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Abstract: We theoretically study the generic mechanisms that could establish critical behavior in
nematic liquid crystals (NLCs). The corresponding free energy density terms should exhibit linear
coupling with the nematic order parameter and, via this coupling, enhance the nematic order. We
consider both temperature- and pressure-driven, order–disorder phase transitions. We derive a scaled
effective free energy expression that describes how qualitatively different mechanisms enforce critical
behavior. Our main focus is on the impact of nanoparticles (NPs) in homogeneous NP-NLC mixtures.
We illustrate that in the case of pressure-driven phase changes, lower concentrations are needed to
impose critical point conditions in comparison with pure temperature variations.
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1. Introduction

The critical points are of interest to diverse fields in physics, ranging from renormal-
ization group theory to the electro- and thermo-mechanical response of solid and soft
materials [1–4]. The proximity to a critical point strongly influences the phase transition
behavior and the system’s response [5,6]. The critical behavior is determined by univer-
sal exponents, which depend on the space dimensionality and the system’s symmetry.
Particular systems exhibit a critical point (CP) in their phase diagram. Typically, upon
increasing an external field in a two-dimensional phase space, the first-order transition line
is terminated at the CP, where the phase behavior becomes continuous, and above the CP,
supercritical behavior is observed. At the CP, the system exhibits anomalous sensitivity
to different stimuli [4]. Consequently, establishing CP conditions is of interest for various
technological applications (e.g., sensors, caloric responses) [4,7–9].

In order to gain a profound understanding of universal features (i.e., scaling behavior)
and to effectively manipulate and master the CP behavior, it is essential to identify simple
experimental systems with a well-developed theoretical background. It is important to
stress that normally significant external fields [4,7,8] are needed to approach CP conditions.
Furthermore, applications of external fields could induce unwanted effects such as resistive
Joule heating or Eddy currents if electrical or magnetic fields are used for such purposes.
Sometimes, it is even difficult to impose an external field into the system.

Thermotropic uniaxial nematic liquid crystals (LCs) [10–12] comprise examples of
experimentally approachable systems [13–16]. LCs consist of weakly interacting anisotropic
molecules that exhibit several mesophases between the isotropic liquid and the crystal
phases. The simplest liquid-crystalline phase is the nematic phase, characterized by a
long-range uniaxial orientational order. At the mesoscopic level [10], the nematic order
is described by the nematic director field n̂ and the uniaxial nematic order parameter S.
The unit vector n̂ points along the local uniaxial order and exhibits head-to-tail invari-
ance (i.e., the ±n̂ states are physically equivalent). Furthermore, S quantifies the degree
of nematic order, which is absent for S = 0. In bulk equilibrium, n̂ and S are spatially
homogeneous and n̂ points along a symmetry-breaking direction. In thermotropic LCs,
the nematic phase is reached upon cooling from the isotropic (ordinary liquid) phase via
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a weakly first-order phase transition. Recently, there has been increasing interest in as-
sessing the barocaloric effect in LCs and other soft materials [17–20], where the nematic
order is obtained via a first-order phase transition by increasing pressure starting from the
isotropic phase.

In nematic LCs, one can enforce critical behavior in qualitatively different ways. The
most common generic triggers are the LC free energy density contributions favoring a
nematic orientational order that are linearly coupled with S. Such a dependence exhibits ex-
ternal electric or magnetic field free energy terms [16] and, in common cases, LC-interfacial
interactions [21–25] between LC molecules and LC-limiting confining substrates or im-
mersed nanoparticles (NPs). Note that the “surface” elastic constants [10,26,27] can also
exhibit such generic properties; however, for known LCs, their influence is too weak to
trigger critical behavior. In the case of external fields, critical behavior is imposed for strong
enough field intensities. Interfacial interactions could establish critical behavior in confined
LCs, where the characteristic confinement length is comparable to the nematic order pa-
rameter correlation length [21,22,25]. Furthermore, such behavior is expected in LC-NP
mixtures that, for high NP concentrations, exhibit a large enough effective NP-LC interfacial
contact surface area. However, in such cases, phase separation commonly occurs [28,29],
which eventually strongly reduces the effective interfacial area. In general, NPs influence
the LC critical behavior via imposing variable degrees of disorder as a function of their size
and concentration [14,15,30,31]. Namely, the isotropic-to-nematic (I-N) phase transition
exhibits continuous symmetry breaking and such systems are extremely susceptible to
disorder owing to the presence of Goldstone fluctuation modes [12,32,33].

Note that NP-driven critical behavior has not been observed upon varying temperature
in homogeneous NP-LC mixtures, where NPs enforce a relatively weak disorder. However,
a recent experimental study [20], in which orientational order–disorder phase behavior
was enforced by varying pressure, reveals that a critical point can be reached in relatively
diluted NP-LC mixtures. In the present paper, we theoretically study the critical behavior
in NLCs using the mesoscopic Landau-de Gennes approach in terms of the tensor nematic
order parameter.

We limit our focus to cases where the nematic order is essentially uniaxial and spatially
homogeneous. Both temperature- and pressure-controlled LC orders are considered. We
analyze the free energy contributions that could potentially trigger critical point behavior
and we derive scaled expressions predicting the onset of such conditions. Particular focus
is devoted to understanding the recently observed critical point in diluted NP-LC mixtures
upon varying pressure [20].

The structure of this paper is as follows. In Section 2, we present our mesoscopic
model. In Section 3, the scaled free energy of the system is introduced describing both
temperature- and pressure-driven phase behaviors. The critical behavior is analyzed in
Section 4. The main findings are summarized in the conclusions.

2. Model

At a mesoscopic level, one can express the nematic orientational order in terms of the
traceless and symmetric tensor nematic order parameter [10,34]:

Q = ∑3
i=1 si êi ⊗ êi. (1)

where si are Q-eigenvalues (the amplitude fields) and êi are the corresponding normalized
eigenvectors. In the case of uniaxial order, where two eigenvalues are equal, Q is commonly
represented as [10]

Q(u) = S(n̂ ⊗ n̂ − I/3) (2)

The unit vector n̂ is referred to as the nematic director (symmetry-breaking) field, S is
the nematic order parameter amplitude field, and I stands for the unit tensor. Note that a
uniaxial state can exhibit either positive or negative uniaxiality, corresponding to prolate or
oblate mesoscopic order parameter geometric presentations.
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We express the free energy of the system as the sum of volume and interfacial contri-
butions:

F =
∫ (

fc + fe + f f

)
d3→r + ∑j

∫
f (j)
i d2→r (3)

The first and second integral are carried out over the LC body and LC-limiting sub-
strates, where fc, fe, f f , and f (j)

i stand for the condensation, elastic, external electric or
magnetic field, and j-th limiting interface interaction free energy densities, respectively. We
express them as [10,35–37]

fc =
3a
2

TrQ2 − 9b
2

TrQ3 +
9c
4

(
TrQ2

)2
(4a)

fe = L Tr(∇Q)2, (4b)

f f = −3
2

∆χ
→
ζ × Q

→
ζ , (4c)

f (j)
i = w(j) Tr

(
Q − Q(j)

)2
. (4d)

Numerical coefficients in Equation (4a,c) are introduced for convenience later on. The
quantities a, b, and c are the Landau expansion coefficients; L is the representative elastic

modulus (i.e., we adopt the single elastic constant approximation);
→
ζ = ζ ê stands for an

external electric or magnetic field aligned along a unit vector ê; ∆χ is the field anisotropy;
and w(j) is the positive interfacial interaction constants of the j-th LC interface, which
locally enforces an LC order described by the interfacial nematic tensor order parameter
Q(j) [34,37] (i.e., in the limit w(j) → ∞, it holds that Q = Q(j)

)
. In the case of an interface

locally enforcing a uniaxial order, we use the following parametrization:

Q(j)
(→

r
)
= S(j)

(→
r
)(

n̂(j) ⊗ n̂(j) − I
3

)
. (5)

Note that it is much easier to induce critical behavior by an external electric field
than a magnetic field [10]. Consequently, the focus is limited to external electric field

cases, where
→
ζ =

→
E , ∆χ = ε0∆ε, ∆ε stands for the dielectric anisotropy, and ε0 is the

vacuum electric permittivity. Furthermore, in modeling the interfacial interactions, we
use a relatively simple interaction term weighed by a single interaction constant w(j) > 0.
In general, more complex interfacial contributions are expected. For example, the most
general form of the interfacial free energy contribution up to the fourth order in Q, where
one assumes that a local interface imposes a single characteristic symmetry-breaking di-
rection êi, is given by [35]: f (j)

i = −w(1)
1 êi.Qêi + w(2)

1 TrQ2 + w(2)
2 (êi.Qêi)

2 + w(2)
3 Qêi.Qêi.

Here w(1)
1 , w(2)

1 , w(2)
2 , and w(2)

3 stand for the bare (i.e., temperature-independent) surface
interaction strengths fingerprinting a specific surface treatment procedure. In most cases,
these constants are positive. This free energy density was originally proposed on symmetry
grounds. Deeper insight revealing the microscopic origins of these terms are derived
using a molecular mean-field theory [36]. The latter reveals that w(1)

1 includes the direct
substrate–LC molecule interactions and the remaining surface interaction constants emerge
from the modification of interactions between LC molecules at the substrate. One repro-

duces Equation (4d) by enforcing S(j) = 3
2

w(1)
1

3w(2)
1

, êi = n̂(j) in Equation (5) [34], and setting

w(1)
1 = 2S(j)w(j), w(2)

2 = w(j), and w(2)
2 = w(3)

2 = 0, However, the essential information of
interest is that in the uniaxial limit, one expects linear and quadratic contributions in terms
of S.
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3. Effective Free Energy

In the following, we consider relatively dilute homogeneous LC-NP mixtures. We
are interested in the impact of NPs on the I-N phase transition upon varying either the
temperature or the pressure. We consider cases where NPs weakly distort the LC order and,
consequently, it is reasonable to set Q ∼ Q(u) (see Equation (2)). We further assume that
Q(u) is essentially spatially homogeneous, and NP-LC interfaces play a dominant role in the
LC-interfacial contributions. We assume that all NPs are equal, i.e., they impose the same
anchoring conditions of the same strength w = w(j) and express the j-th NP contribution as∫

f (j)
i d2→r ∼ waNP

(
2
3

S(j)2 − 4
3

S S(j)P2
(
n̂.n̂(j)

)
+

2
3

S2
)
=
(

w0 − w1S + w2S2
)

aNP. (6)

where (. . . .) determines the average over the NP surface; P2 is the second-order Legendre
polynomial; w0 = 2

3 wS(j)2, w1 = 4
3 w S(j)P2

(
n̂ × n̂(j)

)
, and w2 = 2

3 w are constants; and aNP
stands for the nanoparticle surface area. The volume concentration of NPs is given by

ϕ =
NvNP

V
, (7)

where N stands for the number of NPs within the sample volume V.
Neglecting the spatial variations in S, which are justified later, one obtains

F
V

∼ aS2 − bS3 + cS4 − ε0∆εE2⟨P2(n̂.ê)⟩S − ϕw1
aNP
vNP

S + ϕw2
aNP
vNP

S
2
, (8)

where we limit our focus to terms depending on S and ⟨. . .⟩ denotes averaging over the
LC volume. We are interested in temperature and pressure variations across regimes
where the bulk system exhibits a first-order I-N phase transition. At a constant pressure P,
it holds that

a ∼ a0(T − T∗), (9)

where T∗ is the bulk isotropic supercooling temperature, and we neglect the temperature
variations in the remaining LC material constants.

In studying P-driven changes, we assume that the dominant pressure-dependent free
energy contribution is also introduced by the first term in Equation (8), where we set [17]

T∗ ∼ T∗
0 + α∆P, (10)

where P = P0 +∆P, P0 ∼ 105 N/m2 stands for the atmospheric pressure, T∗(P = P0) = T∗
0 ,

and α is constant. With this in mind, we obtain

a ∼ A0(P∗ − ∆P), (11)

where P* =
T−T*

0
α and A0 = a0α.

Note that upon varying pressure, the volume of the sample changes. The V(P) depen-
dence is, in general, material-dependent [38]. In our study, we limit the focus to isothermal
changes for which one can reasonably assume that the ratio P/V is constant. Consequently,
the volume concentration of NPs varies with P and it holds that

ϕ = ϕ0
P
P0

= ϕ0

(
1 +

∆P
P0

)
, (12)

where ϕ0 = NvNP
V0

and V0 = VP/P0.



Nanomaterials 2024, 14, 320 5 of 13

3.1. Scaled Free Energy Density

In the following, we introduce the dimensionless free energy density
∼
f and we use

different scaling units in the temperature and pressure phase behaviors. In both cases, we
use the scaled order parameter

s = S/S0, S0 =
b
2c

. (13)

and express the free energy in the following scaled form:

∼
f = r(e f f )s2 − 2s3 + s4 − σ(e f f )s. (14)

where r(e f f ) stands for the effective control parameter that drives order–disorder phase
transitions and σ(e f f ) is the effective field conjugate to the order parameter. These quantities
are defined differently for temperature- and pressure-driven structural transformations.
The corresponding scaling steps are described below.

For scaling purposes, we define several material-dependent lengths. The representa-
tive NP-LC interfacial strengths are expressed in terms of the surface extrapolation lengths,
defined as

d(1)e =
LS0

w1
, d(2)e =

L
w2

. (15)

Furthermore, we define the characteristic material-dependent lengths:

ξ
(T)
IN =

√
L

a(TIN − T∗)
, ξ

(P)
IN =

√
L

A0(P∗ − PIN)
, ξE =

√
LS0

ε0|∆ε|E2 . (16)

where ξ
(T)
IN and ξ

(P)
IN estimate the correlation lengths in cases of temperature and pressure

variations, respectively, and ξE stands for the external electric field extrapolation length. We
express them at the corresponding bulk phase transitions (i.e., T = T IN , P = PIN), where

TIN = T∗ +
b2

4a0c
, PIN = P∗ − b2

4A0c
. (17)

3.1.1. Scaled Parameters upon Varying Temperature

In the case of temperature variations, we define the dimensionless quantities

r(e f f )
T = rT + ϕ

ξ
(T)
IN

2

d(2)e

aNP
vNP

(18a)

rT =
T − T∗

TIN − T∗ (18b)

and

σ
(e f f )
T = ϕ

ξ
(T)
IN

2

d(1)e

aNP
vNP

+
∆ε

|∆ε|
ξ
(T)
IN

2

ξ2
E

⟨P2(n̂.ê)⟩, (19)

In terms of these quantities, we obtain the expression for
∼
f = f / f0, where

f0 = a0(TIN − T∗)S2
0, r(e f f ) = r

(e f f )
T , and σ(e f f ) = σ

(e f f )
T .

3.1.2. Scaled Parameters upon Varying Pressure

We further introduce the dimensionless pressure rP and the effective dimensionless
pressure r(e f f )

P as

rP =
P∗ − ∆P

P∗ − ∆PIN
(20a)
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r(e f f )
P = rP + ϕ0

(
1 +

P∗

P0
− ∆P0

P0
rP

)
ξ
(P)
IN

2

d(2)e

aNP
vNP

, (20b)

and the scaled surface interaction

σ
(e f f )
P = ϕ0

(
1 +

P∗

P0
− ∆P0

P0
rP

)
ξ
(P)
IN

2

d(1)e

aNP
vNP

+
∆ε

|∆ε|
ξ
(P)
IN

2

ξ2
E

⟨P2(n̂.ê)⟩, (21)

where ∆P0= P* − ∆PIN .

Based on the above, the expression given by Equation (14) follows for
∼
f where

f0 = A0(P∗ − ∆PIN)S2
0, r(e f f ) = r

(e f f )
P , and σ(e f f ) = σ

(e f f )
P .

4. Phase Behavior

In this subsection, we analyze the phase behavior of systems described by the effective
dimensionless free energy represented by Equation (14), and the phase transition conditions
can be obtained analytically. At the phase transition, the system exhibits two equally deep
minima, which can be approximately expressed by the fourth-order polynomial:

∼
f = A

(
s − s(−)

c

)2(
s − s(+)

c

)2
+ B (22)

where A and B are constants, and the quantities {s (−)
c , s(+)

c

}
determine the two minima of

∼
f =

∼
f (s). The phase transition conditions are obtained by equating the expressions given

by Equations (14) and (22). First-order transitions are realized when the conditions

r(e f f )
c = 1 + σ

(e f f )
(23a)

σ(e f f ) < σ
(e f f )
cp . (23b)

are fulfilled and it holds that

s(−)
c =

1 −
√

1 − 2σ(e f f )

2
, s(+)

c =
1 +

√
1 − 2σ(e f f )

2
. (24)

where r(e f f )
c stands for the phase transition value and σ

(e f f )
cp is the CP value of σ(e f f ),

above which the phase behavior becomes supercritical. Namely, the systems of interest

exhibit critical behavior where the conditions ∂
∼
f

∂s = ∂2
∼
f

∂s2 = ∂3
∼
f

∂s3 = 0 are fulfilled. The CP is
determined by

σ
(e f f )
cp = 0.5, r(e f f )

cp = 1.5, scp = 0.5. (25)

Note that the above expressions are valid for any V = V(P) dependence. In the
expression below, we illustrate the quantitative behaviors for the cases where the ratio
V/P is constant. In the subcritical regime, the critical phase transition temperature Tc
and the critical phase transition pressure ∆Pc in the corresponding temperature/pressure
variations are given by

Tc − T∗

TIN − T∗ = ϕ
ξ
(T)
IN

2

d(1)e

aNP
vNP

(
1 − d(1)e

d(2)e

)
+

∆ε

|∆ε|
ξ
(T)
IN

2

ξ2
E

⟨P2(n̂.ê)⟩ (26)

∆PIN − ∆Pc

P∗ − ∆PIN
=

ϕ0

(
1 + ∆P0

P0

)
ξ
(P)
IN

2

d(1)e

aNP
vNP

(
1 − d(1)e

d(2)e

)
+ ∆ε

|∆ε|
ξ
(T)
IN

2

ξ2
E
⟨P2(n̂.ê)⟩

1 + ϕ0
∆P0
P0

ξ
(P)
IN

2

d(1)e

aNP
vNP

(
1 − d(1)e

d(2)e

) . (27)



Nanomaterials 2024, 14, 320 7 of 13

Note that if an external electric field
→
E = Eê is present, the critical point condition is

favored only in NLCs exhibiting a positive dielectric anisotropy. In this case,
→
E favors the

nematic director field alignment parallel to ê. Consequenty, one expects ⟨P2(ê.n̂)⟩ ∼ 1 if the
boundary conditions do not impose a substantially different NLC alignment. However, the
equations derived above are also valid for cases where ê and n̂ are not collinear, provided
that the LC states are essentially uniaxial. For NLCs exhibiting a negative dielectric

anisotropy (i.e., ∆ε < 0), negative uniaxiality is favored if
∣∣∣∣→E ∣∣∣∣ > 0. Consequently, for large

enough values of E, one expects biaxial LC states [34], which we neglect in our analysis.

In Figure 1, we plot
∼
f =

∼
f (s) for different values of σ(e f f ) ≤ σ

(e f f )
cp at phase transition

points, where both free energy minima possess an equal depth. The curvature of the i-th

minimum is given by ci =
1
2

∂2
∼
f

∂s2

[
s(i)mi

]
, where s(i)mi describes the equilibrium value of s in the

corresponding minimum. It holds that

ci = 1 − 2σ(e f f ), (28a)

∆
∼
f g =

(
1 − 2σ(e f f ))2

16
, (28b)

where ∆
∼
f g =

∼
f (sma)−

∼
f
(

s(i)mi

)
is the energy gap separating the two minima and s = sma

determines the maximum in between. Note that the order parameter correlation length for

given equilibrium conditions is defined as ξ =

√
L/
(

∂2 f
∂S2

)
. In our scaling, one obtains the

following at r(e f f )
c :

ξc

ξ IN
=

1√
1 − 2σ(e f f )

, (29)

where ξ IN = ξ
(T)
IN (ξ IN = ξ

(P)
IN ) stands for the bulk correlation lengths for temperature (pres-

sure) variations and ξc represents the correlation length in systems where
σ(e f f ) ≤ σ

(e f f )
cp . Therefore, upon approaching the CP, ξc diverges. Consequently, the approx-

imation of a constant value of s becomes increasingly justifiable upon
approaching σ

(e f f )
cp .
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cp ≡ 0.5; green dash-dotted line: supercritical

state, σ(e f f ) = 0.75.
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In Figure 2, we illustrate the typical s = s
(

r(e f f )
)

dependencies (Figure 2a: tem-
perature variations, and Figure 2b: pressure variations) in the subcritical, critical, and
supercritical regimes in the absence of external fields (i.e., E = 0). The bulk reference (ob-
tained for ϕ = 0) exhibits a first-order I-N phase transition, where s = 0 for r(e f f ) > 1. In
the regime 0 < σ(e f f ) < σ

(e f f )
cp = 0.5, the isotropic phase is replaced by a paranematic (P)

phase, exhibiting a relatively weak but finite degree of orientational order. Therefore, the
systems exhibit a first-order phase transition at r(e f f )

c and one observes a finite degree of
orientational order in the regime r(e f f ) > r(e f f )

c . Furthermore, upon increasing σ(e f f ), the
first-order transition discontinuity at r(e f f )

c decreases and, eventually, vanishes at the CP.
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temperature for different effective field strengths. For illustration purposes, we refer only to the

impact of NPs, and we set w2 = 0 (in these cases, rT = r(e f f )
T and rP = r(e f f )

P ). Upper panel (a):

temperature variation (r(e f f ) = r(e f f )
T ). Black solid line: σ(e f f ) = 0; blue dashed line: σ(e f f ) = 0.25;

red solid line: σ(e f f ) = σ
(e f f )
cp ≡ 0.5; green dash-dotted line: supercritical state, σ(e f f ) = 0.75. Lower

panel (b): pressure variation
(

r(e f f ) = r(e f f )
P ), P∗

P0
= 1, ∆P0

P0
= 0.1. Black solid line: σ(e f f ) = 0; blue

dashed line: subcritical state, ϕ0
ξ
(P)
IN

2

d(1)
e

aNP
vNP

= 0.1; red solid line: ϕ0
ξ
(P)
IN

2

d(1)
e

aNP
vNP

= 0.27, corresponding to

σ(e f f ) = σ
(e f f )
cp ≡ 0.5; green dash-dotted line: supercritical state, ϕ0

ξ
(P)
IN

2

d(1)
e

aNP
vNP

= 0.3.

The bistability phase regime upon varying σ(e f f ) is shown in Figure 3. In the bistability
region, which exists in the subcritical region (i.e., σ(e f f ) < σ

(e f f )
cp ) between the spinodal

lines (denoted by the dashed and the dash-dotted curves in Figure 3), the system possesses
two minima corresponding to the paranematic (P) and nematic (N) order. At the spinodal
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lines, one of the two minima disappears. The two minima exhibit the same depths only
at the phase transition line (full line in Figure 3). The dotted line denotes the width of the
bistability regime, which decreases upon increasing σ(e f f ) and vanishes at σ(e f f ) = σ

(e f f )
cp .

The corresponding values of the scaled order parameters at the spinodal lines are plotted
in Figure 4. In the supercritical regime (σ (e f f ) > σ

(e f f )
cp

)
, the system exhibits a gradual N-P

transition upon varying r(e f f ).
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5. Conclusions

We analyze how different mechanisms could shift the NLC towards the CP. The focus
is on the impact of NPs on the temperature- and pressure-induced critical behavior in
the first-order I-N transition. Note that CP behavior could also be imposed via a strong
enough NP-induced disorder [30–33], which we do not consider in this paper. This study
contributes a universal scaled form of the effective free energy describing both temperature-
and pressure-driven phase transitions, in the presence of qualitatively different mechanisms
that shift the system towards the critical point in the two-dimensional scaled phase space
(r(e f f ), σ(e f f )). The structure of σ(e f f ), representing the effective field conjugate to the
nematic order parameter, reveals how different phase-behavior-shifting mechanisms should
be quantitatively tuned to reach the CP [16,25,29]. Furthermore, we illustrate that by
varying pressure, one could establish CP conditions using minute concentrations of NPs,
which was recently observed experimentally [20].

In our derivation, we neglect the spatial inhomogeneities in nematic order. This
approximation is sensible close to the critical point where the nematic order parameter
correlation length tends to diverge [16]. Consequently, the amplitude of the nematic order
exhibits only weak spatial variations. Furthermore, one assumes that nematic domains,
where each is characterized by an average nematic director field symmetry-breaking direc-
tion, are relatively large. This assumption is sensible if the isotropic (paranematic)–nematic
phase transition is crossed slowly upon varying the relevant phase-transition-driving pa-
rameter (i.e., temperature or pressure). On the contrary, for fast phase changes, different
parts of a system in general choose different symmetry-breaking directions due to the finite
speed of information propagation. Consequently, a domain-type structure is formed [39],
where the characteristic linear size of domains depends on the phase transition quench
rate [40]. The characteristic linear size ξp of the so-called protodomains (i.e., first domains
that appear after a very fast quench) is estimated by the universal Kibble–Zurek (KZ) mech-
anism [40]. The latter was originally introduced in cosmology [41] to explain the coarsening
dynamics of the Higgs field in the early universe. Because its only ingredients are continu-
ous symmetry breaking and causality (i.e., finite speed of information propagation), this
mechanism could also be applied to condensed matter symmetry-breaking phase transi-
tions [40], including the paranematic (isotropic)–nematic phase transformation [42]. For
second-order phase transitions, the KZ mechanism predicts ξp ∼ ξ0

(
τQ/τ0

)v/(1+η), where
ξ0 and τ0 estimate the relevant order parameter correlation length and relaxation time deep
in the condensed ordered phase, respectively; v and η estimate the critical coefficients of
the phase transition; and τQ estimates the characteristic time in which the phase transition
takes place (e.g., for temperature quenches, it is defined by t = τQ

T−Tc
Tc

, where one assumes
that the time t and temperature are linearly dependent upon crossing the phase transition
temperature Tc). This equation is sensible for typical I-N phase transitions due to their
weakly first-order characteristic, where it holds that v ∼ 1/2, η ∼ 1, ξ0 ∼ 1 nm, and
τ0 ≪ 10−6 s [10,43,44]. These estimates are also applicable for relatively fast changes, if a
symmetry-breaking external electric (or magnetic) field is present upon crossing the phase
transition. The electric field should be strong enough, i.e., its extrapolation length ξE (see
Equation (16)) should be small in comparison with ξp.

The presented estimates are also sensible for the cases where NPs or colloids immersed
in the NLC host introduce relatively strong local distortions, but not any type of disordered
glass-type behavior [45–50]. In these cases, immersed particles (i.e., NPs or colloids)
could mutually interact via the nematic-director-field-mediated, long-range forces, giving
rise to essentially ordered particle structures [51–56] within the NLC matrix, if the NLC
fluctuations are not too strong [57,58].

The formulation developed in this work can serve as a guide towards the development
of various applications, e.g., in the area of anomalously sensitive detectors [59,60] or caloric
devices [7,8], especially those based on the barocaloric effect [7,8]. In the proximity of
critical points, soft materials exhibit a highly increased susceptibility to even weak external
stimuli. Furthermore, susceptibilities of certain systems are related to the piezoelectric com-
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pliance [61], which is related to the electro-mechanical response. Consequently, mastering
the critical point conditions is interesting for diverse thermal (e.g., heat management) appli-
cations, actuators, and sensitive sensors [7,8]. In these effects, the adiabatic variation in an
external (e.g., electric, magnetic, elastic) field enforces a large temperature change that can
be maximized near critical points [4]. Therefore, this work suggests how the combination
of different phase-behavior-shifting mechanisms could be exploited in such applications.

Author Contributions: Conceptualization, S.K.; theoretical modeling, S.K., M.Z. and Z.K.; figures,
M.Z. and G.C.; text writing, S.K. and G.C. All authors have read and agreed to the published version
of the manuscript.

Funding: M.Z. acknowledges the financial support of Project PR-12878, G.C. and Z.K acknowledge
the financial support of Project P1-0125, and S.K. acknowledges the financial support of Project
P1-0099, J1-2457, and J2-4447 from the Slovene Research Agency.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Anderson, P.W. Basic Notions of Condensed Matter Physics; Benjamin/Cummings Pub. Co., Advanced Book Program: Menlo Park,

CA, USA, 1984.
2. Wilson, K.G. The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys. 1975, 47, 773–840.

[CrossRef]
3. Lin, S.Z.; Wang, X.; Kamiya, Y.; Chern, G.-W.; Fan, F.; Fan, D.; Casas, B.; Liu, Y.; Kiryukhin, V.; Zurek, W.H.; et al. Topological

defects as relics of emergent continuous symmetry and Higgs condensation of disorder in ferroelectrics. Nat. Phys. 2014, 10,
970–977. [CrossRef]

4. Kutnjak, Z.; Petzelt, J.; Blinc, R. The Giant Electromechanical Response in Ferroelectric Relaxors as a Critical Phenomenon. Nature
2006, 441, 956–959. [CrossRef] [PubMed]

5. Cordoyiannis, G.; Lebar, A.; Zalar, B.; Žumer, S.; Finkelmann, H.; Kutnjak, S. Criticality controlled by cross-linking density in
liquid single-crystal elastomers. Phys. Rev. Lett. 2007, 99, 197801. [CrossRef] [PubMed]

6. Pišljar, J.; Ghosh, S.; Turlapati, S.; Rao, N.-V.-S.; Škarabot, M.; Mertelj, A.; Petelin, A.; Nych, A.; Marinčič, M.; Pusovnik, A.; et al.
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53. Mertelj, A.; Lisjak, D.; Drofenik, M.; Čopič, M. Ferromagnetism in suspensions of magnetic platelets in liquid crystal. Nature 2013,

504, 237–241. [CrossRef] [PubMed]
54. Bisoyi, H.K.; Kumar, S. Liquid-crystal nanoscience: An emerging avenue of soft self-assembly. Chem. Soc. Rev. 2011, 40, 306–319.

[CrossRef] [PubMed]

https://doi.org/10.1080/00268949008055380
https://doi.org/10.1103/PhysRevA.43.2943
https://doi.org/10.1103/PhysRevLett.67.2033
https://doi.org/10.1038/nature01331
https://www.ncbi.nlm.nih.gov/pubmed/12520297
https://doi.org/10.1051/jp2:1993195
https://doi.org/10.1080/02678299208029097
https://doi.org/10.1007/PL00013680
https://doi.org/10.1016/j.molliq.2023.122568
https://doi.org/10.1103/PhysRevLett.81.385
https://doi.org/10.1103/PhysRevLett.35.1399
https://doi.org/10.1103/PhysRevE.81.021702
https://doi.org/10.1063/1.346558
https://doi.org/10.1103/PhysRevA.35.1391
https://doi.org/10.1103/PhysRevA.46.R6174
https://doi.org/10.1063/5.0050274
https://doi.org/10.1103/PhysRevE.60.6831
https://www.ncbi.nlm.nih.gov/pubmed/11970603
https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1038/317505a0
https://doi.org/10.1126/science.251.4999.1336
https://www.ncbi.nlm.nih.gov/pubmed/17816188
https://doi.org/10.1007/s003390100732
https://doi.org/10.1080/00018730110117433
https://doi.org/10.1016/j.cap.2012.03.019
https://doi.org/10.1002/anie.200200546
https://doi.org/10.1007/s10904-007-9140-5
https://doi.org/10.1070/PU1988v031n03ABEH005710
https://doi.org/10.1080/026782998207640
https://doi.org/10.1126/science.275.5307.1770
https://www.ncbi.nlm.nih.gov/pubmed/9065396
https://doi.org/10.1103/PhysRevLett.98.247801
https://www.ncbi.nlm.nih.gov/pubmed/17677995
https://doi.org/10.1038/nature12863
https://www.ncbi.nlm.nih.gov/pubmed/24336284
https://doi.org/10.1039/B901793N
https://www.ncbi.nlm.nih.gov/pubmed/21125105


Nanomaterials 2024, 14, 320 13 of 13

55. Mundoor, H.; Park, S.; Senyuk, B.; Wensink, H.H.; Smalyukh, I.I. Hybrid molecular-colloidal liquid crystals. Science 2018, 360,
768–771. [CrossRef] [PubMed]

56. Mundoor, H.; Wu, J.S.; Wensink, H.H.; Smalyukh, I.I. Thermally reconfigurable monoclinic nematic colloidal fluids. Nature 2021,
590, 268–274. [CrossRef] [PubMed]

57. Selinger, J.-V. Interpretation of saddle-splay and the Oseen-Frank free energy in liquid crystals. Liq. Cryst. Rev. 2018, 6, 129–142.
[CrossRef]

58. Selinger, J.-V. Director deformations, geometric frustration, and modulated phases in liquid crystals. Annu. Rev. Condens. Matter
Phys. 2022, 13, 49–71. [CrossRef]

59. Lin, Y.-H.; Wang, Y.-J.; Reshetnyak, V. Liquid crystal lenses with tunable focal length. Liq. Cryst. Rev. 2018, 5, 111–143. [CrossRef]
60. Reshetnyak, V.Y.; Pinkevych, I.P.; Sluckin, T.J.; Urbas, A.M.; Evans, D.R. Effective medium theory for anisotropic media with

plasmonic core-shell nanoparticle inclusions. Eur. Phys. J. Plus 2018, 133, 373–393. [CrossRef]
61. Porta, M.; Lookman, T.; Saxena, A. Effects of criticality and disorder on piezoelectric properties of ferroelectrics. J. Phys. Condens.

Matter 2010, 22, 345902–345916. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1126/science.aap9359
https://www.ncbi.nlm.nih.gov/pubmed/29773746
https://doi.org/10.1038/s41586-021-03249-0
https://www.ncbi.nlm.nih.gov/pubmed/33568825
https://doi.org/10.1080/21680396.2019.1581103
https://doi.org/10.1146/annurev-conmatphys-031620-105712
https://doi.org/10.1080/21680396.2018.1440256
https://doi.org/10.1140/epjp/i2018-12226-4
https://doi.org/10.1088/0953-8984/22/34/345902

	Introduction 
	Model 
	Effective Free Energy 
	Scaled Free Energy Density 
	Scaled Parameters upon Varying Temperature 
	Scaled Parameters upon Varying Pressure 


	Phase Behavior 
	Conclusions 
	References

