthrough curve, and the integral equation is displayed
in Equation (1)

qs =
1

W
×

[∫ t

0
Q × C0 − C

1 − C
dt

]
× T0

T
× 1

Vm
(1)

where qs is the saturated adsorption capacity of CO2, mmol g−1. W is the weight of the
adsorbent, g. Q is the gas flow rate mL min−1. C0 and C are the influent and effluent CO2
concentration, respectively, vol%. t denotes the adsorption time, min. T0 is 273K. T is the
gas temperature, 273K. Vm is 22.4 mL mmol−1. qs is defined as the adsorption capacity of
CO2 when C is equal to C0; i.e., C/C0 is equal to 1.0.
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3. Results and Discussion
3.1. CO2 Sorption Performances of Different K2CO3-Based Adsorbents

A series of K2CO3-based adsorbents were synthesized using the impregnation method,
uniformly incorporating a 20% mass percentage of K2CO3 onto various support materials.
The supports selected included aluminum oxide (Al2O3), coconut shell activated carbon
(CSAC), coal-based activated carbon (CAC), and a series of molecular sieves, namely, zeolite
ZSM-5, zeolite MCM-41, zeolite 5A, zeolite β, and zeolite NaY. The loading amount of
K2CO3 was determined according to the literature [46,47], and the supports were chosen
for their heterogeneous pore texture and abundant porosities. A comparison of the CO2
adsorption capacities for these adsorbents, each loaded with 20% K2CO3, was conducted
under identical conditions, as depicted in Figure 2.
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Porous solid materials are primarily characterized by the physical adsorption of
CO2. Given that our study focuses on a low concentration of CO2 at 10%, the physical
adsorption effect results in a low adsorption capacity, which can fall below the detection
limit of gas chromatography. Consequently, the CO2 adsorption capacity of the supports is
not depicted here. For the adsorbents with 20% K2CO3 loading, the 20% K2CO3/Al2O3
adsorbent exhibits a higher CO2 adsorption capacity compared to the other adsorbents.
This superior performance may be attributed to the unique pore structure of Al2O3, which
facilitates a homogeneous distribution of K2CO3 and promotes efficient contact between
CO2 and the alkaline adsorption sites.

Due to its excellent performance, the pore structure and morphology of the Al2O3 sup-
port were further optimized by using different preparation conditions. Two types of Al2O3
were synthesized using different precursor solutions, as described in the experimental
section. In Scheme 1, Al2O3-1 was formed by adding urea and F127 to sodium alumi-
nate as the aluminum source. In Scheme 2, Al2O3-2 was produced by incorporating urea
into a solution containing aluminum nitrate as the aluminum source. Both Al2O3-1 and
Al2O3-2 were then subjected to impregnation with 20% K2CO3, resulting in CO2 adsorption
capacities of 0.69 mmol g−1 and 1.12 mmol g−1, respectively.

The 20% K2CO3/Al2O3-2 adsorbent exhibited a significantly higher CO2 adsorption
capacity than 20% K2CO3/Al2O3-1. Thus, further adjustments were made to the Al2O3-2
support, including varying the hydrothermal reaction time, temperature, and the molar
ratio of urea to aluminum nitrate nonahydrate (Al(NO3)3·9H2O) during the hydrothermal
process. The obtained results are presented in Figure 3.
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tion conditions.

Figure 3a,b show the effects of hydrothermal reaction time and temperature on the
preparation process, respectively. Clearly, either an excessively short reaction time or
an undesirably low temperature can hinder the formation of Al2O3 crystals with per-
fection. Conversely, an excessively long reaction time or high temperature can damage
the pore structure, affecting the CO2 adsorption performance of Al2O3 after K2CO3 load-
ing. Figure 3c illustrates the optimization of the urea/Al(NO3)3 ratio. Proper amounts
of urea and Al(NO3)3 are crucial for precise Al2O3 formation; excess amounts can lead
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to impurities, reducing the product’s purity and performance. Therefore, the optimal
preparation conditions were determined to be a 2:1 molar ratio of urea to Al(NO3)3·9H2O
in the precursor solution, with a hydrothermal reaction at 180 ◦C for 4 h.

Figure 3d exhibits the effect of varying the K2CO3 loading amount, indicating that
the optimal loading is 20%. At a 10% loading, there are insufficient alkaline active sites
on the adsorbent surface, resulting in lower CO2 adsorption capacity. Conversely, at a
30% loading, an excess of K2CO3 may block the pores, leading to the uneven dispersion of
active sites, which in turn results in a lower utilization rate and a subsequent decrease in
CO2 adsorption capacity.

Based on the optimal adsorption capacity attained, which was 1.12 mmol g−1, the
utilization rate of K2CO3 was evaluated. Theoretical calculations, derived from the chemical
reaction equation K2CO3 + H2O + CO2 ⇌ 2KHCO3, suggest that each gram of the adsorbent
is capable of potentially adsorbing up to 1.45 mmol g−1 of CO2. As a result, the calculated
maximum utilization rate for K2CO3 is approximately 77%.

3.2. Characterization of Self-Prepared Al2O3

The Al2O3 powders, synthesized using two different precursor solutions, have been
subjected to comprehensive characterization and analysis. The X-ray diffraction (XRD)
patterns for the Al2O3-1 and Al2O3-2 samples are presented in Figure 4. The patterns show
that the reflective peaks observed in both samples are definitively attributed to cubic γ-
Al2O3 [48], indicating a complete transformation achieved through the calcination process.
In addition, the absence of any characteristic peaks from other crystalline impurities
suggests that the samples exhibit an exceptionally high degree of purity. Notably, Al2O3-2
exhibits narrower diffraction peaks and relatively elevated peak intensities, indicating
superior crystallinity and enhanced crystal quality. High crystallinity γ-Al2O3 may exhibit
fewer defects and structural distortions, which is beneficial for improving the pore structure
of the support and achieving a uniform distribution of surface active-sites [49].
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The morphologies of Al2O3-1 and Al2O3-2 were examined using scanning electron mi-
croscopy (SEM). The spherical morphologies of Al2O3-1 are clearly observable in Figure 5a,b.
It has been reported that hydrogen bonds between the surface of aluminum hydroxide
(the precursor to γ-Al2O3) and the structure-directing agent molecules can reduce the free
energy of the crystals, leading to the formation of low-dimensional nanosheets [50]. These
nanosheets tend to aggregate to minimize the exposed area and thus reduce surface energy.
Consequently, hierarchical porous γ-Al2O3 particles with a similarly spherical structure
were formed through the directed self-assembly mediated by F127. The hierarchical porous
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structure not only accommodates K2CO3, providing basic active sites for CO2 adsorption,
but also provides diffusion channels for CO2. Figure 5c depicts a low-magnification SEM
image of Al2O3-2, showing that the sample is composed of well-dispersed spindle-like
aggregates, and the irregular agglomerates are almost negligible, indicating the high quality
and purity of the spindle-like aggregates. Figure 5d, a high-magnification SEM image,
reveals that the three-dimensional spindle-like particles consist of well-aligned nanoplates
with spindle-like edges and rough surfaces.
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Figure 5. SEM images of Al2O3-1 (a,b) and Al2O3-2 (c,d).

Obviously, compared to the spherical structure of Al2O3-1, the three-dimensional
spindle-shaped pore structure in Al2O3-2 may be more conducive to the impregnation
and uniform dispersion of K2CO3. It is likely that the spindle-like porous structure not
only facilitates the entry of K2CO3 but also enables the accommodation and dispersion
of more of it. After the loading of K2CO3, there is sufficient space for CO2 diffusion to
be captured by active sites. In contrast, the pore size of the spherical structured Al2O3-1
appears relatively narrower, and after K2CO3 loading, it is prone to blockage, leading to
greater resistance to CO2 diffusion within its interior.

The hierarchical structures of the two as-prepared Al2O3 samples were characterized
using N2 adsorption–desorption isotherms, as shown in Figure 6. It is evident that the
nitrogen adsorption isotherms for both materials have been classified as type IV according
to the International Union of Pure and Applied Chemistry (IUPAC) [51], signifying the
basic characteristic of mesoporous materials. The hysteresis loop exhibited by Al2O3-2 is
typically characterized as type H1, which is a feature commonly observed in mesoporous
materials with a relatively uniform pore size distribution. The weakly pronounced con-
densation steps, indicative of small mesopores, and the narrow hysteresis loop observed at
high relative pressures reflect the textural larger pores that are formed between plate-like
particles. It is documented in the literature that small mesopores, with diameters less than
4 nm, are formed between primary crystallites, while larger mesopores, with diameters
greater than 20 nm, are formed between the secondary aggregated particles [52].
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The Al2O3-1 curves display a type H3 hysteresis loop, characterized by the absence
of a clear saturation adsorption platform. These curves indicate the presence of weak
condensation steps, which are associated with the formation of larger slit-like mesopores
between plate-like particles [45]. Additionally, a slightly wider hysteresis loop is observed
within the relative pressure range of 0.4 to 1.0. The wider hysteresis loop is attributed
to the irregularity of the pore structure. Generally, the width of the hysteresis loop is
indicative of the connectivity between pores: a wider loop may suggest a lower degree
of connectivity, while a narrower loop indicates a higher degree of connectivity between
the pores. Obviously, the superior connectivity of the pore structure in Al2O3-2 is more
favorable for the loading of K2CO3 solution. Super connectivity allows for the uniform
dispersion of K2CO3 within the pore channels, preventing channel blockage and, in turn,
facilitating the diffusion of CO2. The enhanced connectivity also promotes contact with a
greater number of active sites, thereby increasing the adsorption capacity for CO2.

The pore structure parameters of the samples, including specific surface area, pore
volume, and average pore size, are listed in Table 1. It can see that Al2O3-1 exhibits a
higher BET surface area; however, this does not necessarily imply that more active sites
would be exposed to CO2 after K2CO3 loading. The relatively small average pore diameter
may lead to significant pore blockage, resulting in the loss of a large number of active
sites. In contrast, Al2O3-2, which has a similar total pore volume to Al2O3-1, exhibits a
much larger average pore diameter and better pore connectivity, as inferred from Figure 6.
Consequently, this facilitates the uniform dispersion of K2CO3, the exposure of alkaline
active sites, and the reduction of CO2 diffusion resistance, thereby further enhancing the
utilization rate of active sites and the CO2 adsorption capacity.

Table 1. Textual characteristics of Al2O3-1 and Al2O3-2.

Preparation Method BET Surface Area
(m2 g−1)

Pore Volume
(cm3 g−1)

Average Pore
Diameter (nm)

Al2O3-1 417 0.53 4.9
Al2O3-2 196 0.59 11.89

Figure 7 reveals that Al2O3-1 has a higher BET surface area and a smaller average
pore diameter due to its abundance of micropores, whereas Al2O3-2, with a greater num-
ber of mesopores and macropores, has a lower BET surface area and a larger average
pore diameter.

In summary, the connectivity of the pores and the large pore diameter of the support
are deduced as key factors for achieving high CO2 adsorption capacity. The comparative
schematic of CO2 diffusion in the interconnected and non-interconnected pore channels is
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depicted in Figure 8. It is evident that the interconnected pores significantly facilitate the
diffusion of CO2.
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The thermal stability of Al2O3-1 and Al2O3-2 was examined using TGA, as depicted in
Figure 9. Neither of the two aluminum oxide samples exhibited weight loss or endothermic
peaks throughout the temperature-programmed process, suggesting that the aluminum
oxide support is thermally stable at the adsorption and desorption temperatures of 25 ◦C
and 350 ◦C. Consequently, the K2CO3/Al2O3 sorbents have the potential to be reused
multiple times without losing amine sites.

Nanomaterials 2024, 14, x FOR PEER REVIEW 10 of 13 
 

 

 

Figure 9. TGA curves of Al2O3-1 and Al2O3-2. 

3.3. Recycling Performance 

The regeneration performance of the adsorbent was evaluated and is depicted in 

Figure 10. Typically, after the CO2 sorption process in a closed-loop environmental control 

system, adsorbents are regenerated by increasing the temperature or introducing high-

temperature steam. In our experiment, the used adsorbents were regenerated at 350 °C, a 

temperature at which the reacted products can be completely regenerated [46]. After 10 

cycles, the CO2 adsorption capacity of the 20% K2CO3/Al2O3 sorbent showed virtually no 

decline, demonstrating that the prepared sorbent can be reused repeatedly while 

maintaining its CO2 adsorption capacity. 

 

Figure 10. Recycling performance of 20% K2CO3/Al2O3-2 adsorbent after 10 cycles. 

4. Conclusions 

A series of K2CO3-based adsorbents were synthesized in this work. The CO2 sorption 

performance was investigated in detail under ambient temperature conditions and at a 

CO2 concentration of 10% using a fixed-bed flow sorption system, equipped with gas flow 

controllers and an integrated online gas chromatograph system. A 20 wt.% loading of 

K2CO3 was impregnated onto various supports, including Al2O3, zeolites ZSM-5, MCM-

41, 5A, β, and NaY, CSAC, and CAC. Among these supports, Al2O3 was identified as the 

superior support, leading to further optimization of its pore structure by varying the 

preparation conditions to enhance CO2 adsorption capacity. The sorbent of 20% 

K2CO3/Al2O3-2 achieved the maximum CO2 adsorption capacity of 1.12 mmol g−1, and the 

utilization rate of K2CO3 was 77%. The pore volume and pore size distribution were found 

Figure 9. TGA curves of Al2O3-1 and Al2O3-2.



Nanomaterials 2024, 14, 1838 10 of 12

3.3. Recycling Performance

The regeneration performance of the adsorbent was evaluated and is depicted in
Figure 10. Typically, after the CO2 sorption process in a closed-loop environmental control
system, adsorbents are regenerated by increasing the temperature or introducing high-
temperature steam. In our experiment, the used adsorbents were regenerated at 350 ◦C,
a temperature at which the reacted products can be completely regenerated [46]. After
10 cycles, the CO2 adsorption capacity of the 20% K2CO3/Al2O3 sorbent showed virtu-
ally no decline, demonstrating that the prepared sorbent can be reused repeatedly while
maintaining its CO2 adsorption capacity.
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4. Conclusions

A series of K2CO3-based adsorbents were synthesized in this work. The CO2 sorption
performance was investigated in detail under ambient temperature conditions and at a
CO2 concentration of 10% using a fixed-bed flow sorption system, equipped with gas flow
controllers and an integrated online gas chromatograph system. A 20 wt.% loading of
K2CO3 was impregnated onto various supports, including Al2O3, zeolites ZSM-5, MCM-41,
5A, β, and NaY, CSAC, and CAC. Among these supports, Al2O3 was identified as the
superior support, leading to further optimization of its pore structure by varying the prepa-
ration conditions to enhance CO2 adsorption capacity. The sorbent of 20% K2CO3/Al2O3-2
achieved the maximum CO2 adsorption capacity of 1.12 mmol g−1, and the utilization rate
of K2CO3 was 77%. The pore volume and pore size distribution were found to significantly
influence CO2 adsorption, as larger, interconnected pores enabled the uniform dispersion
of the alkaline active sites, thereby enhancing the utilization of K2CO3. Moreover, the
optimum adsorbent demonstrated full regenerability at 350 ◦C, highlighting its excellent
recyclability. The K2CO3/Al2O3 sorbent may be an excellent choice for CO2 removal in
coal-fired power plants.
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