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Abstract: This paper presents a method for modeling ReRAM in TCAD and validating its accuracy
for neuromorphic systems. The data obtained from TCAD are used to analyze the accuracy of the
neuromorphic system. The switching behaviors of ReRAM are implemented using the kinetic Monte
Carlo (KMC) approach. Realistic ReRAM characteristics are obtained through the use of the trap-
assisted tunneling (TAT) model and thermal equations. HfO2-Al2O3-based ReRAM offers improved
switching behaviors compared to HfO2-based ReRAM. The variation in conductance depends on the
structure of the ReRAM. The conductance extracted from TCAD is validated in the neuromorphic
system using the MNIST (Modified National Institute of Standards and Technology) dataset.

Keywords: neuromorphic computing; memristor; TCAD (technology computer-aided design);
ReRAM (resistive random-access memory); KMC (kinetic Monte Carlo)

1. Introduction

Numerous new technologies such as big data, cloud computing, machine learning,
and artificial intelligence are being developed and used. With technological advancements,
the volume and complexity of data increases. A wide variety of intelligent applications are
now mostly based on neural networks [1,2]. Neural network-based systems require large
amounts of data and heavy computation for learning and deriving inferences. Therefore, it
is necessary to develop memory devices based on new operating principles, innovative
structures, and new materials [3]. Recently, there has been a focus on research into energy-
and space-efficient devices. These include ultra-flexible origami tessellations with shape
memory properties that can be integrated with electronic devices, and organic electrolyte
transistors that can perform sensing, memory, and processing functions [4,5]. Traditional
von Neumann computing-based systems are powerful for logical computations, but not
efficient for neural network computations [6,7]. This is because the implementation of
efficient neural networks requires both parallel synapse storage and computation [8]. The
neuromorphic computing system (NCS) has been proposed as a solution to enhance the
efficiency of neural network implementation. The NCS is a system that mimics the hu-
man brain. It is characterized by low power consumption and high-efficiency processing.
Moreover, it enables the coexistence of data processing and storage. Research on NCSs
is exploring two-terminal systems using memristors and crossbar structures, and three-
terminal systems using ion-gated vertical transistors (IGVTs), carbon-based nanomaterials
such as carbon nanotubes (CNTs) and graphene, and polymers [9–11]. NCSs use a mem-
ristor device as the synaptic unit and a crossbar structure for parallel computation [12].
Memristors are known to be suitable for neuromorphic systems due to their high-speed
operation and low power consumption [13].

The memristor is a compound word for a memory device and a resistor, meaning
a device that can serve as a memory device and a resistor [14]. Furthermore, it is cate-
gorized by material, including resistive random-access memory (ReRAM), phase-change
random-access memory (PCRAM), and ferroelectric random-access memory (FeRAM).
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ReRAM is a memory that utilizes changes in resistance, storing “1” for low resistance
and “0” for high resistance. The strengths of ReRAM include low operating voltage, low
power consumption, high speed, and high density [15]. However, there are unresolved
issues regarding materials, stability, and storage mechanisms [16]. PCRAM is a nonvolatile
memory technology that exploits phase changes in materials for memory. Depending on
the crystalline state of a material, it can switch between a crystalline state (“1” state) and an
amorphous state (“0” state). The crystalline state is characterized by high optical reflectivity
and low resistivity, while the amorphous state exhibits low optical reflectivity and high
resistivity. PCRAM has the advantages of rapid read access, high density, and nonvolatil-
ity [17]. Meanwhile, it has the disadvantages of slower switching speed and higher power
consumption than other memristor devices [18]. FeRAM displays nonvolatile resistive
switching when the ferroelectric polarization direction of films reverses [19]. FeRAM offers
nonvolatility, low power consumption, and fast operation, but faces challenges such as
manufacturing difficulty, limited data retention time, and small memory capacity [20].

ReRAM is considered a promising device for modeling the features of biological
synapses [21,22]. Although ReRAM has advantages in cell size and multi-bit capability, it
has a higher energy consumption per bit than organic transistor, but smaller compared to
conventional devices [23]. Furthermore, the ReRAM manufacturing process is similar to
complementary metal-oxide semiconductors (CMOSs), so it does not incur any additional
costs [24]. In particular, filament-based ReRAM provides low-power operation and excel-
lent scalability [25]. In this study, the Synopsys’s Sentaurus technology computer-aided
design (TCAD) is used to develop HfO2-based multilayer-structured ReRAM and identify
its characteristics. The conductance is an important factor that affects accuracy in neuro-
morphic computing [15,24], and different types of conductance are verified depending on
structures and input pulses. The accuracy is verified with NeuroSim using the MINST
(Modified National Institute of Standards and Technology) data [26].

2. ReRAM Features
2.1. ReRAM Device Physics

Typically, the structure of ReRAM has metal–insulator–metal (MIM), where an insula-
tor is sandwiched between metal electrodes. Oxide-based ReRAM devices operate based on
redox reactions [24]. In ReRAM devices, redox reactions result in the formation of filaments
(bridges) in the insulating layer between two metal electrodes. Memory storage has “0”
and “1” states. A value of 0 means no data are stored, and a value of 1 means data are
stored. The formation/rupture of the filaments induces the connection and disconnection
of conductive paths between the two metal layers. This leads to the transition between
low-resistance and high-resistance states [27,28]. A switch from HRS to LRS is called the
SET process, and that from LRS to HRS is called the RESET process.

In most cases, a formation voltage greater than the SET voltage is required to induce
a resistive switching operation in the initial device, and this operation is known as the
forming process [29,30]. Figure 1 shows the operation of the RESET and SET processes.
The switch between HRS and LRS is explained by the formation and rupture of conductive
filaments within the insulator. These filaments comprise oxygen vacancies (Vo) or metal
deposits. It is proposed that the movement of oxygen ions/vacancies stimulated by Joule
heating and electric fields is critical for switching [31].

2.2. ReRAM Materials

Materials used in ReRAM devices include Pt, Au, and TiN for electrochemically inert
electrodes, Ti, Ni, Ta, Al, and Cu for active metal electrodes, and CuOx, TaOx, AlOx, SiOx,
ZrOx, TiOx, and HfOx for insulating layers [32,33]. Oxide-based ReRAM operates based on
the movement of anions, wherein oxygen vacancies form a conductance pathway within the
insulating layer. Typically, an electrode that absorbs oxygen is required to facilitate anion
movements [34]. HfO2 has been widely used as ReRAM materials due to its excellent CMOS
compatibility. In HfO2-based ReRAM devices, TiN is commonly used as the electrode.
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TiN is utilized as an oxygen scavenger to remove oxygen ions from the HfO2 layer and
functions as an oxygen reservoir. Most conductive filaments in HfO2 are composed of
oxygen vacancies and are commonly used due to their high dielectric constant and excellent
thermal and chemical stabilities. The switching characteristics of ReRAMs are more stable
when combined with active metal electrodes, compared to HfO2 monostructures, due to
the oxygen adsorption effect [35,36]. It is also reported that using a multilayer structure
improves reliable switching and durability compared with employing a single insulating
layer [37–39].
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Figure 1. Operating principle of ReRAM. Set and Reset represent the formation and rupture of the
filament, respectively.

3. TCAD Modeling

The simulation utilizes the Sentaurus TCAD of Synopsys. TCAD is a tool used
for developing and optimizing semiconductor processing technologies and devices via
computer simulations. TCAD is widely used in the semiconductor industry. Despite its
complex process technology, the use of TCAD reduces development costs and accelerates
research. The widely recognized physical schematic of ReRAM switching is shown in
Figure 2 [40].
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The switching properties are related to the geometry of filaments owing to the direct
result of the generation and recombination of oxygen vacancies within the insulating
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layer [40,41]. In the SET process, oxygen ions are removed from the lattice and migrate to
the active electrode, leaving behind a conductive filament formed from oxygen vacancies,
which reduces resistance. During the RESET process, a negative (−) voltage is applied,
causing oxygen ions stored at the electrode–dielectric junction to migrate to the insulating
layer, where they recombine with oxygen vacancies and break the filament, increasing
resistance [31,41]. To describe the switching of oxide-based ReRAM, the behaviors of
electrons and ions must be considered, and their random nature must be reflected upon. To
reflect their random nature, the kinetic Monte Carlo (KMC) model is used. Figure 3 shows
the SET–RESET mechanism in TCAD.
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Figure 3. Formation and rupture mechanisms of conductive filaments using the KMC event.

The oxygen ions are defined as Particle1 in TCAD, representing non-conductive defects.
This is applicable to diffusion and generation/recombination events. The oxygen ions
and vacancies generate Frenkel defects during diffusion. The vacancies can diffuse within
insulator and can be converted back into oxygen ions through recombination events. The
vacancies are defined as Particles2 in TCAD. Additionally, growth/recession events are
added to vacancy. When sufficient vacancies diffuse, the conductive defects, known as
filaments, are converted through growth events. When a recession event occurs, the
filament is transformed back into vacancies. To simulate ReRAM in TCAD, SDevice must
satisfy several conditions. First, we define traps, KMC defects, and particle/filament in the
global Physics syntax. Next, KMC defects are set in the material Physics syntax based on the
material, and the events are set as shown in Table 1.

Table 1. Physical event support.

Physical Event Keywords Relevant Equation

Diffusion Diffusion A(r1) → A(r2)

Bulk generation
or recombination Generation, Recombination 0 ⇔ A(r) + B(r)

Interface generation
or recombination Generation, Recombination 0 ⇔ A(r1) + B(r2)

Filament growth or recession Filament growth, Filament recession F(r) ⇔ A(r)

The event rate is expressed as follows

r = v exp
[
−EA − pF

kBT

]
(1)

where v is the maximum rate of events, EA is the activation energy, p represents a molecular
dipole, T is the temperature, kB is Boltzmann constant, and F denotes an electric field.
For generation/recombination events occurring in the bulk, Frenkel pairs should be de-
fined in the same domain, while for an interface, they should be defined in two different
domains [42]. The KMC model provides trap-assisted-tunneling (TAT) model and a steady-
state heat equation. The two models can be used to obtain realistic ReRAM characteristics.
The TAT model utilizes Poole–Frenkel emission, which describes the emission of electrons
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from the conduction band of an insulator. The KMC Poole–Frenkel emission rate RPF is
given by [42]

RPF = v·exp
(
− ED

kBT

)
(

kBT
β
√

F

)2[
1 +

(
β
√

F
kBT

− 1

)
exp

(
β
√

F
kBT

)]
+

1
2

 (2)

where F denotes the insulator electric field, v is the lattice vibration frequency, ED represents

the trap depth, εopt is the insulator optical permittivity and β =
√

e3

πε0εopt
, with the electric

charge e and the permittivity of free space εo. Table 2 represents the device characterization
parameters. These parameters affect the ReRAM event and TAT. The heat equation is
represented by [42]

→
∇·
(

κ
→
∇T + ψσ

→
∇ψ

)
= 0 (3)

where ψ is a potential, κ and σ are electrical and thermal conductivities, which are spatially
dependent considering the presence of defects.

Table 2. Device characterization parameters.

HfO2 Al2O3

Dielectric constant 25 [43] 9 [43]

Optical permittivity 3.74 [44] 3.43 [45]

Band-gap (eV) 5.4 [46] 8.8 [47]

Activation energy (eV) 4.8 [48] 1.8 [48]

4. NeuroSim Simulation

Ideally, the weight increase in long-term potentiation (LTP) and decrease in long-term
depression (LTD) should be linearly proportional to the number of input pulses. However,
real-world devices are not ideal and typically exhibit a sharp change in conductance in the
early stages of LTP and LTD, followed by gradual saturation. NeuroSim uses a model that
can capture nonlinear weight-update operations, and the change in conductance with the
number of pulses is described by [26]

GLTP = B
(

1 − e−
P
A

)
+ Gmin (4)

GLTD = −B
(

1 − e
(P−Pmax)

A

)
+ Gmax (5)

B = (Gmax − Gmin)/
(

1 − e−
Pmax

A

)
(6)

where P is number of pulses. GLTP and GLTD represent the conductance of LTP and LTD,
respectively. Gmax and Gmin indicate the maximum and minimum conductance, respectively.
Pmax is defined as the maximum number of pulses required for the device to transition from
minimum to maximum conduction. These values are directly extracted from experimental
data. A is a variable that controls the nonlinear operation of weight updates. A of LTP and
LTD is obtained by fitting in MATLAB R2022a. B is fitted within the ranges the Gmax, Gmin,
Pmax and A. Upon completing fitting, the normalized value of A can be verified to identify
the nonlinearity label, as shown in Figure 4, which is an example of fitting ReRAM weight
updates. The actual conductance varies from cycle to cycle. This variation will be reflected
in the weight update, resulting in a rough adjustment. NeuroSim provides nonlinearity
label values that correspond to the normalized A values in the Nonlinearity-NormA.htm
file. The nonlinearity label A provides a sufficiently precise value at 0–9 in 0.01 increments.
If the A is negative, a negative value can be used for the nonlinearity label as well. The A
obtained here are used in NeuroSim simulation.
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The conductance of each structure is extracted, and the accuracy of the extracted values
is verified with NeuroSim. It is developed to mimic an online/offline learning classification
scenario using the MNIST handwriting dataset in a multilayer perceptron (MLP) neural
network [26]. As shown in Figure 5, this neural network comprises an input layer, a hidden
layer, and an output layer.
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MLP is a fully connected neural network in which every neuron in each layer is
connected to every neuron in the next layer. Connections of neurons are made through
synapses, and the strength of a synapse represents its weight. WIH and WHO are weight



Nanomaterials 2024, 14, 1864 7 of 15

matrices between the input and hidden layers and hidden and output layers, respectively.
The input image data are an MNIST handwritten digit and comprise 20 × 20 pixels. The
topology of the network is 400 (input layer)–100 (hidden layer)–10 (output layer). A total of
400 neurons in the input layer corresponds to a 20 × 20 MNIST image, and 10 neurons in
the output layer represent 10 classes of numbers. Users can change the network topology
as needed.

5. Result and Discussion

The ReRAM device proposed in this study has a Ti layer between the TiN top and
bottom electrodes and an active layer comprising one or two insulators. As shown in
Figure 6a, the basic structure comprises a 1 nm thick HfOx and a TiOx layer inserted
between a 10 nm-thick HfO2 layer and a 5 nm-thick Ti layer. The insertion of HfOx and
TiOx yields an unstable interface. Using an active electrode material in combination, rather
than the single structure of HfO2, improves its interfacial properties and stabilizes the
switching characteristics of ReRAM due to the oxygen adsorption effect [35,36]. Figure 6b
shows that the oxide layer is made of 6 nm-thick HfO2 and 4 nm-thick Al2O3 and embodies
a multilayer structure. This structure improves the uniformity of the switching voltage and
dispersion of HRS resistance [49]. Additionally, inserting a thin layer of Al2O3 between
the HfO2 layer and electrode reduces data retention and operating current [50]. Figure 6c
depicts a tri-layer structure with a thin layer of Al2O3 inserted between the HfO2 layers.
This structure improves the uniformity and stability of switching and allows for the precise
control of conductive filaments [38,51].
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The compliance current for ReRAM devices is set at 1 µA. Figure 7 shows the I–V
characteristics according to the compliance current. A lower compliance current implies
that the reset process starts at a lower voltage because the filament is not sufficiently
formed. Additionally, a higher compliance current indicates that the filament is not fully
ruptured and does not reform, meaning that the set/reset process does not occur. The
voltage is swept from 3V to −3V. The I–V characteristics for the voltage sweep are shown
in Figure 8. Early TiN/Ti/HfO2/TiN devices are formed at 2.85 V. Over several cycles
of voltage sweeps, the SET voltage occurs in the range of 2.1 to 2.5 V, and the RESET
voltage appears in the range of −1.5 to −2.9 V. HfO2-Al2O3 based device shows improved
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uniformity at RESET, while TiN/Ti/HfO2/TiN exhibits scattered switching characteristics
over multiple cycles.
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The I–V characteristic graph indicates that after the first RESET, the second SET occurs
at a lower voltage than the first SET. This result implies the presence of filaments left over
from the formation and rupture of conductive filaments. Figure 9 depicts changes in the
conductive filament during a voltage sweep.
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Figure 9. Changes in the conductive filament and oxygen vacancies: (a) initial state, (b) after the first
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Figure 9a shows the initial state with almost no conductive filaments. Figure 9b
demonstrates the state after the first SET; here, the input voltage exceeds the threshold
value, and a conductive filament is formed to connect the upper and lower electrodes.
Figure 9c shows the state after the first RESET, illustrating that a large number of conductive
filaments collapsed during the RESET process, while some remained. Figure 9d represents
the second SET process, which results in a different shape due to the remnants of conductive
filaments. Figure 9 illustrates the migration of oxygen vacancies and filaments. Figure 10
demonstrates the change in conductance for an input pulse with an amplitude of 2.5 V and
a period of 2 ms in TCAD.

Nanomaterials 2024, 14, x FOR PEER REVIEW 10 of 16 
 

 

Figure 9c shows the state after the first RESET, illustrating that a large number of conduc-
tive filaments collapsed during the RESET process, while some remained. Figure 9d rep-
resents the second SET process, which results in a different shape due to the remnants of 
conductive filaments. Figure 9 illustrates the migration of oxygen vacancies and filaments. 
Figure 10 demonstrates the change in conductance for an input pulse with an amplitude 
of 2.5 V and a period of 2 ms in TCAD. 

 
Figure 10. The change in conductance over the identical pulse in TCAD. The positive and negative 
voltages are 3 V and −2.5 V, respectively. 

Figure 11a shows changes in conductance for the same input pulse. Figure 11a(i–iii) 
demonstrate the conductance change for the TiN/Ti/HfO₂/TiN structure, the conductance 
change for the TiN/Ti/HfO₂/TiN structure, and the TiN/Ti/HfO₂/Al₂O₃/HfO₂/TiN structure, 
respectively. In Figure 11a, the multi-level states of conductance are shown by averaging 
the conductance from cycle to cycle. In addition, the coordination of pulses can create 
multi-level states. When the same pulse is employed, the TiN/Ti/HfO2/TiN structure 
shows a gradual increase and a sharp change in conductance. The TiN/Ti/HfO2/Al2O3/TiN 
structure exhibits a sharp increase and a gradual decrease, while the 
TiN/Ti/HfO2/Al2O3/HfO2/TiN structure demonstrates a gradual increase and decrease. 
The SET–RESET voltage obtained from TCAD simulation, change in conductance over 
time, and normalized 𝐴 values yielded from the MATLAB fitting are applied to Neuro-
Sim simulation. The conductance of each structure is averaged over 30 random cycles. The 
deviations of cycle-to-cycle are reflected in the NeuroSim simulation. 

A neural network trained using randomly selected images from a training dataset 
(60,000 images) and a test dataset (10,000 images) is classified. Figure 11b shows the results 
of a simulation with Epoch set to 100. Each device is verified for accuracy using NeuroSim. 
The TiN/Ti/HfO2/TiN structure yields an average accuracy of 92.73% and the highest ac-
curacy of 94.35%. The TiN/Ti/HfO2/Al2O3/TiN structure exhibits an average accuracy of 
94.27% and the highest accuracy of 95.43%. The TiN/Ti/HfO2/Al2O3/HfO2/TiN structure 
demonstrates an average accuracy of 94.56 and the highest accuracy of 95.76%. 

Figure 12 illustrates the I–V switching characteristics with a tunneling process. Dur-
ing a SET event, the current behavior is more nonlinear than the I–V characteristic in Fig-
ure 8, resulting in the change in conductance. The high temperature causes non-uni-
formity and diffusion in filament growth and also promotes the TAT process. Therefore, 
it should be included to obtain realistic I–V characteristics. Figure 13 shows an example 
of the temperature-dependent I–V characteristics in the HfO₂/Al₂O₃ structure. SET and 
RESET occur at lower voltages as temperature increases because the filament formation 

Figure 10. The change in conductance over the identical pulse in TCAD. The positive and negative
voltages are 3 V and −2.5 V, respectively.

Figure 11a shows changes in conductance for the same input pulse. Figure 11a(i–iii)
demonstrate the conductance change for the TiN/Ti/HfO2/TiN structure, the conductance
change for the TiN/Ti/HfO2/TiN structure, and the TiN/Ti/HfO2/Al2O3/HfO2/TiN
structure, respectively. In Figure 11a, the multi-level states of conductance are shown by av-
eraging the conductance from cycle to cycle. In addition, the coordination of pulses can cre-
ate multi-level states. When the same pulse is employed, the TiN/Ti/HfO2/TiN structure
shows a gradual increase and a sharp change in conductance. The TiN/Ti/HfO2/Al2O3/TiN
structure exhibits a sharp increase and a gradual decrease, while the TiN/Ti/HfO2/Al2O3/



Nanomaterials 2024, 14, 1864 10 of 15

HfO2/TiN structure demonstrates a gradual increase and decrease. The SET–RESET volt-
age obtained from TCAD simulation, change in conductance over time, and normalized A
values yielded from the MATLAB fitting are applied to NeuroSim simulation. The conduc-
tance of each structure is averaged over 30 random cycles. The deviations of cycle-to-cycle
are reflected in the NeuroSim simulation.
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Figure 11. (a) Conductance changes and (b) accuracy for (i) TiN/Ti/HfO2/TiN, (ii) TiN/Ti/HfO2/
Al2O3/TiN, and (iii) TiN/Ti/HfO2/Al2O3/HfO2/TiN structures.

A neural network trained using randomly selected images from a training dataset
(60,000 images) and a test dataset (10,000 images) is classified. Figure 11b shows the results
of a simulation with Epoch set to 100. Each device is verified for accuracy using NeuroSim.
The TiN/Ti/HfO2/TiN structure yields an average accuracy of 92.73% and the highest ac-
curacy of 94.35%. The TiN/Ti/HfO2/Al2O3/TiN structure exhibits an average accuracy of
94.27% and the highest accuracy of 95.43%. The TiN/Ti/HfO2/Al2O3/HfO2/TiN structure
demonstrates an average accuracy of 94.56 and the highest accuracy of 95.76%.
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Figure 12 illustrates the I–V switching characteristics with a tunneling process. During
a SET event, the current behavior is more nonlinear than the I–V characteristic in Figure 8,
resulting in the change in conductance. The high temperature causes non-uniformity and
diffusion in filament growth and also promotes the TAT process. Therefore, it should
be included to obtain realistic I–V characteristics. Figure 13 shows an example of the
temperature-dependent I–V characteristics in the HfO2/Al2O3 structure. SET and RESET
occur at lower voltages as temperature increases because the filament formation and
rupture become more active at higher temperatures. Additionally, tunneling effects are
more pronounced at elevated temperatures.
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Figure 14a displays the change in conductivity in a simulation with tunneling. The
conductance sharply increases in the potentiation and gradually decreases in a depression.
Each conductance is the average of the data over 30 cycles. The accuracy verification of
these results is shown in Figure 14b. The TiN/Ti/HfO2/TiN structure yields an average
accuracy of 84.47% and the highest accuracy of 87.71%. The TiN/Ti/HfO2/Al2O3/TiN
structure exhibits an average accuracy of 86.03% and the highest accuracy of 89.73%. The
TiN/Ti/HfO2/Al2O3/HfO2/TiN structure demonstrates an average accuracy of 87.99%
and the highest accuracy of 90.37%. This represents a decrease of approximately 4–7%,
compared to the accuracy shown in Figure 11b. This is due to the fact that the conductance
changes due to tunneling are more asymmetric than the ideal case.
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Inconsistent conductance changes make it difficult to reach the target conductance
with the same pulse, reducing the convergence rate during the learning process. Nonlinear-
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ity and asymmetry affect learning accuracy. Nonlinearity causes more training accuracy
loss. However, the bidirectional symmetric incremental conductance change has been
found to maintain good accuracy even with relatively high nonlinearity. As the number
of cycles increases, endurance gradually decreases. Additionally, with more cycles, func-
tional reliability metrics such as dynamic range, nonlinearity, and asymmetry gradually
deteriorate, leading to reduced accuracy [52].

6. Conclusions

In this paper, we presented the characterization of HfO2-based ReRAMs using Sen-
taurus TCAD. The switching behavior of the ReRAM is implemented through the KMC
model, accounting for the application of the TAT model to describe the real device. The
TCAD simulation performs the insertion of Al2O3 in the device, which is shown to display
improved switching behavior. The device characteristics extracted from TCAD are used to
evaluate the impact of ReRAM configuration on neuromorphic computing in NeuroSim.
An idealized ReRAM would have high accuracy in a neuromorphic computing system.
However, simulations with added tunneling show relatively low accuracy, implying that
the accuracy of the conductance change depends on the asymmetric shape. As a result,
TCAD can flexibly simulate various structures and processes, and characterize the prop-
erties of real devices. In support of TCAD simulation, an efficient verification of various
ReRAM devices for neuromorphic computing can be achieved, enabling the acceleration
ofthe pace of research by quickly finding ways to optimize device design.
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