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Abstract: This study demonstrates, for the first time, the conversion of waste rice noodles (WRN) into
a cost-effective, nano-silver-loaded activated carbon (Ag/AC) material capable of efficient adsorption
and antibacterial activity. The fabrication process began with the conversion of WRN into hydrother-
mal carbon (HTC) via a hydrothermal method. Subsequently, the HTC was combined with silver
nitrate (AgNO3) and sodium hydroxide (NaOH), followed by activation through high-temperature
calcination, during which AgNO3 was reduced to nano-Ag and loaded onto the HTC-derived AC,
resulting in a composite material with both excellent adsorption properties and antibacterial activity.
The experimental results indicated that the incorporation of nano-Ag significantly enhanced the spe-
cific surface area of the Ag/AC composite and altered its pore size distribution characteristics. Under
optimized preparation conditions, the obtained Ag/AC material exhibited a specific surface area of
2025.96 m2/g and an average pore size of 2.14 nm, demonstrating effective adsorption capabilities
for the heavy metal Cr(VI). Under conditions of pH 2 and room temperature (293 K), the maximum
equilibrium adsorption capacity for Cr(VI) reached 97.07 mg/g. The adsorption behavior of the
resulting Ag/AC fitted the Freundlich adsorption isotherm and followed a pseudo-second-order
kinetic model. Furthermore, the Ag/AC composite exhibited remarkable inhibitory effects against
common pathogenic bacteria such as E. coli and S. aureus, achieving antibacterial rates of 100% and
81%, respectively, after a contact time of 4 h. These findings confirm the feasibility of utilizing the
HTC method to process WRN and produce novel AC-based functional materials.

Keywords: waste rice noodles; nano-silver; activated carbon; adsorption; antibacterial activity

1. Introduction

As the most commonly used adsorbent, activated carbon (AC) plays a pivotal role
in the removal of pollutants, water purification, and air management [1,2]. Modifications
of AC, encompassing physical, acid, base, and loading modifications, can significantly
enhance its adsorptive properties and endow it with other valuable functional characteris-
tics. Among these, the strategy of loading specific substances onto the surface of AC can
alter its specific surface area, pore size distribution, or other physicochemical properties [3].
This alteration enables the efficient adsorption of specific pollutants and the generation of
high-value functional characteristics such as catalysis or antibacterial properties, which
can significantly enhance the added value of the material [4]. The selection of the loading
material is crucial for the loading modification of AC, as different loading materials can
impart different properties or functions. Metallic particles, particularly nanoparticles, are
one of the more common loading materials for AC [5–8]. For instance, Ramasundaram et al.
synthesized silver nanoparticle-loaded cashew nut shell activated carbon (Ag/CNSAC),
demonstrating that the synergistic effect of Ag as a photocatalyst and CNSAC as a catalytic
carrier and adsorbent in Ag/CNSAC effectively degrades pollutants such as methylene
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blue, while also exhibiting excellent antibacterial efficiency against Escherichia coli and
Staphylococcus aureus [6]. Chowdhury et al. initially synthesized AC from rice husk and
then loaded Ni-Co-S (NCS) nanoparticles onto the AC surface through the reaction of metal
precursors with thioacetamide at low temperatures, resulting in an AC-NCS composite ma-
terial. Compared to unloaded AC and NCS, the AC-NCS exhibited significantly enhanced
adsorption capacity for dyes and antibiotics [7]. Currently, the raw materials reported for
loaded AC primarily derive from petroleum, coal, or biomass. Although these loaded ACs
often exhibit outstanding functional characteristics, considering cost control, sustainable
development, and waste-to-waste treatment strategies, loaded AC materials prepared from
waste are clearly more environmentally valuable and competitive in the market.

As a significant category of municipal solid waste, catering waste poses a considerable
ecological risk if it infiltrates soil and aquatic ecosystems, leading to severe environmental
pollution and presenting substantial challenges for urban governance [9,10]. Traditional
commercial catering waste treatment technologies include anaerobic digestion [11], aerobic
composting [12], landfilling [13], incineration [14], and the production of animal feed [15].
While these strategies are capable of handling large volumes of food waste, they are associ-
ated with several evident drawbacks, such as the requirement for substantial land, capital,
and equipment investments; low-value-added products and technological content; and the
possible formation of secondary pollutants such as leachate or greenhouse gasses [16]. It is
apparent that to achieve comprehensive and efficient resource utilization of catering waste,
it is necessary to explore more effective supplementary approaches beyond conventional
methods. These approaches should ensure that the products have the advantages of high
technological content and high added value, and the production aspects should be charac-
terized by simple operation, the absence of secondary pollution, low cost, and products
with high added value.

Hydrothermal carbonization has gained significant attention in recent years as an
innovative approach for the treatment of organic waste [17,18]. Through hydrothermal
treatment, various natural organic materials, such as sugars [19], organic acids [20], fruit
juices [21,22], and fruit peels [23,24], have been demonstrated to be convertible into new
types of carbon-based functional materials like carbon quantum dots (CQDs) [25]. Com-
pared to traditional methods of processing organic materials, hydrothermal carbonization
offers several distinct advantages, including high conversion efficiency, minimal land re-
quirement, reduced secondary pollution, and environmental friendliness [26]. In China,
catering waste, which is rich in starch, could potentially be treated using hydrothermal
carbonization strategies as a new avenue. Our preliminary research on waste rice noodles
(WRN) has revealed that after hydrothermal treatment, the products can be divided into
two parts based on their physical state: one part is liquid, containing a significant amount
of CQDs, and the other is solid, referred to as hydrothermal carbon (HTC). These two frac-
tions can be developed into different types of functional materials based on their distinct
physicochemical properties. In our earlier work, we proposed, for the first time, a strategy
for preparing novel photocatalytic composite materials from CQDs using WRN as a raw
material. This strategy involves converting catering waste into CQDs through hydrother-
mal methods and then combining them with specific precursors to obtain CQD/TiO2 [27]
or CQD/ZnO [28] photocatalytic composite powders for water pollution control, or even
device-ready CQD/ZnO photocatalytic composite arrays based on catering waste [29].
Furthermore, we also achieved the synergistic transformation of two types of waste (WRN
and waste iron oxide scale) into a magnetic CQD/FeOx photocatalytic composite with
extremely low cost and high recyclability, facilitating low-cost, large-scale photocatalytic
water treatment [30]. On the other hand, we also conducted preliminary studies on the solid
fraction produced from the hydrothermal treatment of WRN, known as HTC. HTC itself
exhibited a small specific surface area and lacked effective adsorption capacity. However,
it contained approximately 51% carbon and demonstrated significant reducing proper-
ties at high temperatures, indicating its potential for further derivatization to prepare
novel carbon-based functional materials. Preliminary exploration revealed that under the
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presence of potassium hydroxide and following high-temperature activation, HTC could
be converted into AC with a high surface area, showing some adsorption capacity for
heavy metals such as hexavalent chromium [Cr(VI)] in water [27]. However, for complex
real-world contaminated water, materials with only adsorption capabilities do not fully
meet the requirements for efficient water treatment. For example, common AC typically
shows limited effectiveness in inhibiting pathogenic microorganisms in water. Therefore, it
is necessary to optimize the preparation strategy of the HTC pathway based on previous
work, such as introducing suitable substances for loading, in order to develop high-value
functional materials with enhanced adsorption capabilities and additional properties, such
as antibacterial activity, to meet the practical requirements of wastewater purification.

Silver (Ag) nanoparticles have been demonstrated to be potent antimicrobial agents
against a spectrum of Gram-positive and Gram-negative bacteria, and can be obtained
through the reduction of silver salts [31–33]. Consequently, we propose a strategy for
preparing a novel silver-loaded activated carbon from WRN via the HTC pathway, achiev-
ing, for the first time, the transformation of HTC into a high-value functional material with
both excellent adsorption properties and antibacterial activity. This strategy involves the
initial hydrothermal carbonization of WRN to obtain the HTC intermediate, followed by
the mixture of HTC with an appropriate silver source (AgNO3) and an alkaline activator
(NaOH). The mixture is then subjected to in situ activation and a complex reaction at high
temperatures. This process not only forms AC with a high specific surface area, but also
reduces AgNO3 on the HTC, resulting in the formation of silver nanoparticles loaded onto
the AC’s surface. Ultimately, this leads to the creation of Ag/AC composite materials
(see Figure 1). The morphology, composition, and structure of these Ag/AC materials are
investigated, along with their adsorption capacity for Cr(VI) and their inhibitory effects on
common pathogenic bacteria.
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Figure 1. Process flow diagram for simultaneous preparation of Ag/AC composite and photocat-
alytic composite (such as CQD/TiO2 [27], CQD/ZnO [28,29] and CQD/FeOx [30]) using WRN as
raw material.

2. Experimental Section
2.1. Materials

Similarly to our previous work [27–30], the catering waste, i.e., waste rice noodles
(WRN), were collected from the canteen at Guilin University of Technology, located in
Guilin, China. The silver nitrate (AgNO3, 99% purity), sodium hydroxide (NaOH, 96% pu-
rity), and potassium dichromate (K2Cr2O7, 98% purity) were purchased from Macklin
Reagent (Shanghai, China) and used without further purification. The LB agar powder
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was purchased from Solarbio life sciences (Beijing, China). The Escherichia coli (E. Coli,
ATCC 8739) and Staphylococcus aureus (S. aureus, ATCC 25923) were both obtained from the
American Type Culture Collection (ACTT, Mansass, VI, USA).

2.2. Synthesis

Based on the findings from earlier experiments, we utilized a hydrothermal carboniza-
tion strategy to prepare Ag/AC composite materials using HTC as an intermediate [27–30].
Initially, 100 g of WRN was ground into a paste, which was then mixed with 200 g of deion-
ized water, stirred evenly, and transferred into a 500 mL autoclave lined with Teflon (Kemi
Instrument, Hefei, China). After sealing, the mixture was subjected to a hydrothermal
reaction at 200 ◦C in an oven for 10 h, resulting in a dark brown solution with a black
precipitate. Upon cooling, the solution was filtered, and the residue obtained was HTC. The
HTC precipitate was placed in an oven and dried at 60 ◦C for 12 h, followed by grinding
to give black HTC powder (yield: 19.2 g, 19.2% based on WRN). The filtrate, containing
CQDs, could be processed through the CQD pathway to obtain various high-performance
photocatalytic materials, thus achieving 100% recycling of WRN without causing secondary
pollution [27–30].

Concurrently, 0.1 g of AgNO3 was dissolved in 5 mL of deionized water to form an
AgNO3 solution, which was then mixed with 2 g of HTC powder and stirred evenly using a
glass rod. The mixture was transferred to an oven and dried at 80 ◦C for 12 h. Subsequently,
6 g of NaOH was dissolved in 8 mL of deionized water to form a NaOH solution, which
was combined with the silver-containing HTC from the previous step and mixed uniformly.
The mixture was then dried in an oven at 80 ◦C for 48 h, yielding a black solid. The solid
was subsequently placed in an SGM 6812 CK tubular furnace (Sigma, Luoyang, China)
and heated at 900 ◦C for 1 h. After cooling to room temperature, the product was ground
into a powder, washed with deionized water until neutral, filtered, and then transferred
back to the oven to dry at 60 ◦C for 12 h, resulting in the final Ag/AC composite material.
Following an identical preparation procedure, but omitting the introduction of AgNO3, an
AC material without Ag loading was fabricated to serve as a control sample. The refinement
of the experimental conditions for the Ag/AC composite is delineated in Table S1 in
the ESI.

2.3. General Characterization

The Ag/AC composite material was characterized using techniques described in our
earlier studies [27–30]. For more comprehensive information, please see Supplementary
Materials S1 in the ESI.

2.4. Measurement of Adsorption Performance for Cr(VI)

The adsorption performance of the Ag/AC composite for Cr(VI) was assessed using
the procedures described in our earlier publications [27]. For further information, please
consult Supplementary Materials S2 in the ESI.

2.5. Measurement of Antibacterial Performance

The antibacterial properties of the Ag/AC material were assessed using a VersaMax mi-
croplate reader (Molecular Devices, Sunnyvale, NE, USA), with the AC material unloaded
with silver serving as a control. For comprehensive details, please consult Supplementary
Materials S3 in the ESI.

3. Result and Discussion
3.1. Structural Characterization

AgNO3 is known for its oxidative properties, whereas HTC, rich in C and H elements,
might exhibit reducibility at high temperatures. Consequently, at elevated temperatures,
AgNO3 could be readily reduced to metallic Ag. The X-ray diffraction (XRD) pattern of the
Ag/AC composite material demonstrated the presence of diffraction peaks at 2θ values of
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38.12◦, 44.28◦, 64.43◦, and 77.47◦, which corresponded to the (111), (200), (220) and (311)
crystal planes of cubic-phase Ag, respectively. These were in agreement with the standard
diffraction card of Ag crystals (JCPDS card no. 04-0783), confirming that the phase loaded
on the AC matrix surface was cubic-phase Ag. Due to the good crystallinity of the Ag
phase and the strong diffraction signals, the AC diffraction peaks (broad peaks at 43◦ and
25◦, representing the (100) and (002) crystal planes of graphite) were not pronounced (see
Figure 2).
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Figure 2. PXRD pattern of AC and Ag/AC composite.

The SEM analysis of the Ag/AC composite revealed a typical porous morphology, with
nanoscale Ag particles fairly uniformly dispersed on the surface of the AC (see Figure 3a).
The EDS analysis also indicated that the Ag element was distributed quite evenly on
the surface of the AC, which resulted in a Ag content of 2.05 wt% in the composite (see
Figure 3b). The Ag/AC composite material was also subjected to ion thinning prior to
TEM analysis. The results, as depicted in Figure 3c, revealed that nanoscale Ag was loaded
onto the surface of the AC material and was closely integrated with the carbon substrate.
The high-resolution TEM (HRTEM) image presented in Figure 3d further displays the
interlacing of the lattices between Ag and the activated carbon support. Notably, the lattice
fringes with interplanar spacings of 0.236 nm corresponded to the (111) crystal planes of
Ag [34]. Lattice fringes with an interplanar spacing of about 0.309 nm were also observed,
aligning with the (002) crystal plane of AC [35].

The FT-IR spectra of the Ag/AC composite material and the pristine AC are depicted
in Figure 4a. It was observed that the AC surface, devoid of Ag loading, exhibited a
substantial presence of hydroxyl groups, with the O–H stretching vibration peak positioned
at 3420 cm−1, and the associated C–O stretching vibration was detected at 1049 cm−1. Upon
Ag loading, the C–O stretching vibration peak of the Ag/AC composite material shifted
to 1173 cm−1. This spectral shift suggests that during the high-temperature reduction of
AgNO3 on HTC, a reaction likely occurred between the surface hydroxyl groups of AC
and Ag ions, leading to the formation of C–O–Ag bonds, which is indicative of strong
interfacial binding between the nanoscale Ag particles and the AC surface. Additionally,
the point-of-zero-charge (PZC) measurement results revealed that the AC without Ag
loading contained a higher concentration of hydroxyl groups, with its PZC at a lower pH
value of 5.70. In contrast, after the formation of the Ag/AC composite, the surface hydroxyl
groups were consumed, resulting in a significant elevation in the PZC for the Ag/AC
composite material to 7.48 (see Figure 4b).
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The successful integration of Ag with the AC surface was also evidenced by X-ray
photoelectron spectroscopy (XPS). As depicted in Figure 4c, the XPS spectrum of the Ag/AC
composite material revealed the presence of Ag, O, and C elements. The high-resolution



Nanomaterials 2024, 14, 1857 7 of 16

spectrum of the Ag element exhibited signals at 368.64 eV and 374.63 eV, corresponding to
the Ag 3d spectrum with Ag 3d5/2 and Ag 3d3/2 peaks (see Figure 4d and Table 1) [36]. In
the high-resolution spectrum of O 1s, the Ag/AC composite material demonstrated the
existence of C–O, O–H, and C–O–Ag bonding, with characteristic signals located at 530.67,
532.30, and 534.78 eV, respectively. In contrast, the O 1s spectrum of the pristine AC featured
two characteristic peaks at 531.69 and 532.98 eV, corresponding to the oxygen in the C–O
and O–H groups, respectively. In conjunction with the aforementioned IR spectroscopy
results, it was inferred that the formation of the Ag/AC composite was actually a reaction
between Ag ions and the hydroxyl groups on the AC surface, leading to the emergence of
C–O–Ag bond signals (see Figure 4e). Furthermore, in the C 1s high-resolution spectrum,
the characteristic peaks of the Ag/AC composite at 284.80, 286.43, and 288.89 eV were
attributable to the C–C bonds, C–O bonds, and aromatic ring structures of C=C bonds
within the composite material (see Figure 4f).

Table 1. XPS peak distribution of AC and Ag/AC composite based on WRN.

Element Peak (eV) Surface Group Assignment

AC

C 1s
284.80 C Graphitic carbon
285.91 C–O Alcoholic or etheric structure in AC
288.93 C=C π-electrons in aromatic ring

O 1s
531.69 C–O Oxygen atom bonded to

aromatic rings
532.98 O–H Hydroxyl group

Ag/AC

C 1s
284.80 C Graphitic carbon
286.43 C–O Alcoholic or etheric structure in AC
288.89 C=C π-electrons in aromatic ring

O 1s
530.67 C–O Oxygen atom bonded to

aromatic rings
532.30 O–H Hydroxyl group
534.78 C–O–Ag Oxygen bonded to silver

Ag 3d 368.64 Ag Ag 3d5/2
374.63 Ag Ag 3d3/2

The nitrogen adsorption/desorption isotherms and pore size distribution experimental
results, as shown in Figure 5 and Table 2, demonstrated that the incorporation of nanoscale
Ag substantially enhanced the BET-specific surface area of the AC and significantly im-
pacted its adsorption behavior. The AC without Ag loading exhibited a BET-specific surface
area of 819.19 m2/g with an average pore size of 3.00 nm (see Table 2). Its adsorption
isotherm could be interpreted as a mixture of Type I in the low-pressure range and Type
IV in the medium- to high-pressure range, accompanied by an H4-type hysteresis loop,
indicating its classification as a predominantly microporous and mesoporous adsorbent
(see Figure 5b,d). Following the introduction of nanoscale Ag, the specific surface area was
notably increased to 2025.96 m2/g, suggesting enhanced adsorptive capabilities. Simulta-
neously, the average pore size decreased to 2.14 nm, and the nitrogen adsorption profile
closely approximated a Type I isotherm, indicating a shift toward a microporous adsorbent
(see Figure 5a,c and Table 2).
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Table 2. Specific surface area and pore characteristic of Ag/AC composite and AC without Ag
loading.

Sample SBET (m2/g) Smic (m2/g) Vtot (cm3/g) Vmic (cm3/g) Dave (nm)

AC 819.19 740.98 0.58 0.38 3.00
Ag/AC 2025.96 966.73 0.56 0.48 2.14

3.2. Adsorption Performance for Cr(VI)

Given the significant specific surface area of the Ag/AC composite material, it was
anticipated that this type of AC would effectively adsorb the heavy metal Cr(VI). At room
temperature (293 K) and a pH of 2, the Ag/AC composite was subjected to a 24 h equi-
librium adsorption study using Cr(VI) solutions with varying initial concentrations, and
the results are shown in Figure 6a. The equilibrium adsorption data were fitted to both
Langmuir and Freundlich isotherm models, with the linearized forms of the Langmuir and
Freundlich equations presented in Figure 6b,c, respectively. The relevant parameters for
the Langmuir and Freundlich models and their linear regression relationships are provided
in Table 3. Based on the regression coefficients, the Langmuir model offered a better fit
for describing the adsorption behavior of the material compared to the Freundlich model,
suggesting that the adsorption active sites were uniformly distributed across the Ag/AC
composite. According to the Langmuir model, the maximum equilibrium adsorption capac-
ity of the Ag/AC composite for Cr(VI) reached 1.8667 mmol·g−1, equivalent to 97.07 mg/g.
This adsorption capacity was higher than that of AC without Ag loading (65.43 mg/g;
see Figure S2 and Table S2 in ESI), as well as commercial coal-based AC (49.98 mg/g; see
Figure S3 and Table S3 in ESI). Furthermore, compared with various AC materials reported
in the literature, the Ag/AC composite derived from WRN exhibited remarkable Cr(VI)
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adsorption performance, achieving an equilibrium adsorption capacity that exceeded those
of Fe2O3/AC [37], Fe3O4/AC [38], and Ag-ZnO/AC [39], all synthesized from commercial
AC (see Table 4). The Cr(VI) adsorption capacity of Ag/AC was also superior to that of
the Al2O3/AC composite derived from vegetable crust leather waste [40], though it was
slightly lower than that of ZnCl2-AC or K2CO3-AC composites prepared from tropical hard-
wood sawdust [41]. Therefore, the WRN-based Ag/AC composite represents a low-cost,
high-performance solution with potential applications in heavy metal pollution control.
It is also noteworthy that certain biomass-derived modified hydrochar materials, such
as those prepared from bamboo [42] or poultry litter [43], demonstrate favorable Cr(VI)
adsorption capabilities, with some hydrochars exhibiting photocatalytic Cr(VI) degrada-
tion [44]. However, for WRN-based systems, the directly hydrothermally synthesized HTC
from WRN showed a maximum equilibrium Cr(VI) adsorption capacity of only 1.87 mg/g,
rendering it impractical for real-world applications (see Figure S4 and Table S4 in ESI). Thus,
WRN-based HTC must be thermally activated at high temperatures and functionalized
with additional loadings to serve as a high-value functional materials.
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Table 3. Langmuir and Freundlich isotherm adsorption parameters for Cr(VI) at different tempera-
tures.

T (K)
Langmuir Models Freundlich Models

qm (mmol·g−1) b (L·mg−1) R2 kf (mmol·g−1) 1/n R2

293 1.8667 0.399 0.9998 1.2429 0.073 0.9461
303 1.9168 0.591 0.9993 1.7317 0.166 0.7953
313 1.9657 0.850 0.9996 1.8181 0.013 0.7772
323 2.0370 1.534 0.9998 1.9037 0.012 0.9261

Table 4. Adsorption capacity of Cr(VI) by AC and related adsorbents from various raw materials.

Adsorbent Carbon Source Metal Source Adsorbent Dosage
(g·L−1) pH

Adsorption
Capacity
(mg·g−1)

Reference

AC Banana peels, corn cobs - 0.4 2 19.16 [23]
AC Mango kernel - 2.5 2 7.8 [21]
AC Aloe vera waste leaves - 2 2 58.83 [45]
AC Date press cake - 1 5 198 [46]
AC Hard shell of wood apple fruit - 1.25 2 151.51 [24]

Zn-modified
hydrochar Bamboo ZnCl2 3.3 5 14.0 [42]

Al-modified
hydrochar Bamboo AlCl3 3.3 5 12.3 [42]
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Table 4. Cont.

Adsorbent Carbon Source Metal Source Adsorbent Dosage
(g·L−1) pH

Adsorption
Capacity
(mg·g−1)

Reference

H2SO4-
modified

hydrochar
Poultry litter - 2 2 26.21 [43]

ZnCl2-AC Tropical hardwood sawdusts
of Tectona grandis tree ZnCl2 0.4 3 127 [41]

K2CO3-AC Tropical hardwood sawdusts
of Tectona grandis tree K2CO3 0.4 3 103 [41]

Fe2O3/AC Commercial AC FeSO4·5H2O
FeCl3·6H2O 1 2 83.33 [37]

Fe3O4/AC Commercial AC FeSO4·7H2O
FeCl3·6H2O 2 2 45.3 [38]

Al2O3/AC Vegetable crust leather waste Al2O3 6 6 19.3 [40]

Ag-ZnO/AC Commercial AC Zn(NO3)2
AgNO3

16 2.5 4.17 [39]

Ag/AC WRN AgNO3 1 2 97.07 This work
AC WRN - 1 2 65.43 This work

Commercial AC Coal - 1 2 49.98 This work
HTC WRN - 1 2 1.87 This work

To further investigate the adsorption capacity and thermodynamics of the Ag/AC
composite material for Cr(VI), adsorption isotherms were obtained at four different temper-
atures (293, 303, 313, and 323 K). As shown in Figure 7a and Table 3, the R2 values for the
Langmuir model exceeded 0.999 at all four temperatures, significantly higher than those
obtained from the Freundlich model. This further confirmed that the Langmuir model
more effectively described the adsorption equilibrium of Cr(VI) on the Ag/AC compos-
ite material, indicating monolayer surface adsorption at specific homogeneous sites, as
suggested by the Langmuir adsorption isotherms. A relationship between LnKeq and 1/T
was also established, yielding a correlation coefficient R2 of 0.9999, demonstrating a strong
linear relationship (see Figure 7b). Table 5 presents the calculated thermodynamic values
of ∆H, ∆S, and ∆G. It is apparent that the negative ∆G values gradually increased with
decreasing temperature, indicating the spontaneity of the adsorption process. The positive
∆S suggested that the adsorption process was driven by entropy rather than enthalpy.
Additionally, the positive ∆H value confirmed the endothermic nature of the adsorption
process by the Ag/AC composite material, with higher temperatures favoring adsorption.
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Table 5. The relationship between ∆H, ∆S, and ∆G in thermodynamics.

T (K) ∆H (kJ·mol−1) ∆S (kJ·mol−1·K−1) ∆G (kJ·mol−1)

293

9.582 0.03652

−1.186
303 −1.524
313 −1.863
323 −2.201

The WRN-based Ag/AC composite material also exhibited a favorable adsorption rate
for Cr(VI). As shown in Figure 8a, equilibrium was achieved within 80 min for a 150 mg/L
Cr(VI) solution. The experimental data were further analyzed using pseudo-first-order
and pseudo-second-order kinetic models, with their linear forms shown in Figure 8b,c,
respectively. The relevant fitting parameters and regression coefficients are detailed in
Table 6. The results clearly show that the adsorption of Cr(VI) using the Ag/AC composite
closely aligned with the pseudo-second-order kinetic model, suggesting that chemical
adsorption was the main controlling factor.

Nanomaterials 2024, 14, x FOR PEER REVIEW 11 of 17 
 

 

with decreasing temperature, indicating the spontaneity of the adsorption process. The 
positive ∆S suggested that the adsorption process was driven by entropy rather than en-
thalpy. Additionally, the positive ∆H value confirmed the endothermic nature of the ad-
sorption process by the Ag/AC composite material, with higher temperatures favoring 
adsorption. 

 
Figure 7. (a) Langmuir adsorption isotherms of Cr (VI) on Ag/AC composite materials at different 
temperatures. (b) Relationship between ln keq and 1/T. 

Table 5. The relationship between ∆H, ∆S, and ∆G in thermodynamics. 

T (K) ΔH (kJ·mol−1) ΔS (kJ·mol−1·K−1) ΔG (kJ·mol−1) 
293 

9.582 0.03652 

−1.186 
303 −1.524 
313 −1.863 
323 −2.201 

The WRN-based Ag/AC composite material also exhibited a favorable adsorption 
rate for Cr(VI). As shown in Figure 8a, equilibrium was achieved within 80 min for a 150 
mg/L Cr(VI) solution. The experimental data were further analyzed using pseudo-first-
order and pseudo-second-order kinetic models, with their linear forms shown in Figure 
8b,c, respectively. The relevant fitting parameters and regression coefficients are detailed 
in Table 6. The results clearly show that the adsorption of Cr(VI) using the Ag/AC compo-
site closely aligned with the pseudo-second-order kinetic model, suggesting that chemical 
adsorption was the main controlling factor. 

 
Figure 8. Dynamic adsorption equilibrium curve (a), fitted pseudo-first-order kinetic model (b) and 
pseudo-second-order kinetic model (c) of Ag/AC composite. 

Table 6. The kinetic adsorption parameters for the adsorption of Cr(VI) obtained using pseudo-first-
order and pseudo-second-order models. 

Figure 8. Dynamic adsorption equilibrium curve (a), fitted pseudo-first-order kinetic model (b) and
pseudo-second-order kinetic model (c) of Ag/AC composite.

Table 6. The kinetic adsorption parameters for the adsorption of Cr(VI) obtained using pseudo-first-
order and pseudo-second-order models.

Pseudo-First-Order Pseudo-Second-Order

qe1 (mmol·g−1) K1 (min−1) R1
2 qe2 (mmol·g−1) K2 (g·mmol·min−1) R2

2

0.9883 0.0566 0.9751 1.8513 0.1436 0.9997

On the other hand, SEM analysis revealed that after the adsorption of Cr(VI), the
Ag/AC composite largely retained its porous morphology from before adsorption (see
Figure 9a). EDS analysis indicated that the adsorbed Cr(VI) was relatively evenly dis-
tributed across the material’s surface (see Figure 9b). As shown in the PXRD analysis in
Figure 9c, the adsorption of Cr(VI) did not lead to significant changes in the crystal struc-
ture of nano-silver, though the Ag diffraction peaks became slightly weaker. Furthermore,
infrared spectroscopy showed the appearance of a Cr–O vibration peak at 486 cm−1 after
Cr(VI) adsorption, indicating that some form of chemical interaction occurred between
Cr(VI) and the Ag/AC composite during the adsorption process (see Figure 9d).

We also investigated the effect of different water types on the Cr(VI) adsorption capac-
ity of the Ag/AC composite. As shown in Figure 10a, in a 100 mg/L Cr(VI) solution, the
Ag/AC composite adsorbed 92.14% of Cr(VI) within 120 min in distilled water. However,
under the same conditions, the Cr(VI) removal rate decreased to 68.13% and 61.20% in tap
water and river water, respectively. This reduction could be attributed to the presence of
anions such as sulfate, chloride, and phosphate ions in tap and river water, which likely
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competed with Cr2O7
2− ions, the main form of Cr(VI) in solution, for adsorption sites.

Nonetheless, even in tap and river water, the Ag/AC composite demonstrated consider-
able Cr(VI) adsorption activity, suggesting its suitability for treating complex wastewater
compositions. Additionally, the Ag/AC composite exhibited regenerability and reusability,
as it could be regenerated by desorbing Cr(VI) through alkali leaching and then reused for
Cr(VI) adsorption. As illustrated in Figure 10b, although the adsorption efficiency of the
Ag/AC composite gradually decreased with repeated regeneration cycles, it still achieved
a Cr(VI) removal rate of approximately 65% within 120 min after five adsorption cycles.
This finding further supports the potential of Ag/AC composite as a cost-effective material
for practical industrial water treatment applications.
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Figure 9. (a,b): SEM image (a) and Cr(VI) elemental mapping (b) of Ag/AC composite after Cr(VI)
adsorption; (c) PXRD patterns of Ag/AC composite before and after adsorption; (d) IR spectra of
Ag/AC composite pre- and post-adsorption. Samples were treated in 150 mg·L−1 Cr(VI) solution
with 1 g·L−1 adsorbent for 2 h.
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3.3. Antibacterial Performance

The incorporation of nanoscale Ag significantly enhanced the adsorption perfor-
mance of the Ag/AC composite material while also providing it with excellent antimi-
crobial properties. As illustrated in Figure 11, the AC without Ag loading exhibited
only minimal bactericidal effects. After a 4 h contact period, the inhibition rate against
Escherichia coli (E. coli, Gram-negative bacteria) was merely 22%, while the inhibition rate
against Staphylococcus aureus (S. aureus, Gram-positive bacteria) was just 17%. Under the
same conditions, the Ag/AC composite material achieved a 100% inhibition rate against
E. coli, which is 4.5 times greater than that of the pristine AC, and an 81% inhibition rate
against S. aureus, which is 4.7 times higher than that of the pristine AC. The antimicrobial
efficacy conferred by the Ag loading enables the Ag/AC composite material to more ef-
fectively combat threats from bacteria and other microorganisms in wastewater, making it
more suitable for efficient, industrial-scale water purification processes. Additionally, it
was observed that, under identical conditions, the Ag/AC composite exhibited stronger
antibacterial activity against E. coli than against S. aureus. This effect could be attributed to
the structural differences between these bacteria. As a Gram-negative bacterium, E. coli
possessed only a thin peptidoglycan layer, covered by an outer lipid bilayer membrane. The
Ag nanoparticles on the Ag/AC composite, along with the released Ag+ ions, were more
readily able to penetrate this relatively weak barrier and enter the cell, leading to protein in-
activation, DNA damage, and metabolic disruption. In contrast, S. aureus, a Gram-positive
bacterium, had a thick peptidoglycan layer in its cell wall and lacked an outer membrane.
This thick peptidoglycan layer partially inhibited the penetration of silver, making it more
difficult for Ag+ ions to enter the cell rapidly or in significant amounts. This structural
protection rendered S. aureus relatively more resistant to the Ag/AC composite [47].
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Figure 11. (a,b) Inhibition rates of AC and Ag/AC composite materials against E. coli (a) and S. aureus
(b) for different times.

4. Conclusions

This study successfully utilized WRN as a raw material to synthesize a low-cost,
multifunctional Ag/AC composite material through the HTC pathway, incorporating in
situ reduction. The experimental results demonstrated that the incorporation of nanoscale
Ag significantly increased the specific surface area of the material, thereby enhancing the
adsorption performance of the Ag/AC composite for heavy metals such as Cr(VI), while
also providing commendable antibacterial capabilities, which confer a distinct advantage
for efficient water purification.

Additionally, our findings preliminarily validated the feasibility of developing mul-
tifunctional, high-value water purification materials via the HTC approach. Compared
to traditional methods of treating food waste, the HTC pathway and its resultant Ag/AC
products may offer significantly higher profit margins and added value than mainstream
food waste products. This method presents broader application scenarios and stronger
market competitiveness, while also being more convenient and environmentally friendly
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in terms of production processes, requiring less investment in equipment and facilities.
Furthermore, this approach can complement previous work reported on CQDs, which
enable the production of metal oxide/CQD composite materials and devices, achieving
100% utilization of WRN and preventing secondary pollution, thus providing a novel
pathway for recycling food waste and preparing low-cost, high-performance functional
materials from food waste.

Supplementary Materials: The following supporting information can be obtained at: https://www.
mdpi.com/article/10.3390/nano14221857/s1, S1: General characterization; S2: Measurement of
adsorption performance of Ag/AC composite; S3: Measurement of antibacterial performance of
Ag/AC composite; Figure S1: The relationship between the AgNO3 dosage and the specific surface
area of the resulting Ag/AC material; Figure S2: The adsorption isotherm, Langmuir equation,
and Freundlich equation of AC without Ag loading for Cr(VI); Figure S3: The adsorption isotherm,
Langmuir equation, and Freundlich equation of commercial coal-based AC for Cr(VI); Figure S4:
The adsorption isotherm, Langmuir equation, and Freundlich equation of WRN-based HTC for
Cr(VI); Table S1: The optimization of the experimental conditions of the Ag/AC composite; Table S2:
The adsorption parameters of the Langmuir and Freundlich isotherms of AC without Ag loading
for the adsorption of Cr(VI); Table S3: The adsorption parameters of the Langmuir and Freundlich
isotherms of commercial coal-based AC for the adsorption of Cr(VI); Table S4: The adsorption
parameters of the Langmuir and Freundlich isotherms of WRN-based HTC for the adsorption of
Cr(VI). References [27–30,48–50] are cited in the supplementary materials.
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