Series Solutions of Three-Dimensional Magnetohydrodynamic Hybrid Nanofluid Flow and Heat Transfer
Abstract
:1. Introduction
2. Mathematical Description
3. Asymptotic Analysis and Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
velocity components | |
temperature of the hybrid nanofluids | |
positive constants | |
ambient temperature | |
surface temperature | |
a uniform external magnetic field | |
thermal conductivity | |
heat capacitance | |
coefficients of skin friction | |
Nusselt number | |
shear stress | |
Prandtl number | |
local Reynolds numbers | |
fluid density | |
dynamic viscosity of the base fluid | |
volume fraction of the hybrid nanofluids | |
kinematic viscosity of the base fluid | |
thermal conductivity of the hybrid nanofluid | |
electrical conductivity of the hybrid nanofluid |
References
- Liu, H.; Li, M.D. The heat transfer enhancement techniques of nanofluids. Appl. Energy Tech. 2007, 10, 32–36. [Google Scholar]
- Bansal, L. Magnetofluiddynamics of Viscous Fluids, 1st ed.; Jaipur Publishing House: Jaipur, India, 1994; pp. 50–90. [Google Scholar]
- Tendler, M. Confinement and related transport in extrap geometry. Nucl. Instrum. Methods Phys. Res. 1983, 207, 233–240. [Google Scholar] [CrossRef]
- Cha, J.E.; Ahn, Y.C.; Moo-Hwan, K. Flow measurement with an electromagnetic flowmeter in two-phase bubbly and slug flow regimes. Flow Meas. Instrum. 2002, 12, 329–339. [Google Scholar] [CrossRef]
- Li, J.H.; Zhang, X.L.; Xu, B.; Yuan, M.Y. Nanofluid research and applications: A review. Int. Commun. Heat Mass Transf. 2021, 127, 105543. [Google Scholar] [CrossRef]
- Wang, J.; Yang, X.; Klemeš, J.J.; Tian, K.; Ma, T.; Sunden, B. A review on nanofluid stability: Preparation and application. Renew. Sust. Energ. Rev. 2023, 188, 113854. [Google Scholar] [CrossRef]
- You, X.C.; Cui, J.F. Spherical hybrid nanoparticles for Homann stagnation-point flow in porous media via Homotopy Analysis Method. Nanomaterials 2023, 13, 1000. [Google Scholar] [CrossRef]
- Kanwal, S.; Shah, S.; Bariq, A.; Ali, B.; Ragab, A.E.; Emad, A.A. Insight into the dynamics of heat and mass transfer in nanofluid flow with linear/nonlinear mixed convection, thermal radiation, and activation energy effects over the rotating disk. Sci. Rep. 2023, 13, 23031. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.; Chandra, M.I. Magnetohydrodynamic (MHD) mixed convection slip flow and heat transfer over a vertical porous plate. Eng. Sci. Technol. J. 2015, 18, 98–105. [Google Scholar] [CrossRef]
- Ijam, A.; Rahman, S. Nanofluid as a coolant for electronic devices (cooling of electronic devices). Appl. Therm. Eng. 2012, 32, 76–82. [Google Scholar] [CrossRef]
- Bahiraei, M.; Heshmatian, S. Electronics cooling with nanofluids: A critical review. Energy Convers. Manag. 2018, 172, 438–456. [Google Scholar] [CrossRef]
- Tahir, M.T.; Anwar, S.; Ahmad, N.; Sattar, M.; Qazi, U.W.; Ghafoor, U.; Bhutta, M.R. Thermal management of microelectronic devices using nanofluid with metal foam heat sink. Micromachines 2023, 14, 1475. [Google Scholar] [CrossRef]
- Xiong, Q.; Abohamzeh, E.; Ali, J.A.; Hamad, S.M.; Tlili, I.; Shafee, A.; Habibeh, H.; Nguyen, T.K. Influences of nanoparticles with various shapes on MHD flow inside wavy porous space in appearance of radiation. J. Mol. Liq. 2019, 292, 111386. [Google Scholar] [CrossRef]
- Rashid, U.; Baleanu, D.; Iqbal, A.; Abbas, M. Shape effect of nanosize particles on magnetohydrodynamic nanofluid flow and heat transfer over a stretching sheet with entropy generation. Entropy 2020, 22, 1171. [Google Scholar] [CrossRef]
- Zhou, S.; Almarashi, A.; Dara, R.N.; Issakhov, A.; Hu, G.; Selim, M.M.; Hajizadeh, M.R. Effect of permeability and MHD on nanoparticle transportation. J. Mol. Liq. 2021, 335, 116137. [Google Scholar] [CrossRef]
- Abd-Alla, A.M.; Abo-Dahab, S.M.; Thabet, E.N.; Abdelhafez, M.A. Heat and mass transfer for MHD peristaltic flow in a micropolar nanofluid: Mathematical model with thermophysical features. Sci. Rep. 2022, 12, 21540. [Google Scholar] [CrossRef]
- Lajvardi, M.; Moghimi-Rad, J.; Hadi, I.; Gavili, A.; Isfahani, T.D.; Zabihi, F.; Sabbaghzadeh, J. Experimental investigation for enhanced ferrofluid heat transfer under magnetic field effect. J. Magn. Magn. Mater. 2010, 322, 3508–3513. [Google Scholar] [CrossRef]
- Yarahmadi, M.; Goudarzi, H.M.; Shafii, M.B. Experimental investigation into laminar forced convective heat transfer of ferrofluids under constant and oscillating magnetic field with different magnetic field arrangements and oscillation modes. Exp. Therm. Fluid. Sci. 2015, 68, 601–611. [Google Scholar] [CrossRef]
- Raptis, A.; Perdikis, C. Viscous flow over a non-linearly stretching sheet in the presence of a chemical reaction and magnetic field. Int. J. Nonlinear Mech. 2006, 41, 527–529. [Google Scholar] [CrossRef]
- Prasad, K.V.; Vajravelu, K. Heat transfer in the MHD flow of a power law fluid over a non-isothermal stretching sheet. Int. J. Heat Mass Transf. 2009, 52, 4956–4965. [Google Scholar] [CrossRef]
- Prasad, K.V.; Vajravelu, K.; Datti, P.S. Mixed convection heat transfer over a non-linear stretching surface with variable fluid properties. Int. J. Nonlinear Mech. 2010, 45, 320–330. [Google Scholar] [CrossRef]
- Hamad, M.A.A.; Pop, I.; Ismail, A.I. Magnetic field effects on free convection flow of a nanofluid past a vertical semi-infinite flat plate. Nonlinear Anal. Real World Appl. 2011, 12, 1338–1346. [Google Scholar] [CrossRef]
- Hamad, M.A.A.; Pop, I. Unsteady MHD free convection flow past a vertical permeable flat plate in a rotating frame of reference with constant heat source in a nanofluid. Heat Mass Transf. 2011, 47, 1517–1524. [Google Scholar] [CrossRef]
- Hamad, M.A.A. Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field. Int. Commun. Heat Mass Transf. 2011, 38, 487–492. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Ganji, D.D.; Ashorynejad, H.R.; Rokni, H.B. Analytical investigation of Jeffery-Hamel flow with high magnetic field and nano particle by Adomian Decomposition Method. Appl. Math. Mech. 2012, 33, 24–34. [Google Scholar] [CrossRef]
- Rosmila, A.; Kandasamy, R.; Muhaimin, I. Lie symmetry group transformation for MHD natural convection flow of a nanofluid over a linearly porous stretching sheet in the presence of thermal stratification. Appl. Math. Mech. 2012, 33, 562–573. [Google Scholar] [CrossRef]
- Hamad, M.A.A.; Ferdows, M. On similarity solutions to the viscous flow and heat transfer of nanofluid over nonlinearly stretching sheet. Appl. Math. Mech. 2012, 33, 868–876. [Google Scholar] [CrossRef]
- Farooq, U.; Lu, D.; Munir, S.; Ramzan, M.; Suleman, M.; Hussain, S. MHD flow of Maxwell fluid with nanomaterials due to an exponentially stretching surface. Sci. Rep. 2019, 9, 7312. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Chen, S.; Lin, S. Numerical study on MHD flow of a nanofluid over a stretching/shrinking wedge. Chin. J. Comput. Mech. 2020, 37, 233–240. [Google Scholar]
- Hao, Y.; Zhang, X.; Lin, R. Numerical simulation of convective heat transfer of Fe3O4-water nanofluids under magnetic excitation. Refrigeration 2020, 48, 68–72. [Google Scholar]
- Wang, F.; Asjad, M.I.; Rehman, S.U.; Ali, B.; Hussain, S.; Gia, T.N.; Muhammad, T. MHD Williamson nanofluid flow over a slender elastic sheet of irregular thickness in the presence of bioconvection. J. Magn. Magn. Mater. 2010, 322, 3508–3513. [Google Scholar] [CrossRef]
- Ali, A.; Khan, H.S.; Saleem, S.; Hussan, M. EMHD nanofluid flow with radiation and variable heat flux effects along a slandering stretching sheet. Nanomaterials 2022, 12, 3872. [Google Scholar] [CrossRef]
- Rajesh, V.; Sheremet, M.A.; Öztop, H.F. Impact of hybrid nanofluids on MHD flow and heat transfer near a vertical plate with ramped wall temperature. Case Stud. Therm. Eng. 2021, 28, 101557. [Google Scholar] [CrossRef]
- Ali, A.; Kanwal, T.; Awais, M.; Shah, Z.; Kumam, P.; Thounthong, P. Impact of thermal radiation and non-uniform heat flux on MHD hybrid nanofluid along a stretching cylinder. Sci. Rep. 2021, 11, 20262. [Google Scholar] [CrossRef]
- Jaafar, A.; Waini, I.; Jamaludin, A.; Nazar, R.; Pop, I. MHD flow and heat transfer of a hybrid nanofluid past a nonlinear surface stretching/shrinking with effects of thermal radiation and suction. Chin. J. Phys. 2022, 79, 13–27. [Google Scholar] [CrossRef]
- Khashi’ie, N.S.; Arifin, N.M.; Pop, I. Magnetohydrodynamics (MHD) boundary layer flow of hybrid nanofluid over a moving plate with Joule heating. Alex. Eng. J. 2022, 61, 1938–1945. [Google Scholar] [CrossRef]
- Rafique, K.; Mahmood, Z.; Khan, U. Mathematical analysis of MHD hybrid nanofluid flow with variable viscosity and slip conditions over a stretching surface. Mater. Today Commun. 2023, 36, 106692. [Google Scholar] [CrossRef]
- Prakash, O.; Rao, P.R.; Sharma, R.P.; Mishra, S.R. Hybrid nanofluid MHD motion towards an exponentially stretching/shrinking sheet with the effect of thermal radiation, heat source and viscous dissipation. Pramana 2023, 97, 64. [Google Scholar] [CrossRef]
- Lone, S.A.; Alyami, M.A.; Saeed, A.; Dawar, A.; Kumam, P.; Kumam, W. MHD micropolar hybrid nanofluid flow over a flat surface subject to mixed convection and thermal radiation. Sci. Rep. 2022, 12, 17283. [Google Scholar] [CrossRef]
- Roy, N.C. MHD natural convection of a hybrid nanofluid in an enclosure with multiple heat sources. Alex. Eng. J. 2022, 61, 1679–1694. [Google Scholar] [CrossRef]
- Alghamdi, W.; Alsubie, A.; Kumam, P.; Saeed, A.; Gul, T. MHD hybrid nanofluid flow comprising the medication through a blood artery. Sci. Rep. 2021, 11, 11621. [Google Scholar] [CrossRef]
- Ramzan, M.; Alotaibi, H. Variable viscosity effects on the flow of MHD hybrid nanofluid containing dust particles over a needle with Hall current—A Xue model exploration. Commun. Theor. Phys. 2022, 74, 055801. [Google Scholar] [CrossRef]
- Waini, I.; Ishak, A.; Pop, I. Magnetohydrodynamic flow past a shrinking vertical sheet in a dusty hybrid nanofluid with thermal radiation. Appl. Math. Mech. Engl. Ed. 2022, 43, 127–140. [Google Scholar] [CrossRef]
- Revnic, C.; Grosan, T.; Sheremet, M.; Pop, I. Numerical simulation of MHD natural convection flow in a wavy cavity filled by a hybrid Cu-Al2O3-water nanofluid with discrete heating. Appl. Math. Mech. Engl. Ed. 2020, 41, 1345–1358. [Google Scholar] [CrossRef]
- Khan, M.; Ahmed, J.; Sultana, F.; Sarfraz, M. Non-axisymmetric Homann MHD stagnation point flow of Al2O3-Cu/water hybrid nanofluid with shape factor impact. Appl. Math. Mech. Engl. Ed. 2020, 41, 1125–1138. [Google Scholar] [CrossRef]
- Khan, M.; Kumam, P.; Lone, S.A.; Seangwattana, T.; Saeed, A.; Galal, A.M. A theoretical analysis of the ternary hybrid nanofluid flows over a non-isothermal and non-isosolutal multiple geometries. Heliyon 2023, 9, e14875. [Google Scholar]
- Rafique, K.; Mahmood, Z.; Khan, U.; Eldin, S.M.; Oreijah, M.; Guedri, K.; Khalifa, H.A.E. Investigation of thermal stratification with velocity slip and variable viscosity on MHD flow of Al2O3-Cu-TiO2/H2O nanofluid over disk. Case Stud. Therm. Eng. 2023, 49, 103292. [Google Scholar] [CrossRef]
- Wainia, I.; Ishakb, A.; Grosan, T.; Pop, I. Mixed convection of a hybrid nanofluid flow along a vertical surface embedded in a porous medium. Int. Commun. Heat Mass Transf. 2020, 114, 104565. [Google Scholar] [CrossRef]
- Xu, H.; Liao, S.J.; Pop, I. Series solutions of unsteady three-dimensional MHD flow and heat transfer in the boundary layer over an impulsively stretching plate. Eur. J. Mech. B Fluids 2007, 26, 15–27. [Google Scholar] [CrossRef]
- Zhao, Q.; Xu, H.; Fan, T. Analysis of three-dimensional boundary-layer nanofluid flow and heat transfer over a stretching surface by means of the homotopy analysis method. Bound. Value Probl. 2015, 2015, 64. [Google Scholar] [CrossRef]
- Oztop, H.F.; Abu-Nada, E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 2008, 29, 1326–1336. [Google Scholar] [CrossRef]
- Brinkman, H.C. The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 1952, 20, 571–581. [Google Scholar] [CrossRef]
- Maiga, S.E.B.; Palm, S.J.; Nguyen, C.T.; Roy, G.; Galanis, N. Heat transfer enhancement by using nanofluids in forced convection flows. Int. J. Heat Fluid Flow 2005, 26, 530–546. [Google Scholar] [CrossRef]
- Takhar, H.S.; Chamkha, A.J.; Nath, G. Unsteady three-dimensional MHD-boundarylayer flow due to the impulsive motion of a stretching surface. Acta Mech. 2001, 146, 59–71. [Google Scholar] [CrossRef]
- Liao, S.J. Perturbation: Introduction to the Homotopy Analysis Method, 1st ed.; Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2003; pp. 54–96. [Google Scholar]
- Ramzan, M.; Khan, N.S.; Kumam, P. Mechanical analysis of non-Newtonian nanofluid past a thin needle with dipole effect and entropic characteristics. Sci. Rep. 2021, 11, 19378. [Google Scholar] [CrossRef]
- Dawar, A.; Shah, Z.; Tassaddiq, A.; Kumam, P.; Islam, S.; Khan, W. A convective flow of Williamson nanofluid through cone and wedge with non-isothermal and non-isosolutal conditions: A revised Buongiorno model. Case Stud. Therm. Eng. 2021, 24, 100869. [Google Scholar] [CrossRef]
- Wang, C.Y. The three-dimensional flow due to a stretching flat surface. Phys. Fluids 1984, 27, 1915–1917. [Google Scholar] [CrossRef]
Properties | H2O | |||
---|---|---|---|---|
4179 | 385 | 765 | 686.2 | |
997.1 | 8933 | 3970 | 4250 | |
5.5 × 10−6 | 3.69 × 107 | 5.96 × 107 | 1 × 10−18 | |
0.613 | 400 | 40 | 8.9538 |
[58] | [58] | [58] | [58] | |||||
---|---|---|---|---|---|---|---|---|
0 | −1 | −1 | 0 | 0 | 1 | 1 | 0 | 0 |
0.25 | −1.04881 | −1.04881 | −0.19456 | −0.19456 | 0.90715 | 0.90708 | 0.25799 | 0.25799 |
0.50 | −1.09310 | −1.09310 | −0.46521 | −0.46521 | 0.84239 | 0.84236 | 0.45168 | 0.45167 |
0.75 | −1.13449 | −1.13449 | −0.79462 | −0.79462 | 0.79230 | 0.79231 | 0.61214 | 0.61205 |
1 | −1.17372 | −1.17372 | −1.17372 | −1.17372 | 0.75150 | 0.75153 | 0.75150 | 0.75153 |
Mth-Order | CPU Time (s) | |||
---|---|---|---|---|
1 | 0.15849 | 0.03162 | 0.00251 | 0.20313 |
5 | 0.01000 | 0.00250 | 0.00040 | 4.90625 |
10 | 0.00079 | 0.00015 | 0.00006 | 33.5156 |
15 | 3.98107 × 10−5 | 7.94328 × 10−6 | 6.30957 × 10−6 | 127.641 |
20 | 2.51189 × 10−6 | 7.94328 × 10−7 | 1.58489 × 10−6 | 325.484 |
25 | 2.51188 × 10−7 | 3.98107 × 10−8 | 2.51185 × 10−7 | 871.109 |
30 | 1.62181 × 10−8 | 3.98107 × 10−9 | 6.30957 × 10−8 | 4006.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, X.; Wang, Y. Series Solutions of Three-Dimensional Magnetohydrodynamic Hybrid Nanofluid Flow and Heat Transfer. Nanomaterials 2024, 14, 316. https://doi.org/10.3390/nano14030316
You X, Wang Y. Series Solutions of Three-Dimensional Magnetohydrodynamic Hybrid Nanofluid Flow and Heat Transfer. Nanomaterials. 2024; 14(3):316. https://doi.org/10.3390/nano14030316
Chicago/Turabian StyleYou, Xiangcheng, and Yanbin Wang. 2024. "Series Solutions of Three-Dimensional Magnetohydrodynamic Hybrid Nanofluid Flow and Heat Transfer" Nanomaterials 14, no. 3: 316. https://doi.org/10.3390/nano14030316
APA StyleYou, X., & Wang, Y. (2024). Series Solutions of Three-Dimensional Magnetohydrodynamic Hybrid Nanofluid Flow and Heat Transfer. Nanomaterials, 14(3), 316. https://doi.org/10.3390/nano14030316