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Abstract: The construction of semiconductor heterojunction photocatalysts that improve the sepa-
ration and transfer of photoinduced charge carriers is an effective and widely employed strategy
to boost photocatalytic performance. Herein, we have successfully constructed a CdS/Ag/Bi2WO6

Z-scheme heterojunction with an Ag-bridge as an effective charge transfer channel by a facile process.
The heterostructure consists of both CdS and Ag nanoparticles anchored on the surface of Bi2WO6

nanosheets. The photocatalytic efficiency of the CdS/Ag/Bi2WO6 system was studied by the decon-
tamination of tetracycline (TC) and Rhodamine B (RhB) under visible light irradiation (λ ≥ 420). The
results exhibited that CdS/Ag/Bi2WO6 shows markedly higher photocatalytic performance than that
of CdS, Bi2WO6, Ag/Bi2WO6, and CdS/Bi2WO6. The trapping experiment results verified that the
•O2

− and h+ radicals are the key active species. The results of photoluminescence spectral analysis
and photocurrent responses indicated that the CdS/Ag/Bi2WO6 heterojunctions exhibit exceptional
efficiency in separating and transferring photoinduced electron−hole pairs. Based on a series of
characterization results, the boosted photocatalytic activity of the CdS/Ag/Bi2WO6 system is mostly
due to the successful formation of the Ag-bridged Z-scheme heterojunction; these can not only inhibit
the recombination rate of photoinduced charge carriers but also possess a splendid redox capacity.
The work provides a way for designing a Z-scheme photocatalytic system based on Ag-bridged for
boosting photocatalytic performance.

Keywords: Z-scheme; photocatalysis; CdS/Ag/Bi2WO6; Ag-bridged; visible light

1. Introduction

The rapid advancement of human society has led to an increasing focus on the is-
sues of energy scarcity and environmental pollution. As a promising and eco-friendly
technology that uses solar energy to address environmental problems and energy scarcity,
semiconductor-based photocatalysis has recently received significant attention [1–4]. How-
ever, the traditional photocatalysts are only photoexcited in the ultraviolet, which only
accounts for 4% of the total solar spectrum, thus considerably restraining their practical
application [5,6]. Therefore, it is imperative to develop new visible-light-driven (VLD)
photocatalysts [7].

Bismuth tungstate (Bi2WO6), a representative aurivillius oxide, possesses a unique
layered structure composed of alternating [WO4]2− octahedral layers and [Bi2O2]2+ layers;
this was advantageous for the transmission of photogenerated carriers. Bi2WO6 has a
suitable band gap of approximately 2.7 eV, which has been regarded as a promising
VLD photocatalyst [8,9]. In addition, Bi2WO6 possesses numerous advantages, such
as chemical stability, nontoxicity, and corrosion resistance. However, the UV-to-visible
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photo-absorption region of Bi2WO6 is shorter than approximately 450 nm. And swift
recombination of photoinduced charge carriers extremely restricts its energy conversion
efficiency [10,11]. To surmount these problems and improve the photocatalytic properties
of pristine Bi2WO6, various techniques have been developed, such as morphological
control [12,13], noble metal element doping [14,15], non-noble metal element doping [16,17],
building heterojunction nanocomposite [18,19], and so on. Among these, the construction
of heterostructures is a promising method, particularly the construction of Z-scheme
photocatalytic systems [20,21]. The Z-scheme photocatalytic system can not only improve
the transfer efficiency of photoexcited electrons and holes but also ensure a powerful redox
capacity [22].

Among the connection modes of Z-scheme photocatalytic systems, ternary semicon-
ductor/conductor/semiconductor Z-scheme heterojunctions in which two different semi-
conductors have a matching band structure can prominently enhance the photocatalytic per-
formance [23,24]. Recently, noble metals (such as Ag, Pt, and Au) have been used as charge-
carrying mediators, which can quickly transfer interfacial charge between two semiconduc-
tors. Besides, noble metal nanoparticles have a surface plasmon resonance during photo-
catalytic reactions. In recent years, various semiconductor/noble-metal/semiconductor
Z-scheme heterojunctions, such as CdS/Ag/g-C3N4 [25], g-C3N4@Ag/BiVO4 [26], Co3O4/
Ag/Bi2WO6 [27], CdS/Au/BiVO4 [28], BaTiO3/Au/g-C3N4 [29], g-C3N4/Ag/MoS2 [30],
g-C3N4/Pt/Bi2WO6 [31], BiVO4/Au/CdS [32], MoS2/Au/g-C3N4 [33], etc., have been
successfully synthesized. Xiao et al. [34] constructed C3N4@Ag-Bi2WO6 by a facile process,
and the ternary system showed a boosted photocatalytic capacity for degrading RhB and
producing H2 than that of single- and two-component systems; this was mainly due to
the Z-scheme delivery mechanism. Gao et al. [35] successfully prepared BiVO4/Ag/CdS
Z-scheme heterojunction, which attained improved ability in synergistic adsorption and
photocatalytic degradation of fluoroquinolones. Hence, constructing a ternary semiconduc-
tor/noble metal/Bi2WO6 Z-scheme heterojunction could be a very promising strategy to
obtain excellent photocatalytic activity.

Cadmium sulfide (CdS) is a narrow-bandgap semiconductor with a band gap of about
2.4 eV, which has been attracting much attention for environmental contaminant purifi-
cation and hydrogen generation [36–38]. As a consequence, CdS is usually coupled with
various photocatalysts to enhance visible light absorption performance and the separation
ability of photoinduced charge carriers [39–41]. Besides, CdS is a very suitable semicon-
ductor for assembling heterojunctions based on Bi2WO6, because the CB and VB of CdS
are matched well with Bi2WO6 [42–44]. Zhang et al. [45] prepared Z-scheme CdS/Bi2WO6
heterojunction via a simple hydrothermal method, and they found that 15% CdS/Bi2WO6
photocatalysts could remove 60.82% of Cr(VI) and photodegrade almost all Rhodamine B
within 1 h.

In this study, we design and synthesize ternary CdS/Ag/Bi2WO6 Z-scheme hetero-
junction by a facile process. The photocatalytic experiments exhibited that this ternary
CdS/Ag/Bi2WO6 Z-scheme displayed excellent photocatalytic performances toward pho-
todegrading Rhodamine B (RhB) and tetracycline (TC) under visible-light irradiation. The
Ag nanoparticles can act as a charge transfer bridge between Bi2WO6 and CdS; this could
boost the transfer rate of photoinduced electrons and holes in this Z-scheme system. More-
over, a plausible mechanism was investigated and proposed for explaining the excellent
photocatalytic performance of CdS/Ag/Bi2WO6 heterojunctions.

2. Materials and Methods
2.1. Preparation of Bi2WO6

Bi2WO6 photocatalysts were synthesized via a simple hydrothermal method. Dissolve
2 mmol Bi(NO3)3·5H2O, 1 mmol Na2WO4·2H2O, and 0.05 g of cetyltrimethylammonium
bromide (CTAB) in diluted nitric acid and vigorously stir for 30 min to acquire a uniform
suspension. The pH of the aforementioned suspension was adjusted to approximately 7
by NaOH solutions. After stirring for 30 min, the resultant solution was poured into a
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100 mL Teflon-lined stainless autoclave and heated at 180 ◦C for 24 h. The precipitate was
subsequently filtered and washed with distilled water and ethanol several times, then dried
at 80 ◦C for 8 h.

2.2. Preparation of Ag/Bi2WO6

The Ag/Bi2WO6 photocatalyst was prepared using a photo-reduction method. To be
specific, a certain amount of AgNO3 (0.05 mmol) was added to 50 mL of distilled water
and then stirred until AgNO3 was completely dissolved in the dark. Afterward, the as-
synthetized Bi2WO6 (1 mmol) was added to the AgNO3 solution and irradiated by 500 W
Xe light (1 h) with vigorous stirring. Then the Ag/Bi2WO6 was collected and dried in a
vacuum oven at 60 ◦C for 8 h.

2.3. Preparation of CdS/Ag/Bi2WO6

The CdS/Ag/Bi2WO6 was prepared using a precipitation method. A certain amount
of Cd(NO3)2·4H2O and 0.2 g of Ag/Bi2WO6 were dispersed in 30 mL of distilled water
with ultrasonic vibration for 30 min. Subsequently, 20 mL of Na2S solution was dropwise
added to the above solution and stirred for 4 h. The precipitate was filtered and washed
with distilled water and ethanol several times, and finally dried at 80 ◦C overnight. The
mass ratio of CdS:Ag/Bi2WO6 was controlled to be 0.04. Similarly, CdS/Bi2WO6 were
prepared under the same conditions.

2.4. Characterization of Photocatalysts

The phase structures of the prepared samples were measured by X-ray diffraction
(XRD) (D/MAX-RB; Rigaku, Tokyo, Japan). The diffraction patterns were examined in the
2θ range from 20◦ to 80◦ with a Cu Kα source (λ = 0.15405) running at 40 kV and 30 mA. The
morphology of the samples was examined by scanning electron microscopy (SEM; S-4800;
Hitachi, Hitachi-shi, Japan). Transmission electron microscopy (TEM) and high-resolution
TEM (HRTEM) images were analyzed with a transmission electron microscope (FEI Talos
F200X G2, Thermo Scientific, Waltham, MA, USA) at an accelerating voltage of 200 kV. The
UV–vis diffuse reflectance spectra (DRS) were collected via a UV–vis spectrophotometer
(T9s; Persee, Beijing, China) equipped with an integrating sphere. Barium sulfate (BaSO4)
was used as the reference. Photoluminescence (PL) spectra data of the samples were
recorded by a fluorescence spectrophotometer (F-4500; Hitachi, Japan).

2.5. Photocatalytic Experiments

The photocatalytic performances of the photocatalysts were assessed via the pho-
todegradation of Rhodamine B (RhB) and tetracycline (TC) under visible light irradiation.
A 400 W Xe lamp with a cut-off filter λ ≥ 420 nm served as a light source. In each photocat-
alytic degradation test, 40 mg of the as-obtained photocatalyst was dispersed in 40 mL of
10 mg/L RhB solution (or 20 mg/L TC). Prior to light irradiation, the prepared suspensions
were stirred in the dark for 1 h to reach adsorption-desorption equilibrium. The RhB
and TC concentrations were recorded by a UV–vis spectrophotometer at 553 and 357 nm,
respectively. The degradation performance was evaluated using the ratios (C/C0) of the
RhB and TC concentrations (C0 was the initial concentration, and C was the concentration
at a given time).

2.6. Photoelectrochemical Measurements

Photoelectrochemical measurements were performed on an electrochemical work-
station (5060F; RST, Zhengzhou, China) in a conventional three-electrode system with a
0.5 M Na2SO4 aqueous solution. The samples, a saturated calomel electrode, and a Pt wire
were used as the working, reference electrode, and counter electrodes, respectively. The
light source was provided by a 100 W incandescent lamp with a 420 nm cut-off filter. The
working electrode was manufactured as follows: 5 mg of photocatalyst was dispersed
homogeneously in a certain amount of Nafion solution and ethanol (v/v = 30:1). Finally,
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the as-prepared samples were loaded onto the bottom middle of ITO glass with a diameter
of 6 mm. Then the photocurrents of the samples with the light on and off were measured
at 0.8 V.

3. Results and Discussion
3.1. Crystal Structure Analysis

The crystal structures of Bi2WO6, Ag/Bi2WO6, CdS/Bi2WO6, CdS/Ag/Bi2WO6, and
CdS were investigated using XRD. From Figure 1A, all diffraction peaks were completely
corresponding to the structure of orthorhombic Bi2WO6 (JCPDS Card No. 39-0256). The
characteristic peaks at 2θ = 28.3◦, 32.8◦, 47.1◦, 55.8◦, and 58.5◦ were attributed to the (1 3 1),
(2 0 0), (2 0 2), (3 3 1), and (2 6 2) crystal planes, respectively. Comparing the curves
of Bi2WO6 and Ag/Bi2WO6, it can be observed that they have similar patterns. This
finding was consistent with the previous results [34]. This may be because of the low
loading amount of Ag nanoparticles in the heterojunction. Furthermore, no characteristic
diffraction peaks for CdS were observed in CdS/Bi2WO6 and CdS/Ag/Bi2WO6, which
could be caused by the high dispersion, small particles, and small amount of CdS dopant.
Similar results were found in CdS/Bi2WO6 [42] and CdS/BiOCl [46]. Figure 1B displays
the XRD pattern of pure CdS, which can be assigned to the cubic phase of CdS (JCPDS
Card No. 89-0440) [47]. The diffraction peaks at 26.4◦, 43.9◦, and 51.9◦ were well-matched
with the crystal planes of (1 1 1), (2 2 0), and (3 1 1) of CdS, respectively. The existence of
Ag nanoparticles and/or CdS in CdS/Ag/Bi2WO6 composites was further identified by
TEM analysis.
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Figure 1. XRD patterns of Bi2WO6, Ag/Bi2WO6, CdS/Bi2WO6, CdS/Ag/Bi2WO6 (A), and CdS (B).

3.2. Morphology Characterization

The morphologies of Bi2WO6, Ag/Bi2WO6, CdS/Bi2WO6, and CdS/Ag/Bi2WO6
composites were studied by scanning electron microscope (SEM; S-4800; Hitachi, Hitachi-
shi, Japan). As could be observed from Figure 2A, the Bi2WO6 showed an aggregated
nanosheet-like microstructure. It was worth noting that Ag nanoparticles on the surface
of Bi2WO6 were found, indicating that Ag nanoparticles were successfully deposited on
the Bi2WO6 surface (Figure 2B). The SEM images of CdS/Bi2WO6 and CdS/Ag/Bi2WO6
composites (Figure 2C,D) were found to be similar to pure Bi2WO6. This similarity could
be attributed to the use of the same original Bi2WO6 material, as well as high dispersion
and the small particle size of CdS in the composites.

The morphologies of the CdS/Ag/Bi2WO6 were further observed by transmission
electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM).
From Figure 3A,B, the CdS/Ag/Bi2WO6 sample showed an irregular and nanosheet-
like microstructure. The HRTEM image (Figure 3C) displays that some nanoparticles
have grown on the Bi2WO6 nanosheet. It is worth noting that the edges of Bi2WO6
nanosheets appear to have two different types of nanoparticles, which may be Ag and
CdS nanoparticles. The HRTEM image (Figure 3D) shows the crystal plane spacing of 0.23,
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0.34, and 0.27 nm; these correspond to the (1 1 1) plane of Ag nanoparticles, the (1 1 1)
plane of CdS, and the (2 0 0) plane of Bi2WO6, respectively. Furthermore, Ag nanoparticles
loaded on Bi2WO6 nanosheets are in close contact with CdS. It shows that CdS and Ag
nanoparticles were successfully supported on the Bi2WO6 nanosheet, which could be
beneficial for charge separation within the Z-scheme CdS/Ag/Bi2WO6 heterojunctions in
comparison to pure Bi2WO6. Moreover, the elemental mapping method was employed
to investigate the composition distribution in CdS/Ag/Bi2WO6 samples. As depicted in
Figure 3E1–E6, W, O, Bi, Ag, Cd, and S elements are evenly distributed throughout the
CdS/Ag/Bi2WO6 sample. And the element mapping distribution of Ag, Cd, and S proved
evidence that CdS, Ag, and Bi2WO6 are closely combined. Combined with the TEM results,
it can be indicated that CdS and Ag nanoparticles were evenly loaded on the surface of
Bi2WO6 nanosheets.

Nanomaterials 2024, 14, x FOR PEER REVIEW 5 of 14 
 

 

 
Figure 2. SEM images of (A) Bi2WO6, (B) Ag/Bi2WO6, (C) CdS/Bi2WO6, and (D) CdS/Ag/Bi2WO6. 

The morphologies of the CdS/Ag/Bi2WO6 were further observed by transmission 
electron microscopy (TEM) and high-resolution transmission electron microscopy 
(HRTEM). From Figure 3A,B, the CdS/Ag/Bi2WO6 sample showed an irregular and 
nanosheet-like microstructure. The HRTEM image (Figure 3C) displays that some nano-
particles have grown on the Bi2WO6 nanosheet. It is worth noting that the edges of Bi2WO6 
nanosheets appear to have two different types of nanoparticles, which may be Ag and CdS 
nanoparticles. The HRTEM image (Figure 3D) shows the crystal plane spacing of 0.23, 
0.34, and 0.27 nm; these correspond to the (1 1 1) plane of Ag nanoparticles, the (1 1 1) 
plane of CdS, and the (2 0 0) plane of Bi2WO6, respectively. Furthermore, Ag nanoparticles 
loaded on Bi2WO6 nanosheets are in close contact with CdS. It shows that CdS and Ag 
nanoparticles were successfully supported on the Bi2WO6 nanosheet, which could be ben-
eficial for charge separation within the Z-scheme CdS/Ag/Bi2WO6 heterojunctions in com-
parison to pure Bi2WO6. Moreover, the elemental mapping method was employed to in-
vestigate the composition distribution in CdS/Ag/Bi2WO6 samples. As depicted in Figure 
3E1–E6, W, O, Bi, Ag, Cd, and S elements are evenly distributed throughout the 
CdS/Ag/Bi2WO6 sample. And the element mapping distribution of Ag, Cd, and S proved 
evidence that CdS, Ag, and Bi2WO6 are closely combined. Combined with the TEM results, 
it can be indicated that CdS and Ag nanoparticles were evenly loaded on the surface of 
Bi2WO6 nanosheets.  

Figure 2. SEM images of (A) Bi2WO6, (B) Ag/Bi2WO6, (C) CdS/Bi2WO6, and (D) CdS/Ag/Bi2WO6.

3.3. Optical Properties

The light absorption properties of the obtained samples were characterized by UV–vis
DRS, as illustrated in Figure 4. The absorption edges were observed at approximately
450 nm and 650 nm for Bi2WO6 and CdS, respectively. The optical absorption edge of
the CdS/Bi2WO6 composite was distinctly red-shifted compared with Bi2WO6, which
could be assigned to the forming heterojunction between CdS and Bi2WO6. Meanwhile,
after Ag nanoparticles growth on the surface of Bi2WO6 nanosheets, Ag/Bi2WO6 had
a wide absorption in the visible light region; this may be attributed to the surface plas-
mon resonance effect of spatially confined electrons in Ag nanoparticles [48]. Compared
with all other samples, the obtained CdS/Ag/Bi2WO6 ternary system exhibited enhanced
visible light absorption, which may be on account of the synergetic effect of CdS and
Ag. These results reveal that the as-prepared CdS/Ag/Bi2WO6 heterojunction photocat-
alyst had an excellent visible-light absorption range and thus produced more photoin-
duced electron−hole pairs, as demonstrated subsequently. The Kubelka-Munk formula:
ahv = A(hv − Eg)n/2 was used to estimate the band gap values of CdS and Bi2WO6 [49].
For CdS and Bi2WO6, the values of n are 1 and 4, respectively [50,51]. From the inset
of Figure 4, the band gap values of CdS and Bi2WO6 are approximately 2.17 eV and
2.81 eV, respectively.
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3.4. Photocatalytic Performances of the Samples

The photocatalytic performance of pure CdS, Bi2WO6, Ag/Bi2WO6, CdS/Bi2WO6, and
CdS/Ag/Bi2WO6 was assessed via monitoring the photodegradation of RhB under visible
light illumination (λ ≥ 420 nm). All catalysts were dispersed in RhB solution and then
magnetically stirred in a dark environment for 60 min to attain an adsorption–desorption
equilibrium. The adsorption capacity of all photocatalysts for RhB is shown in Figure 5A.
The results indicated that the pure Bi2WO6 photocatalyst exhibits the highest adsorption
capacity among all the photocatalysts, while the pure CdS photocatalyst has the lowest
adsorption capacity. Additionally, Ag/Bi2WO6, CdS/Bi2WO6, and CdS/Ag/Bi2WO6
samples demonstrate similar capacities for RhB adsorption. From Figure 5B, it was found
that the RhB degradation efficiencies over the Bi2WO6, CdS, Ag/Bi2WO6, CdS/Bi2WO6,
and CdS/Ag/Bi2WO6 under visible light illumination for 40 min are about 45.8%, 53.2%,
82.2%, 90.5%, and 98.6%, respectively. Obviously, of all the as-prepared photocatalysts, Z-
scheme CdS/Ag/Bi2WO6 heterojunction exhibited the greatest photocatalytic degradation
effect, which was 2.15 and 1.85 times higher than the pure Bi2WO6 and CdS, respectively.
The superior photocatalytic activity of CdS/Ag/Bi2WO6 could be because this Z-scheme
ternary system has a stronger absorption capacity for visible light and excellent separation
and transmission of photoinduced carriers compared to other photocatalysts.
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TC (D) with different photocatalysts under visible light irradiation (λ ≥ 420 nm); the pseudo-
first-order reaction kinetics of the RhB (E) and TC (F) degradation over different photocatalysts;
cyclic photodegradation of RhB by CdS/Ag/Bi2WO6 photocatalyst with (G) and without (H) the
regeneration procedure.

In addition to RhB, other colorless pollutants, such as Tetracycline (TC), were also se-
lected to estimate the photocatalytic efficiency of Bi2WO6, CdS, Ag/Bi2WO6, CdS/Bi2WO6,
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and CdS/Ag/Bi2WO6 under visible-light illumination (λ ≥ 420 nm). Before irradiation, the
adsorption capacities of Bi2WO6, CdS, Ag/Bi2WO6, CdS/Bi2WO6, and CdS/Ag/Bi2WO6
were also subjected to 60 min in a dark environment. As depicted in Figure 5C, the ad-
sorption ratios of Bi2WO6, CdS, Ag/Bi2WO6, CdS/Bi2WO6, and CdS/Ag/Bi2WO6 are
approximately 0.318, 0.330, 0.410, 0.430, and 0.422, respectively. Unlike the adsorption
of RhB, Ag/Bi2WO6, CdS/Bi2WO6, and CdS/Ag/Bi2WO6 have a higher adsorption ca-
pacity for TC. From Figure 5D, after the adsorption–desorption equilibrium, it can be
discovered that the Z-scheme CdS/Ag/Bi2WO6 heterojunction presented the optimal pho-
tocatalytic activity, with a TC photodegradation efficiency of about 78% after 45 min of
visible light illumination.

The kinetic behavior of the Bi2WO6, CdS, Ag/Bi2WO6, CdS/Bi2WO6, and CdS/Ag/
Bi2WO6 photocatalysts in the RhB and TC degradation processes is displayed in
Figures 5E and 5F, respectively. Moreover, the pseudo-first-order equation was employed
to fit the kinetic process. The Ln(C/C0) ∼ reaction time (t) curves exhibited linear vari-
ations, indicating that the photocatalytic degradation data of RhB and TC followed the
first-level reaction kinetics law. The rate constants (RhB) of Bi2WO6, CdS, Ag/Bi2WO6,
CdS/Bi2WO6, and CdS/Ag/Bi2WO6 were calculated as 0.0171, 0.0261, 0.0571, 0.0634,
and 0.1075 min−1, respectively. Similarly, the rate constants (TC) of the Bi2WO6, CdS,
Ag/Bi2WO6, CdS/Bi2WO6, and CdS/Ag/Bi2WO6 were determined as 0.0161, 0.0286,
0.0278, 0.0261, and 0.0319 min−1, respectively. It was evident that, compared with single-
and two-component photocatalysts, the reaction rate of CdS/Ag/Bi2WO6 heterojunction
has been significantly improved.

From the perspective of future practical applications, the repeatability and stability
of the catalysts play a crucial role. Therefore, to evaluate the repeatability and stability
of the CdS/Ag/Bi2WO6, recycling experiments were conducted using the heterojunction
photocatalyst for RhB photodegradation (Figure 5G). The recovery process of the pho-
tocatalyst is as follows: after each degradation cycle, collect the photocatalyst powder,
wash it three times with distilled water and ethanol, dry it, and proceed with subsequent
photocatalysis. In the cyclic experiment, the error bars were derived from three batches of
CdS/Ag/Bi2WO6 samples, representing the standard deviation. It can be observed that
CdS/Ag/Bi2WO6 maintains high degradation efficiency after four cycles. As a comparison,
in the cyclic experiment, no regeneration treatment was applied to directly use the collected
photocatalyst powder. The results are shown in Figure 5H. After four cyclic experiments,
there is a slight decrease in photocatalytic degradation efficiency compared to previous
regeneration procedures. This may be attributed to pollutants adsorption on its surface after
the experiment, which reduces active site availability and performance deterioration. This
finding indicated remarkable stability of the Z-scheme CdS/Ag/Bi2WO6 heterojunction.

3.5. Photocatalytic Mechanism of CdS/Ag/Bi2WO6 Heterojunction Photocatalyst

Trapping experiments were performed to identify the key reactive radicals and further
understand the probable catalytic mechanism. In the CdS/Ag/Bi2WO6 photocatalytic
reaction system, isopropanol (IPA, 10 mM), sodium oxalate (Na2C2O4, 10 mM), and benzo-
quinone (BQ, 1 mM) were used as scavengers of hydroxyl radicals (•OH), holes (h+), and
superoxide ions (•O2

−), respectively. As displayed in Figure 6, the degradation efficiency of
CdS/Ag/Bi2WO6 was slightly inhibited when IPA was added, implying that •OH may not
play a main role in the photodegradation of RhB. After adding BQ or Na2C2O4, the degra-
dation performance of the CdS/Ag/Bi2WO6 photocatalyst was dramatically inhibited,
which confirmed that •O2

− and h+ were the key active species in the CdS/Ag/Bi2WO6
photocatalytic reaction.
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Figure 6. The species trapping experiments of CdS/Ag/Bi2WO6 under visible light irradiation.

The recombination efficiency of photoinduced electron-hole pairs was analyzed using
photoluminescence (PL) spectroscopy. The weaker PL intensity typically indicates a lower
possibility of photoinduced electron-hole recombination [52]. From Figure 7, the PL spectra
of pure Bi2WO6, Ag/Bi2WO6, CdS/Bi2WO6, and CdS/Ag/Bi2WO6 are in the range of
350–700 nm, and all intense emission peaks are at about 468 nm. It is observed that the
order of the emission intensity of the catalysts is: Bi2WO6 > Ag/Bi2WO6 > CdS/Bi2WO6
> CdS/Ag/Bi2WO6. The results confirmed that the CdS/Ag/Bi2WO6 heterojunctions
possess the strongest separation efficiency of photoinduced charge carriers, suggesting they
have superior photocatalytic performance.
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To further recognize the transmission and separation of photogenerated charge in
CdS/Ag/Bi2WO6, the photocurrent response measurement is also employed under visible
light irradiation. The higher photocurrent intensity means that the transmission efficiency
of photogenerated carriers is higher, which results in outstanding photocatalytic activ-
ity [53]. Figure 8 shows the regular photocurrent responses of pure Bi2WO6, Ag/Bi2WO6,
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CdS/Bi2WO6, and CdS/Ag/Bi2WO6 in the dark and light. The photocurrent density
increases in the order Bi2WO6, Ag/Bi2WO6, CdS/Bi2WO6, and CdS/Ag/Bi2WO6, which
corresponds with their PL and photocatalytic properties. Therefore, given the above re-
sults, the as-prepared CdS/Ag/Bi2WO6 ternary heterojunction system can considerably
enhance photogenerated charge transfer and separation efficiency, thereby improving
photocatalytic performance.
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To systematically explore the photocatalytic mechanism, it is necessary to calculate the
position of the conduction band (CB) and valence band (VB) using the following equation:

EVB = χ− Ee + 0.5Eg (1)

ECB = EVB − Eg (2)

χ value is the Mulliken electronegativity of Bi2WO6 (6.39 eV [54]) and CdS (5.18 eV [55]).
The band gap values of Bi2WO6 and CdS were 2.81 and 2.17 eV, respectively. The calculated
EVB values of Bi2WO6 and CdS were 3.29 and 1.76 eV, respectively, and their corresponding
ECB values were 0.48 and −0.41 eV. With the determination of the CB and VB values of
Bi2WO6 and CdS, the transport itinerary of photoinduced electron−hole pairs gradually
becomes clear.

According to the charge carrier transfer mode of a typical type-II heterostructure, the
photogenerated electrons on the CB of CdS will migrate to the CB of Bi2WO6. Because the
conduction band of potential Bi2WO6 is more positive than the E(O2/•O2

−) (−0.33 eV) [45],
electrons on its CB cannot reduce O2 into •O2

−. However, from the results of trapping ex-
periments, •O2

− was the key active species in the CdS/Ag/Bi2WO6 photocatalytic reaction
system. This means that the CdS/Ag/Bi2WO6 system has a different photoinduced electron
and hole transport itinerary from the Bi2WO6/CdS system, which may be derived from the
formation of the Z-scheme system with Ag-bridge as an efficient charge transfer medium.

Based on the analysis of the above result, a plausible mechanism for illustrating the
transport path of photogenerated electron−hole pairs over the CdS/Ag/Bi2WO6 hetero-
junctions was proposed, as presented schematically in Figure 9. Upon exposure of the
CdS/Ag/Bi2WO6 photocatalyst to visible light, both Bi2WO6 and CdS can be excited and
then generate photogenerated electrons and holes. Because the CB position of Bi2WO6
is more negative than the Fermi level of silver nanoparticles, electrons on its CB will be
injected into the silver nanoparticles through the Schottky barrier. Meanwhile, the holes on
the VB of CdS will transfer to silver nanoparticles. Therefore, electrons generated from the
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CB of Bi2WO6 and holes generated from the VB of CdS can directly annihilate through the
Ag nanoparticle bridge. The strong reductive electrons on the CB of CdS can react with
dissolved oxygen molecules to form the active species •O2

−, which can oxidize organic
contaminants into decomposed products. And the holes on the VB of Bi2WO6 oxidize
organic contaminants directly.
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Figure 9. Schematic diagram of the proposed photogenerated charge separation and transmission
over the CdS/Ag/Bi2WO6 heterojunctions under visible light irradiation.

The Z-scheme with Ag-bridge in the CdS/Ag/Bi2WO6 ternary system not only pro-
motes the spatial isolation of the photoinduced electron−hole pairs but also can maintain
powerful redox capability, thus significantly boosting the quantum yield and photocat-
alytic activity.

4. Conclusions

In summary, the CdS/Ag/Bi2WO6 Z-scheme heterojunction photocatalysts were
successfully synthesized by hydrothermal, photoreduction, and precipitation methods.
Compared with single- and two-component systems such as CdS, Bi2WO6, Ag/Bi2WO6,
and CdS/Bi2WO6 samples, the CdS/Ag/Bi2WO6 Z-scheme heterojunction exhibited re-
markably boosted photocatalytic performance for the degradation of RhB and TC under
visible light irradiation (λ≥ 420 nm). The plausible photocatalytic mechanism was raised to
explain the superior photocatalytic performance based on DRS and PL analysis, photocur-
rent responses, band edge positions, and the active species trapping experiment. In the
CdS/Ag/Bi2WO6 Z-scheme heterojunctions system, the introduced Ag nanoparticles can
be used as a bridge for the transportation of photogenerated charge carriers between CdS
and Bi2WO6, thus accelerating photogenerated charge carrier separation and enhancing
redox capacity. This work provided an effective method for the design and construction of
extremely efficient photocatalysts based on semiconductor/noble-metal/semiconductor
Z-scheme heterojunction composites.
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