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Not only are solutions to energy and environmental issues essential in long-term
planning for the Earth’s ecological balance and sustainable economic development, they
also represent an urgent issue posing a direct threat to human health. With the excessive
exploitation of traditional energy and increasingly serious environmental pollution, en-
vironmental problems such as deteriorating air quality and water and soil pollution are
frequently occurring. This not only exacerbates global climate change but also leads to a
significant increase in health risks such as respiratory diseases, cardiovascular diseases,
and cancer. Therefore, promoting energy transformation and achieving carbon peak and
carbon neutrality goals have become a global shared responsibility and mission [1,2]. In
this process, the design of advanced materials plays a crucial role. It is not only at the core
of improving energy efficiency, reducing carbon emissions, and developing clean energy
technologies, but also represents the key to improving environmental quality and protect-
ing human health. Breakthroughs in new energy storage and conversion technologies such
as lithium-ion batteries [3–7], sodium-ion batteries [8–10], potassium-ion batteries [11–13],
zinc-ion batteries [14], lithium–sulfur batteries [15], solar cells [16], fuel cells [17,18], and
all-solid-state batteries [19] are due to design and research and development work in high-
performance electrode and electrolyte materials. The innovation of hydrogen production
technology [20–25] and the efficient reduction of CO2 to produce energy through small
molecules rely on innovation in efficient catalytic materials [26–31]. The degradation of
pollutants [32–35] and the elimination of methane in the air depend on the design and
optimization of porous catalytic materials [36,37]. In addition, research on using porous
catalytic materials to treat diseases in the human microenvironment is bringing about revo-
lutionary changes in the medical field [38]. By precisely regulating chemical reactions in the
body, it provides a new treatment approach for difficult-to-treat diseases such as cancer. In
summary, the importance of advanced material design in addressing energy, environmental,
and health issues is self-evident, and the continuous emergence of new technologies and
materials is leading us towards a greener, healthier, and more sustainable future.

This Special Issue brings together thirteen articles, including eleven research articles
and two review articles, mainly focusing on the current progress and development trends
in advanced materials in energy, the environment, and catalysis. The contents of the Special
Issue include the following: the rate-dependent stability and electrochemical behavior
of Na3NiZr(PO4)3 in sodium-ion batteries [39], biomass-derived carbon for lithium-ion
batteries [40], PtCo/C catalysts for low-temperature fuel cells [41], high-performance photo-
Fenton degradation of organic pollutants [42], carbon nanofiber anodes for superior sodium
storage [43], closed pores enhancing sodium-ion energy storage [44], the effect of conductive
additive on electrochemical performance [45], methane catalytic combustion under lean
conditions [46], Pt/TiO2-Carbon photocatalysts for hydrogen production [47], multiple-
interfaced nanostructures for overall water splitting [48], carbon-supported PdCu alloy
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for methanol electrooxidation [49], metal–organic framework nanomaterials for catalytic
tumor therapy [50], and Co3O4-based composites for methane combustion [51].

This Special Issue will promote and accelerate the rational design of application-
orientated advanced materials, which is of great significance in the development of new
materials in energy, the environment, and catalysis, and it will also be of interest to readers
in related material science fields.
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