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Abstract: Halide perovskite materials have attracted worldwide attention in the photovoltaic area
due to the rapid improvement in efficiency, from less than 4% in 2009 to 26.1% in 2023 with only a
nanometer lever photo-active layer. Meanwhile, this nova star found applications in many other
areas, such as light emitting, sensor, etc. This review started with the fundamentals of physics and
chemistry behind the excellent performance of halide perovskite materials for photovoltaic/light
emitting and the methods for preparing them. Then, it described the basic principles for solar
cells and light emitting devices. It summarized the strategies including nanotechnology to im-
prove the performance and the application of halide perovskite materials in these two areas: from
structure–property relation to how each component in the devices affects the overall performance.
Moreover, this review listed the challenges for the future applications of halide perovskite materials.
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1. Introduction

In recent years, halide perovskite materials have attracted strong and wide atten-
tion due to the excellent optical and electrical properties, such as a long free carrier
diffusion length, high charge carrier mobility, tunable band gap, high photolumines-
cence quantum yield (PLQY), and solution processability. They usually have the gen-
eral formula ABX3, where A is organic cation such as CH3NH3

+(MA), CH(NH2)2
+(FA),

C6H5(CH2)2NH3
+(PEA), or inorganic cation such as Cs+, Rb+; B is group IV element such

as Pb2+ or Sn2+; X is I−, Br−, Cl− ion [1–5]. The first report of halide perovskite material
in the field of optoelectronics was a halide perovskite sensitized solar cell developed by
Miyaska in 2009 [6]. Over a decade of development, the highest PCE in the halide per-
ovskite solar cells has reached 26.1% [7]. This PCE value is already close to the highest
value of silicon-based solar cell, which is over a half century in history [8]. In addition to
the successful application of halide perovskite materials in solar cells, various other appli-
cations expanded the magic of halide perovskite materials, such as light emitting diodes
(LEDs) [9–11], photodetectors [12–23], field effect transistors [24–26], gas sensors [27], resis-
tance switching memory devices [28–32], laser and light emitting devices [33], as shown
in Figure 1 [34,35]. Among these, halide perovskite materials-based light emitting devices
exhibit unprecedented performance with external quantum efficiencies (EQEs) exceeding
28.2% [36]. More interestingly, the light of all visible wavelengths (colors of light) can be
achieved simply by changing the halogen anions or the ratio of halogen anions. The high
performance of halide perovskite light emitting can be attributed to the inherent properties
of halide perovskite materials such as low defect density, high crystallinity, high absorption,
high PLQY, and efficient charge transport.
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1.1. Halide Perovskite Materials

In a typical halide perovskite type organic/inorganic hybrid material as shown in
Figure 2a, CH3NH3PbI3 (AMX3) crystal is an orthorhombic Pnma space group. The CB
(conduction band) and VB (valence band) are −3.93 eV and −5.43 eV with a band gap
of 1.5 eV, which means that halide perovskite can absorb light as long as 800 nm, as
shown in Figure 2b. CH3NH3PbI3 can have different crystal symmetries and give both
cubic and tetragonal crystals. Goldschmidt’s tolerance factor (t factor) can be used as
an empirical parameter to predict the stability and distortion of halide perovskite crystal
structures (AMX3).
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t = (RA + RX)/
√

2(RM + RX) (1)

RA, RM, and RX are the ionic radii for A, M, and X. When t = 1, the crystal structure has
the maximum stability and distortion is expected when t deviates from unity. Usually, the
cubic halide perovskite crystal formed when 0.9 < t < 1 [37]. A large M ion or small A ion
cause the t factor to vary between 0.7 and 0.9, resulting in orthorhombic, rhombohedral or
tetragonal structures. Ruddlesden–Popper phase (RP, layered halide perovskite) structures
were found when t is larger than unity [38,39].

1.2. Optical Properties of Halide Perovskites

The spatial configuration of an atom and its nature determine the electron valence
and optical transition probability in its molecules and crystal lattice. The electrons in the
atom will occupy the discontinuous energy state; therefore, it can produce some narrow
absorption and emission lines. However, in semiconductors, the electrons in the conduction
band and the holes in the valence band are separated by a forbidden band, which produces
an absorption and emission spectrum that is completely different from the atomic spectrum.

As the game changer in photovoltaics area, halide perovskite materials exhibit striking
excellence performance in light absorption (over 1.5 × 104/cm at 550 nm) [40,41], charge
transportation (1069 nm electron diffusion length and 1213 nm holes diffusion length) [41].
In halide perovskite materials, the symmetry and the lone-pair s orbitals enable the direct
band gap p-p transition, which usually is much stronger than the p-s transition in the other
materials for thin-film solar cells such as Cu(In,Ga)Se2(CIGS) and CdTe [42].

For semiconductor materials under irradiation such as halide perovskites, electrons
are excited from the VB to the CB, leaving holes in VB. Electrons and holes move freely
in CB and VB to form excitons. Moreover, the Bohr radius will extend over several lattice
constants in the plane of the inorganic halide perovskite. Thereby, the recombination
of electrons and holes produces a strong light emission [43]. The salient feature of this
system is that the exciton state has great binding energy and oscillator strength. For
example, the exciton binding energy of MAPbBr3 is 2.258 eV [44] and the exciton binding
energy of MAPbI3 is 1.633 eV [45], compared with the exciton binding energy of bulk
phase PbI2 of only 30 meV. Figure 3 shows the bandgap that embodies the different halide
perovskites as well as the transport layer and the metal electrodes. According to Ishihara’s
research, organic–inorganic halide perovskites have an organic–inorganic layered structure
and a dielectric confinement effect [46]. The lower dielectric constant of inert organic
molecules results in reduced screening of carriers in these layers and enhances Coulomb
interactions in the process of combining electron–hole pairs to form excitons. Therefore,
even at room temperature, this is the reason for achieving a strong photoluminescence
of the layered halide perovskite mixture. And halide perovskite materials have excellent
band gap tuneable properties. The wavelength of the emitted light can be easily changed
by adjusting the type and proportion of the halogens, and the excellent performance of
the visible band gap can be adjusted [47] or the different B elements can also change the
emission wavelength of the halide perovskite materials [48]. Zhang et al. found that for
halide perovskite crystals [49], there was also a red shift of the band gap caused by volume
compression under high pressure. Thus, the wavelength (nm) of the emitted light can also
be changed.
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1.3. Electrical Properties for Halide Perovskite Materials

The source of electrical properties of halide perovskite materials has been widely
debated. It is reported that the electrical properties of halide perovskite materials are
caused by the relative movement of halogen elements [50,51]. However, some studies have
reported different views by studying the ASnI3 halide perovskite, which is believed to
be caused by the transmission of electron charges [52–56]. The cause of the contradiction
that causes ASnX3 to have both conductivity and semiconducting properties is due to
differences in synthetic methods. It exhibits a metal p-type behaviour when synthesized
by a high-temperature melting method and it exhibits an n-type intrinsic semiconductor
property when used at a low-temperature synthesis [57,58].

However, both ASnX3 and APbX3 halide perovskites have problems with the stability
from the element Sn or Pb. For example, the halide perovskite structure changes and
becomes unstable when Sn2+ is oxidized to Sn4+, which also has a great influence on the
performance of the devices. Therefore, different preparation methods can also prepare
lead-based halide perovskites with different electrical properties [59–61]. As a result, the
halide perovskite can form a certain charging defect by continuous phase transformation
and utilizing the displacement of the lattice atom during the phase transformation. Due
to the charged defect, the electrostatic potential can be generated without changing the
stoichiometry of the material, thereby affecting the carrier density. Thus, we can prepare the
halide perovskite of the crystal structure and electrical properties based on the requirements.
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1.4. Synthesis of Halide Perovskite Materials
1.4.1. Solution Method

One-step method. Generally, the salt solution of the precursor dissolves in a solvent
such as DMF or DMSO, and then crystallizes by evaporation of the solvent to obtain halide
perovskite crystals. Among them, the ion concentration and the evaporation rate have a
great influence on the formation of crystals. Bao et al. found that adding different additives
to the halide perovskite precursor solution can control the rate of crystallization of halide
perovskite [62]. Zhang et al. found that lead acetate can increase the crystallization rate
of halide perovskite with solid state crystallization using a non-halide lead source (lead
acetate) instead of lead chloride or iodide [63].

Two-step method. In the two-step method, a substance such as lead halide having
a small solubility is generally dissolved in a polar solvent such as DMSO, and then
spin-coated, vapor-deposited or immersed in a substance containing a Cesium halide.
Kim et al. pre-coated lead iodide in DMSO, and then excess DMSO was removed to form
a film having a porous morphology and an unusual crystal orientation [64]. PbI2 was
completely converted to MAPbI3 by the addition of subsequent MAI (Figure 4b).

1.4.2. Hot Injection Crystallization

The hot injection crystallization method is the primary method for preparing high-
brightness halide perovskite materials, and the halide perovskite nanocrystallites are
obtained by injecting a halide perovskite precursor at a high temperature and then rapidly
cooling the solution to make the solution supersaturated, as shown in Figure 4c. According
to a report, Song pioneered the use of hot injection to prepare a halide perovskite quantum
dot with an adjustable band gap [47]. Protesescu et al. also successfully prepared a wide-
gamut halide perovskite in the visible range by this method [65]. Shamsi also relied on this
method to prepare quantum-limited CsPbBr3 nanosheets [66]. Moreover, the doping of
halide perovskite can be achieved subtly using the hot injection method. Parobek success-
fully formed the intermediate structure by thermal injection before the thermal injection
of the Cs precursor, and successfully synthesized the Mn-doped CsPbBr3 nanocrystals.
It has been reported that the use of hot injection can also achieve the protection of the
package of halide perovskite nanosheets [67]. Zhong et al. used the hot injection method to
synthesize CsPbBr3@SiO2 core-shell nanoparticles, which can maintain long-term stability
in water [68].

1.4.3. Anti-Solvent Crystallization

Generally (in Figure 4d), the anti-solvent crystallization method dissolves the halide
perovskite precursor in a polar solvent such as DMF and DMSO, and then a non-polar poor
solvent was added, such as hexane or toluene. According to a report, Michele dissolved
the halide perovskite precursor in dimethyl sulfoxide (DMSO), then added diethyl ether
(DE) to act as an anti-solvent, and successfully prepared Cs4PbBr6 crystal [69]. However,
toluene and chloroform as anti-solvents are generally more toxic. Zhang et al. used
methoxybenzene as an anti-solvent to successfully prepare a halide perovskite solar cell
with an efficiency of up to 19% [70].

1.4.4. Vapor Deposition

In the vapor deposition method shown in Figure 4e, a halide perovskite precursor in
solution can be spin-coated on a substrate such as FTO glass, and then methylamine or the
similar solvent is vaporized at the other end to react with a halide perovskite precursor
on the substrate to form a halide perovskite crystal. Liu et al. first synthesized halide
perovskites and made them into a solar cell with 15% efficiency by vapor deposition [71].
Matthew used a two-step method to synthesize halide perovskite, wherein a layer of metal
halides (PbCl2 and PbI2) was deposited , followed by adding ammonium halide salts (such
as methyl ammonium iodide, formazan bromide) in a dedicated area [72]. It was converted
to a gas phase and then deposited on a substrate downstream of another region of the tube
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furnace. The halide perovskite phase synthesized by this method was greatly improved
compared with the conventional stability. Tavakoil et al. synthesized halide perovskite by
a one-step deposition on a c-TiO2-coated FTO glass substrate [73]. Tong et al. prepared
a two-phase all-inorganic halide perovskite composite CsPbBr3-CsPb2Br5 film capable of
functioning as a photodetector by vapor deposition using a controlled excess of PbBr2 [74].
A method of gas phase deposition preparation by Lin substituted a part of 3D-MAPbI3
with 2D-(BA)2(MA)n−1PbnI3n+1 halide perovskite sheet to replace MA(CH3NH3) with a
molecule of BA [75].
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2.1. Performance of Photovoltaic Devices 

In the 21st century, clean, low cost and sustainable energy is the most important sci-
entific and technical challenge [78]. Photovoltaics (PV, or solar cells) are ideal energy con-
version processes which can meet these requirements. Back in 1954 in Bell Lab, the first 
PV devices based on crystalline silicon (c-Si) were invented. Currently, most of the com-
mercially available solar cells (PVs) are inorganic silicon semiconductors, either single 
crystal or polycrystalline silicon. 
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Figure 4. (a) During the solution coating process, solvent evaporation occurs but the excess organic
component remains within the film, the removal of which by following thermal annealing leads
to the fully crystallized perovskite thin film [63]. (b) A schematic diagram of MET representing
each procedure and optical images of the resulting films [64]. (c) Schematic illustration of the
reaction system and process for LARP technique [76]. (d) Illustration for the formation process of
different CsPbX3 (X = Cl, Br, I) nanocrystals mediated by organic acid and amine ligands at room
temperature. Hexanoic acid and octylamine for spherical quantum dots; oleic acid and dodecylamine
for nanocubes; acetate acid and dodecylamine for nanorods; oleic acid and octylamine for few-unit-
cell-thick nanoplatelets [77]. (e) Diagram of the HCVD furnace and MAI deposition onto metal halide
seeded substrates [72].

2. Halide Perovskite for Solar Cells
2.1. Performance of Photovoltaic Devices

In the 21st century, clean, low cost and sustainable energy is the most important
scientific and technical challenge [78]. Photovoltaics (PV, or solar cells) are ideal energy
conversion processes which can meet these requirements. Back in 1954 in Bell Lab, the
first PV devices based on crystalline silicon (c-Si) were invented. Currently, most of the
commercially available solar cells (PVs) are inorganic silicon semiconductors, either single
crystal or polycrystalline silicon.

Short circuit current density (Jsc, Figure 5): When the solar cell is short circuited
under illumination, Jsc is the photo-current per unit area (mA/cm2). Theoretically, Jsc can
be calculated from the incident photon-to-current efficiency (IPCE) spectrum. The light
intensity, light absorption, and injection efficiency can affect Jsc.
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Open circuit voltage (Voc, Figure 5): Under the illumination of light with the circuit
open, the potential between two electrodes in the solar cells/photovoltaics devices is
defined as the Voc. In theory, the Voc can be as high as the difference between the semicon-
ductor’s Fermi level and the potential of the hole (vacancy) conductor. It is measured when
the current through the solar cells is zero volt (an open circuit).

Fill factor (FF, Figure 5): The FF is defined as the ratio of the maximum power output
per unit area (in percentage %) to the product of Voc and Jsc, which measures the ideality of
the solar cells. High series resistance (or internal resistance) results in lower fill factor and
correspondingly decreased overall efficiency.

Incident photon to current efficiency (IPCE): The ratio of Ne/Np is defined as the
monochromatic incident photon-to-electron conversion efficiency (IPCE), in which Ne is
the number of produced electrons in the external circuit. And Np is the number of incident
photons. λ is the wavelength of the incident light in Equation (2), while the intensity for the
incident light is Pin. The units for Jsc, λ, and Φin are mA/cm2, nm, and W/m2, respectively.

IPCE = 1240·Jsc/(λ·Pin) (2)

Equation (3) shows the relation between IPCE, LHE (light harvesting efficiency),
ηci (charge injection efficiency), and ηcc (charge collection efficiency on back contact):

IPCE = LHE·ηci·ηcc (3)

Solar energy to electricity conversion efficiency (η): As the most important parameter,
the overall solar energy to electricity conversion efficiency is shown in Equation (4), which
is the ratio of the maximum output of the cell divided by the power of the incident light.
Equation (4) shows the calculation of the η from Jsc, Voc, FF, and the intensity of the incident
light (Pin).

η = Popt/Pin = (FF × Isc × Voc)/Pin (4)

The properties of materials change significantly from bulk into nanoscale, with signifi-
cant improvement in surface area, charge transport, etc. due to the quantum effect.
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2.2. Rising of Halide Perovskite Solar Cells
2.2.1. Dye Sensitized Solar Cell (DSSC) to Halide Perovskite Solar Cell

As the first generation of solar cells, silicon solar cells exhibit over 20% power conver-
sion efficiencies (PCEs). However, the cost for production in large scale is still high due to
the requirements for the processing conditions, which increase the cost. Thus, the needs
for developing low cost and new types of solar cells become more and more important,
such as solar cells based on thin film organic, inorganic or hybrid materials [40]. CdTe and
CuInGaSe (CIGS) are considered as second generation thin film solar cells with PCE over
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19.6% per cm2 [79]. However, both CdTe and CIGS solar cells have difficulties in large-scale
production (requirement for ultra-high vacuum) and the use of expensive elements [80].

Dye-sensitized solar cells (DSSCs): Usually, mesoscopic solar cells have a low cost and
are easy to fabricate, which are good candidates as low cost next generation PV devices.
DSSC is a typical mesoscopic solar cell. In a DSSC, dyes as light absorber were anchored
on a nanostructured TiO2 electron conductor, I3

− ions in electrolytes were used as redox
shuttle for dye regeneration, and a counter electrode such as Pt was used to collect electrons.
In the past 25 years, efforts have been made, such as the synthesis of dyes, improvement
for the electron conductor, redox shuttles, fundamental understanding of the working
principles, and many other aspects for DSSCs. DSSCs with over 13.0% PCE can be easily
achieved at lab scale and achieved 10% in modules [81,82]. The description, SEM image,
and optical image of DSSC are shown in Figure 6 [83].
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Theoretically, voltage of the solar cell (Voc) is determined by the difference between the
Fermi level of TiO2 (where dyes anchored) and the Nernst potential of the redox shuttles
in the electrolytes [84,85]. However, DSSCs are still far away from large scale applica-
tion, which arises from the evaporation and corrosion of liquid electrolytes. Although
DSSC based on solid hole transport material (HTM) has solved the problem of liquid elec-
trolytes, the efficiency is still low compared with liquid electrolytes and with silicon-based
solar cells.

Optical-electronic process and charge dynamic in halide perovskite solar cells: Halide
perovskite solar cells are based on DSSCs. Usually, halide perovskite solar cells have a
sandwich structure like DSSC as shown in Figure 7a. A layer of TiO2 on FTO glass is used
as the photo-electrode. CH3NH3PbI3 is spin-coated or dip-coated as the photo-active layer
(light absorber). Then, the HTM layer such as spiro-OMeTAD with additives is spin-coated.
Finally, gold, silver or other inert metals are thermo-coated (such as CVD) as the back
electrode.

Figure 7b is a typical energy diagram for halide perovskite solar cells, which is similar
to DSSCs: excitation, ejection, regeneration, recombination, and migration as in DSSCs.

Figure 7c shows the kinetic diagram for halide perovskite solar cells MPbX3
(M = CH3NH3

+
, Cs+

, FA+ or a mixture; X = I−, Br−, Cl−, SCN− or a mixture) [39,86–94].
Light with photons of energy greater than the band gap are absorbed by active layer and
the electronic state changes from the ground state (A) to the excited state (A*, hot electrons).
The lifetime for these hot electrons is on the order of nanoseconds. The hot electrons can
be transferred in femtoseconds to the conduction band of the working electrode, usually
comprising metal oxides such as TiO2, ZnO, and other materials with the matching band.
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It takes up to seconds for the electrons to be transported in the metal oxides. On the other
hand, the hot electrons can recombine with the hole, which in turn cause the low efficiency.

In 2009, Kojima reported the first application of hybrid organic–inorganic solar cells
based on halide perovskite CH3NH3PbI3 as the photon active layer with an efficiency
of 3.8% [6]. In 2012, after three years, the efficiency reached 10.9% [95]. Two Nature
publications were reported separately by Dr. Gräetzel and Dr. Snaith with over 15% efficiency
in 2013 [71,91]. In late 2014, the efficiency for halide perovskite solar cells reached
about 20% [96]. Since then, halide perovskite solar cells attracted worldwide attention in
the photovoltaic community.
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2.2.2. Progress in Halide Perovskite Solar Cell

3-D structure perovskite solar cell: Usually, a layer of mesoporous TiO2 particle is
used as the photo-anode as shown Figure 8 [89,91,95,97,98]. This mesoporous 3D structure
plays the role of electron transport/buffer layer, a structure supporting layer and reflection
layer. ZnO can be used as a photo-anode, as well [99]. It has been reported to have an
efficiency of over 11% [100]. Al2O3 can also be used as the photo-anode with an efficiency of
8.3% [101]. However, TiO2 is still the best electron transport material for halide perovskite
solar cells. Thambidurai added Ba(OH)2 as an additive to modify mesoporous TiO2 [102].
The Ba(OH)2 modification altered the conduction band of mesoporous TiO2, resulting
in better coordination with the halide perovskite level, reduced carrier recombination,
enhanced optical absorption, and electron transport. Singh found that the introduction of
an alkali metal dopant in mesoporous TiO2 can effectively regulate electron conductivity
and improve the charge extraction process by balancing oxygen vacancies as a non-radiative
recombination center [103]. In addition, as shown in Figure 9, the sulfate bridge (SO4

2−) is
grafted onto the surface of the K-doped mesoporous titania to provide seamless integration
of the absorber and the electron transport layer, accelerating the overall transport kinetics.
Potassium doping significantly affects the nucleation of the halide perovskite layer to
produce a high density film with faceted crystallites.
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Figure 9. Schematic illustration of doped TiO2 mesoporous layer and the surface states bonding with
ETL and halide perovskite [103].

Yang proposed a mechanism for the preparation of halide perovskite solar cells based
on TiO2 nanorod arrays, revealing the intrinsic relationship between the precursor concen-
tration and the crystallite growth of the halide perovskite film prepared by the anti-solvent
quenching method [104].

Planar structure halide perovskite solar cells: Planar structure halide perovskite solar
cells do not have a thick electron transport layer such as mesoporous structure TiO2.
However, a thin layer of oxides (usually TiO2 is less than 20 nm) is still used to block the
recombination of photo-electrons [71,96]. Compact TiO2 is sprayed or spin-coated on TCO
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(transparent conductive oxide, such as FTO or ITO). A planar structure halide perovskite
solar cell is shown in Figure 10 and no thick 3D oxides are used in the solar cell.
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In Figure 11, Kogo prepared a halide perovskite solar cell using an ultra-thin amor-
phous TiOx as a hole blocking layer in combination with brookite-TiO2 prepared below
150 ◦C [105]. Consisting of a TiOx/brookite-TiO2 double layer electron collector, the halide
perovskite solar cell has a high efficiency of 21.6% and a high open circuit voltage and
fill factor of 1.18 V and 0.83, respectively. Liu et al. used high crystallinity Ni-doped
rutile TiO2 as the carbon-based planar heterojunction PSC of the electron transport layer
(ETL), and simultaneously introduces copper phthalocyanine (CuPc) as the hole transport
layer (HTL) (Figure 12) [106]. The doping of Ni can shift the Fermi level of ETL upward
and correspondingly increased the charge mobility in TiO2, thereby enhancing charge
transport and extraction. The excellent properties of Ni-doped TiO2 in promoting charge
transfer and suppressing carrier recombination were disclosed. In the study of pure rutile
TiO2, Wang used rutile and anatase TiO2 electron transport layer (ETL) to study crystalline
phase-dependent charge collection to fabricate solar cells. The rutile TiO2 was found to
enhance electron transport to the FTO due to the better contact between the rutile TiO2
and the halide perovskite particles and a smaller trap density [107]. It exhibited better
electrical conductivity and improved interfacial contact with the perovskite layer. The
highest efficiency achieved using the rutile TiO2 electron transport layer was 20.9%.

Kaul analyzed the potential uses of three types of halide perovskite materials in
sensor and photovoltaic applications (Figure 13) [108]. These include two-dimensional
halide perovskites (BA2MA3Pb4I13, 2DP), traditional three-dimensional halide per-
ovskites (MAPbI3, 3DP-MA), and the more recently studied triple cation, mixed halide
three-dimensional halide perovskites (Cs0.05FA0.79MA0.16PbI2.45, 3DP-TC). Reducing the
dimensionality of 3DP to create two-dimensional halide perovskites (2DPs) represents
a significant development [109,110]. Within this arrangement, organic spacers are sand-
wiched between inorganic sheets, where the general formula for 2DPs is commonly repre-
sented by (A′)m(A)n−1BnX3n+1; here A′ denotes a bulky organic cation, such as aliphatic
or aromatic alkylammonium, serving as a spacer between the inorganic sheets, and n
represents the number of inorganic layers in the structure [111]. The study explored their
photovoltaic emission properties and integrated them into an n-i-p solar cell architecture,
revealing significant differences in performance metrics such as Voc, Jsc, and FF among the
three types.

Hole transport materials (HTM): In a typical HTM layer of halide perovskite solar cell,
spiro-OMeTAD is doped by lithium bis-trifluoromethane sulfonamide, 4-tert-butylpyridine,
and other additives. Modifications of spiro-OMeTAD were carried out by a large amount
of research groups. The methoxy substituents of spiro-OMeTAD were reported to enhance
FF and PCE [112]. The dicationic salt for spiro-OMeTAD was discovered to improve
hole conductivity [113]. Many other organic HTM materials, such as carbazole-based
materials [114], thiophene-based materials [101], quinolizino acridine-based materials [115],
and pyrene arylamine type materials [116] were also reported as alternatives of spiro-
OMeTAD with efficiencies of 9.8%, 13.8%, 12.8%, and 12.4%, respectively. It is worth noting
that Jeon synthesized a ruthenium-capped hole transport material with a fine-tuning level
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and a high glass transition temperature (Figure 14) [117]. Photovoltaic devices (under
reverse scanning) based on this material achieved an efficiency of 23.2%. Moreover, the
resulting device showed better thermal stability than devices with spiro-OMeTAD as HTM,
maintaining its initial performance after thermal annealing at 60 ◦C, which approximately
95% of the time exceeds 500 hrs.
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Figure 11. (a) Cross-sectional SEM image for CH3NH3PbI3 halide perovskite solar cells with TiOx

(thickness ∼8 nm)/brookite TiO2 as electron collector. (b) Dependence of PCE measured by J-V
curves with 1.2 V→−0.1 V voltage scan direction on thickness of TiOx. J-V curves of solar cells with
brookite TiO2 (blue), TiOx (thickness ∼8 nm, green), and TiOx/brookite TiO2 (red) electron collectors
measured (c) under 1 sun illumination and (d) in the dark. Forward (−0.1 V→ 1.2 V) and backward
(1.2 V→−0.1 V) scans are indicated as solid and dashed lines, respectively. (e) J-V curve and (f) EQE
spectrum of the best solar cells with TiOx (thickness ∼8 nm)/brookite TiO2 electron collector stored
in dry air for 2 days [105].

A few years later, inorganic materials-based HTM for halide perovskite solar cells
were reported, such as CuI [118] and CuSCN [119] with efficiencies of 6.0% and 12.4%, re-
spectively. It is worth noting that when Arora used copper thiocyanate (CuSCN) as the hole
extraction layer, the stability efficiency of PSC exceeds 20% [120]. The use of a rapid solvent
removal method enables compact formation and facilitates carrier extraction and collection.
PSC exhibits high thermal stability under long-term heating, but their operational stability
is still poor. It is believed that this instability stemmed from the potential-induced degrada-
tion of CuSCN/Au contact. After a conductive reduced graphene oxide spacer was added
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between CuSCN and gold, this keeps the PSC at the maximum power point and maintains
>95% of its initial efficiency after aging for 1000 h at full solar intensity at 60 ◦C.
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Figure 12. (a) Schematic illustration of the solution-processed method to prepare the Ni-doped
TiO2 ETLs, including a CBD process at 70 ◦C and a post-annealing process at 500 ◦C. (b) Schematic
illustration and (c) a high-resolution cross-sectional SEM image of the carbon-based planar-structured
PSC. (d) Energy level diagram of the as-prepared PSCs. (e) XRD patterns of the pristine TiO2 and
Ni(0.01):TiO2 deposited on FTO substrates [106].

Although Ma Tingli (9%) [121], Meng Qingbo (10.5%) [122], and Han Hongwei et al.
(12.8%) [123] reported the HTM free halide perovskite solar cells; however, the highest
efficiency record for halide perovskite solar cells was still achieved by spiro-OMeTAD-
based HTM.

Lead free halide perovskite solar cells: Lead is toxic and causes problems in both
environment and health. Thus, the requirement for lead free halide perovskite solar cells
have been proposed. Tin, which is in the same group as lead, has enhanced absorption
in red light and NIR (near infrared), and it has been used to replace the lead in the halide
perovskite solar cells. However, the efficiency is low compared with lead-based solar
cells [124,125]. Reports show that the reasons for the low efficiency are due to the decreased
absorption in visible light and shift of valence band [126].

Engineering for halide perovskite crystals: The morphology and quality of the halide
perovskite material crystal is the key for high efficiency halide perovskite solar cells. There
are many factors that can affect the crystallinity quality of halide perovskite materials,
such as spin-coating temperature and speed [127], concentration of the precursor [128],
annealing temperature and time [129,130], moisture [14], and solvents [131], which in turn
affect the efficiency of halide perovskite solar cells. Different types of halide perovskite
crystals can be synthesized, such as cubic particles, hexagonal particles, and nanorods [132].
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In Table 1, the studies that optimize the crystallinity quality of halide perovskite materials
have been summarized.
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a PCE of ~16.49%, and (f) 2DP absorber yielding a PCE of ~3.33% [108].
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Figure 14. Optical, electrochemical, and thermal characteristic of HTMs. (a,b) Chemical structures of
spiro-OMeTAD (a) and DM (b). (c) Ultraviolet-visible absorption spectra of spiro-OMeTAD and DM
in the solid state. (d) Cyclic voltammograms (CVs) of spiro-OMeTAD and DM. The downward arrows
indicate the first peak anodic potentials, and the upward arrows indicate the first peak cathodic
potentials. (e) DSC curves of spiro-OMeTAD and DM. The vertical dashed lines indicate the glass
transition temperature [117].
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Table 1. Methods to change the crystallinity of halide perovskite materials.

Methods Key Conditions η, Voc, Jsc, FF Ref.

Annealing, pl 1 step, 90 ◦C, 450–500 nm pkt 11.4, 0.89, 20.3, 0.64 [133]
Annealing, pl 2 steps, 150 ◦C, 60 min 12, 0.96, 18.05, 0.69 [129]
MAI conc. po 2 steps spin, cubic 17, 1.06, 21.6, 0.74 [128]

Substr. temp. po 1 step, 80 ◦C, 150 ◦C, 45 min 5.4, 1.24, 7.8, 0.56 [127]
Annealing, po, pl 1 step, 130 ◦C, short, fast 13.5, 0.94, 21.5, 0.69 [130]

Moisture, pl 1 step, ann. = 90 ◦C, hum. = 35% 17.1, 1.05, 20.3, 0.80 [14]
Solvent, pl 1 step, 20%wt, DMF: r-BL = 97:3 (v/v) 8.84, 0.92, 8.74, 0.76 [131]
Solvent, pl 2 steps, DMSO 100 ◦C, 1 h, 650 nm pkt 15.6, 0.96, 21.0, 0.76 [134]
Solvent, po 2 steps, DMSO, Toluene 16.4, 1.1, 19.58, 0.76 [135]
Gas/solid 2 steps, HTM free 10.6, 0.82, 18.3, 0.71 [136]
Annealing 1 step, 150 ◦C, short, fast 21.4, 1.14, 23.2, 0.797 [137]

Solvent 2 steps, DMF/DMSO = 4:1, toluene 20.1, 1.114, 23.34, 77.31 [138]
Solvent 1 step, 100 ◦C, 90 min, toluene 18.9, 1.06, 22.65, 76.3 [139]
Solvent 1 step, DMF/DMSO = 4:1 18.5, 1.07, 23.6, 74.9 [140]

Annealing 1 step, DMF/DMSO = 4:1, 100 ◦C, 1 h 17.46, 1.073, 22.41, 0.726 [106]

Solvent 1 step, DMF/DMSO = 4:1, 100 ◦C,
80 min chlorobenzene 21.4, 1.169, 23.91, 76.5 [141]

Solvent 2 steps, 100 ◦C, 5 min, isopropanol 14.6, 0.98, 21.9, 0.685 [142]
Solvent 2 steps, 65 ◦C, 2 min, 100 ◦C, 5 min 20.4, 1.1, 23.6, 0.79 [143]

Annealing 1 step, DMF/DMSO = 4:1, 130 ◦C, 60 min 20.93, 1.16, 23.65, 0.763 [144]
Annealing 1 step, 100 ◦C, 90 min 17.2, 1.1, 20.3, 0.761 [145]
Annealing 2 steps, 100 ◦C, 1 h 17.53, 1.09, 20.81, 77.51 [102]
Annealing 2 steps, 100 ◦C, 10 min 20.9, 1.15, 23.22, 77.62 [107]
Annealing 1 step, 105 ◦C, 10 min 21.6, 1.18, 22.5, 0.83 [105]

With the yearly progress of an increase in efficiency (Table 2), many efforts have been
made to improve the current density (Jsc), open circuit voltage (Voc), fill factor (FF), and
efficiency by the crystals engineering for halide perovskite materials and replacement of
the costly parts in the solar cells, such as the noble gold or silver back electrode and hole
transport materials (HTMs).

Table 2. Summary of the important progress of efficiency (η) records for halide perovskite solar cells
in the past 15 years.

Year Event Others Ref.

2009.04 1st cell η = 3.8% [6]
2012.11 Al2O3, over 10% η = 10.9% [95]
2013.02 CNPB, PDI Voc = 1.3 V [146]
2013.05 Rutile TiO2, NW rod η = 9.4% [97]
2013.07 Eff. Over 15% 2 steps [91]

ZrO2 η = 10.8% [147]
2013.09 Vapor deposition η = 15.4% [71]
2013.10 Over 1 µm charge diffusion Abs. Coe. = 57 k/cm [41]
2013.12 HTM:CuI stable than spiro [118]

Graphene η = 15.6% [148]
2014.01 Flexible, low temperature η = 11.5% [149]

NH2CH = NH2PbI3 η = 7.5% [119]
2014.02 HTM free η = 10.5% [122]

Additive η = 11.8% [62]
ZnO η = 4.8% [99]

Graphene QD η = 10.2% [150]
2014.03 TiCl4, low temp., rutile η = 13.7% [98]
2014.05 Pb free, SnI2 η = 5.73% [124]

HTM:CuSCN η = 12.4% [119]
2014.08 Y:TiO2 η = 19.4% [96]
2014.12 TiO2 NWs, rutile η = 11.7% [89]
2015.01 175 µm diffusion length 1 cm single crystal [59]
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Table 2. Cont.

Year Event Others Ref.

2015.02 ZnO + 3-aminopropanoic acid η = 15.67% [151]
2015.03 TiO2 + ZrO2 + NiO + C η = 14.9%, no spiro [152]
2015.05 FAPbI3 η = 20.2% [86]

CuSCN, Inverted Planar, C60 η = 16.6% [153]
2017.06 Iodide management η = 22.1% [154]
2017.10 CsPbI3 quantum dot η = 13.43% [155]
2017.11 HTM:CuSCN η = 20.4% [120]
2017.12 HTM:(Ta-WOx)/conjugated polymer η = 21.2% [156]
2018.07 The highest efficiency of F-PSCs η = 22.7% [157]

No MA and all inorganic η = 20.35% [158]
The highest efficiency of 2D PSC η = 16.92% [159]
Laminated battery:Cu(In,Ga)Se2 η = 22.43% [160]

CsPbI2Br high efficiency η = 14.78% [161]
2019.01 Eu3+-Eu2+ ion redox η = 21.52% [162]
2019.03 HTM: poly(3-hexylthiophene) η = 22.7% [8]
2019.04 Reach the Shockley-Queisse limit Voc = 1.18 V [163]

Open circuit voltage record Voc = 1.31 V [164]
Highest efficiency of Rutile TiO2 Electron

Transport Layer η = 20.9% [107]

2019.05 The highest efficiency of all inorganic perovskite η = 22.6% [165]
2019.07 Ionic liquid additives long-term stability [166]
2020.04 Narrow-bandgap mixed lead-tin η = 24.2% [167]
2020.09 p-n junction and in chemical-type metallization [168]
2021.01 CsPbI3 η = 20.37% [169]
2021.03 Bismuth iodide interfacial layer η = 24.07% [170]
2021.06 (FAPbI3)0.85(MAPbBr3)0.15 η = 25.8% [171]
2021.08 Coupling Cl-bonded SnO2 η = 22.6% [172]
2022.08 NIR polymer DTBTI-based BHJ η = 24.27% [173]
2022.12 4-Terminal inorganic perovskite/organic tandem η = 22.34% [174]
2023.11 1-(phenylsulfonyl)pyrrole η = 26.1% [7]

Stability of halide perovskite solar cells: Another big issue is the stability of halide
perovskite solar cells. Halide perovskite materials can be destroyed by the moisture and the
HTM based on spiro-OMeTAD can be oxidized easily in the air. Table 3 shows the recent
progress to improve the stability of halide perovskite solar cells.

Table 3. Halide perovskite solar cells and the stability.

Year Method η/Time (h)/Efficiency
Residue (%) Ref.

Pero.
2016.04 Scraper coating/copper as cathode 18.3/720/~90 [175]

2016.09 Introduction of phenethyl ammonium iodide
(PEAI) 17.7/384/90 [176]

2017.02 K-doped CsPbI2Br 10/120/80 [177]
2017.02 Isomers—pure double PCBM assist 19.9/600/96 [178]
2017.05 Add thiosemicarbazone 19.19/500/80 [179]
2017.06 2D/3D multidimensional interface 14.6/10,000/~75 [180]
2017.08 2D-3D heterojunction 17.5/1000/80 [181]
2018.01 SnO2/FAMACs/EH44/MoOx/Al architecture 22.7/1000/94 [182]
2019.03 HTAB treatment 22.7/1370/95 [8]
2019.05 Low poly-SiO2 in situ coated 21.5/5200/80 [183]
2019.05 In situ passivation of phenethyl iodide 23.32/500/80 [163]

2019.06 Linear alkyl ammonium bromide treatment 22.6/ (Wide band
gap) [165]

2019.08 PbSO4, Pb3(PO4)2 in situ passivation 22.1/1200/96.8 [184]
2021.08 Coupling Cl-bonded SnO2 25.8/500/90 [172]
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Table 3. Cont.

Year Method η/Time (h)/Efficiency
Residue (%) Ref.

2022.03 Ionic liquid butylammonium acetate 20.1/700/79.5 [185]
2022.11 Precursor engineering 21.26/300/90 [186]

2023.06 4,4′-cyclohexylbis[N,N-bis(4-
methylphenyl)aniline] 23.15/720/90 [187]

HTM

2016.01 Crosslinkable silane molecules bonded to
fullerenes 19.5/720/90 [188]

2016.12 Using CuGaO2 18.5/720/83 [189]
2017.11 Use copper thiocyanate 20/1000/95 [120]
2018.07 End cap screw-OMeTAD 22.6/500/95 [117]
2019.07 Spiro-OMeTAD layer using MoS2 20.18/300/85 [190]
2022.09 Solution Processed Ternary Tin (II) Alloy 23.2/1500/85 [191]
2022.10 Use PFBTI as the HTM deliver 22.2/500/80 [192]
2023.06 2% Cu@ZnCo2O4 15.79/1800/90 [193]

ETL
2016.12 Doped n-type fullerene layer 16/3400/66 [194]
2017.02 Chlorinated TiO2 20.1/500/97.5 [195]
2021.11 Infrared radiation annealing 22/1008/92 [196]
2022.09 TAC-doped SnO2 21.58/1000/88 [197]
2023.04 pre-buried 3-aminopropionic acid hydroiodide 23.36/720/92 [198]

Replacement and Yttrium doped TiO2: It has been reported that the work function of
TiO2 ETL can be reduced by Y doping, and therefore enhanced the electron extraction and
transport channel. Y-doped TiO2 devices exhibited faster photo-current decay than that of
reference devices in the device [96].

Ni doped Fe2O3: The addition of nickel (Ni) dopants can enhance the electron conduc-
tion and induce a downward shift of the CB minimum for α-Fe2O3. In turn, it facilitated
electrons injection and transfer from the CB of halide perovskite materials. Thus, a substan-
tial reduction in the charge accumulation at the halide perovskite material/ETL interface
makes the solar cells much less sensitive to scanning rate and scan direction during the
efficiency measurement, to be specifically the lower hysteresis. Meanwhile, solar cells
with good stability when exposed to air and high levels of ultraviolet (UV) light can
be achieved [199].

2.3. Challenges in Halide Perovskite Solar Cells
2.3.1. Stability of Halide Perovskite and Spiro-OMeTAD

Amazing progresses have been made for halide perovskite solar cells; however, the
dark sides cannot be ignored such as the stability [200]. The main barrier for the com-
mercialization of halide perovskite solar cells is the decomposition of halide perovskite
materials when exposed to air [201–203]. There are efforts to improve the stability of the
halide perovskite materials, such as using FAPbI3 to replace MAPbI3 [92,204] and chang-
ing the morphology of halide perovskite materials [205]. The decomposition of halide
perovskite materials is shown in Figure 15 [201].

2.3.2. Light Harvesting vs. Charge Transport

To obtain high photo-current (Jsc), a thick layer of photo-active materials is required to
harvest as much light as possible. On the other hand, it requires fast charge transport and
a short diffusion distance to avoid the recombination of photo-electrons and holes. Both
the Voc and FF drop when the thickness is over 600 nm for halide perovskite solar cells
due to the increase in dark current and electron transport resistance [40]. The optimized
thickness for light-active layer in perovskite solar cells is between 400 and 600 nm to avoid
the drop in Voc and FF [91]. In the halide perovskite solar cells based on mesoporous TiO2
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films, filling the highly convoluted porous channels of halide perovskite CH3NH3PbX3
solar cells is very difficult [206]. Meanwhile, the light-harvesting layer is quite thin for high
efficiency (mainly photo-current) due to the electron diffusion length in halide perovskite
CH3NH3PbI3, which is about 100 nm [41]. It has been well studied that if the mesoporous
TiO2 is over 600 nm, there will be a significant drop in Voc and FF [40]. Thus, the optimized
thickness for mesoporous TiO2 layer is between 400 and 600 nm [91,115,124,150].
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2.3.3. Even Lower Cost for HTM and Counter Electrode

The use of costly complex organics in the hole transport layer (HTM) can be substituted
with more affordable inorganic materials to reduce expenses [118,119]. Furthermore, the
organic compounds in HTM decompose in UV light and high temperature.

In order to obtain the attainable Voc, expensive metals such as gold [91,101,150] and
silver [71,207] with low chemical potential and high work function are commonly used as
the counter electrode. Thermal evaporation (such as PVD) of gold is a costly and wasteful
process since only a small portion of gold is deposited onto the solar cells. Thus, replacing
gold with cheaper elements for halide perovskite solar cells while keeping the high Voc is
critical to reduce the cost for halide perovskite solar cells.

3. Halide Perovskite for Light Emitting
3.1. Basics of Light Emitting

An LED is a device that radiates visible light when electrons and holes recombine,
and is a diode composed of a p-type and an n-type semiconductor. The principle of light
emission is that the anode is injected into the cavity and the cathode is injected with
electrons. The holes and electrons are respectively passed through the transport layer
and finally the exciton light is formed in the light emitting layer [6]. In the LED, the PN
junction is applied with an electric field luminescence, and as electrons cross from the N
region and recombine with the holes present in the P region, the charge carriers recombine
in the forward biased PN junction. The free electrons are in the conduction band of the
energy level, and the holes are in the valence band energy level. Therefore, the energy level
of the holes is lower than the energy level of the electrons. Some of the energy must be
dissipated to recombine electrons and holes. This energy is emitted in the form of heat and
light. It releases excitons with an energy of hν. Additionally, the energy corresponds to the
band gap energy Eg of the semiconductor material, and the relationship of the emission
wavelength λ(nm) is:

λ = 1239.6/Eg (5)

In the study of LED devices, external quantum efficiency (EQE) is a very critical
parameter. When the photon is incident on the surface of the halide perovskite material,
part of the photons will excite the halide perovskite material. At the same time,
electron–hole pairs are generated, thereby forming a current which results in arranging
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the ratio of the collected electrons to the number of all incident photons. Its value can be
calculated by the formula (Equation (6)):

EQE = IQE ∗ η0 (6)

where IQE is the internal quantum efficiency and η0 is the ratio of photons emitted to
free space.

Other parameters for LED devices, such as power efficiency (PE), current efficiency (CE),
turn-on voltage (Von), maximum brightness (Lmax), and stability are also critical parameters
for LEDs. Among them, power efficiency and current efficiency can be calculated by
(Equations (7) and (8)):

EQE = IQE ∗ η0 (7)

CE = L/J (8)

where P is the power of photon emission into free space, L is the brightness of the LED,
and J is the current density. Figure 16 showed an example of light emitting devices.

Nanomaterials 2024, 14, x FOR PEER REVIEW 20 of 45 
 

 

 
Figure 16. (a) Electroluminescence spectrum and a microscopic optical image from a light emitting 
device with the halide perovskite [208]. (b) Current density of green light emitting device [209]. Both 
(c) and (d) light emitting devices operating in different conditions [210]. 

  

Figure 16. (a) Electroluminescence spectrum and a microscopic optical image from a light emitting
device with the halide perovskite [208]. (b) Current density of green light emitting device [209]. Both
(c) and (d) light emitting devices operating in different conditions [210].

3.2. Multi-Layer Halide Perovskite Light Emitting Device

Multi-layer halide perovskite LED devices have evolved from halide perovskite solar
cells, generally consisting of a perovskite layer, multiple transport layers, a metal electrode,
and an ITO composition.

In multi-layer halide perovskite LEDs, the interface between the halide perovskite
emissive layer and the transport layer is an important factor affecting device performance.
The progress and efficiency of multi-layer halide perovskite devices and their structure
were summarized in Table 4.

Lee reported various conjugated polyelectrolytes (CPEs) as hole injection layers of
MAPbBr3 LED, and found that PCPDT-K can effectively transfer holes, prevent electron
transfer from halide perovskite to the underlying ITO layer, and reduce MAPbBr3/PCPDT-
Fluorescence quenching at the K interface [211]. In Figure 17, Zhang et al. proposed a new
device structure for the MAPbBr3 LED device [212]. The authors improved nanophotonic
substrates and fabricated MAPbBr3 LEDs on them, since nanophotonic substrates were a
combination of ND optocouplers and NW photonic crystal optical antennas. With these
two optical components, the authors significantly improved the light extraction rate, achiev-
ing an external quantum efficiency of 17.5% for the device.
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Figure 17. Device on nanophotonic substrate. (a) Schematic device. The materials from top to bottom
are: Ca/Ag electrode, F8, CH3NH3PbBr3(Br-Pero), PEDOT: PSS, ITO, and anodic alumina membrane
(AAM). AAM channels are filled with TiO2. (b) SEM image of the barrier side of the free-standing
AAM film with nanodome structures. (c) Cross-sectional SEM image of a P500 AAM device. Scale
bars in (b,c) are 1µm [212].

Wang (Figure 18) found through experiments that the FAPbBr3 device exhibited hole-
dominated characteristics [213]. To achieve charge carrier balance, on the anode side,
PEDOT:PSS 8000 was used as the hole injection layer. Meanwhile, on the cathode side,
solution-treated ZnO nanoparticles (NPs) were used as the electron injection layer in the
conventional LED to improve the electron current. The prepared device achieved an EQE
of 4.66% and a luminous intensity of 10,900 cd/A.

Yang found that the organic small molecule TOPO may be a good passivating
agent [214]. It spin-coated TOPO on the surface of PEA2(FAPbBr3)2PbBr4 and found that
PLQY increased significantly from 57.3% to 73.8%, and the lifetime increased from 0.17 µs
to 0.36 µs. In Figure 19, Lee et al. further found that two CPEs with different counter ions
could be used as multifunctional passivation and hole transport layers [215]. These layers
can block opposite charges simultaneously and result in fewer interface defects in the PEA2
(FAPbBr3)2PbBr4 layer.
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increasing the crystal nucleation sites and significantly reducing current leakage. As a re-
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Figure 19. Optical properties of 120 nm-thick perovskite films deposited on PEDOT:PSS, FPS-K,
and FPS-TMA before and after the aging process. (a) Time-resolved PL decay profiles of the per-
ovskite films before and after aging. (b) Steady-state PL spectra of the perovskite films after aging.
(c) Confocal PL images of the perovskite films after aging [215].

Liu et al. used an amphiphilic conjugated molecule, betaine, as an interfacial buffer
layer [216]. It was found to be able to control the grain size of the perovskite, thereby
increasing the crystal nucleation sites and significantly reducing current leakage. As a
result, the device achieved a high EQE of 11%. Shen reported a bio-inspired new structure
using moth-eye nanostructures at the front electrode/perovskite interface to enhance the
out-coupling efficiency of waveguide light in LEDs (Figure 20) [36]. The maximum external
quantum efficiency and current efficiency of the modified CsPbBr3 were increased to
20.3% and 61.9 cd/A. The hemispherical lens was then used to further reduce the light loss
in the substrate mode, achieving an efficiency of 28.2% and 88.7 cd/A, which is currently
the highest efficiency.

NiO has been extensively studied in LEDs as a hole transport material. However,
using NiO nanotubes in LEDs is not common. NiOx has several advantages: high carrier
mobility, good stability, and processability. In contrast to its organic counterparts, NiOx
does not have high hygroscopicity and acidity, thus it does not damage conductive glasses
like FTO and ITO. Moreover, NiOx matches the energy levels of halide perovskites, making
it an ideal choice for halide perovskite-based LEDs. Lin et al. proposed a novel LED
approach by encapsulating MAPbBr3 in nickel oxide nanotubes (NiOx) [217]. This unique
structure led to efficient electroluminescence, with significantly improved current efficiency
(5.99 Cd/A) and external quantum efficiency (3.9%).

Lin (Figure 21) also utilized photoluminescence (PL) to study the laser radiation
hardening and self-healing properties induced in aged MAPbBr3 halide perovskites
encapsulated in NiO nanotubes (MAPbBr3@NiO) [218]. The study found that even after
two years of exposure to atmospheric conditions, the aged samples remained highly stable.
They demonstrated no change in PL wavelength during UV laser irradiation and
self-healing. Additionally, UV light exposure at 375 nm enhanced the PL of the self-
healed MAPbBr3@NiO. They also used FLIM analysis to understand the mechanisms
behind photo-degradation, self-healing, and PL enhancement. They suggested that photo-
degradation could be explained by the formation of numerous low-lifetime trapping states,
while the enhanced PL can be attributed to the prolonged peak lifetime observed in the
lifetime histogram of self-healed MAPbBr3@NiO.
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Figure 20. Device fabrication and film morphologies. (a) Schematic illustration of the fabrication
process of a CsPbBr3 PeLED with the imprinted nanostructures. Diagrams are not to scale. (b–g) AFM
images of flat (b) and patterned (c) ZnO layers on ITO-glass substrates, the PEDOT:PSS layers on
flat (d) and patterned (e) ZnO substrates, and the CsPbBr3 perovskite films on flat (f) and patterned
(g) PEDOT:PSS/ZnO substrates. (h) Cross-sectional SEM image of the patterned CsPbBr3 PeLED [36].
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Figure 21. (a) Selective PL spectra of original MAPbBr3@NiO measured at 0, 10, 20, 30, 40, 50, and 60 min
after the sample was exposed to the laser. (b) PL intensity as a function of laser exposure times for
the original sample (blue symbols), the 1st PL measurement of self-healed samples after UV 375 nm
laser is off overnight (purple squares), and the 2nd PL measurement of self-healed samples is second
overnight (orange triangles) [218].

Tang modified the FAPbI3/ZnMgO interface by introducing a Lewis base diamine
molecule (EDBE) on top of the ZnMgO electron transport layer (ETL) [9]. With two amino
groups in EDBE, one amino group can interact with ZnMgO to adjust the growth of the
perovskite film, thereby improving electron injection and suppressing current leakage. At
the same time, another amino group can passivate the trap state on the surface of the poly
crystalline halide perovskite and eliminate trap-mediated non-radiative recombination.

The study of the halide perovskite emission layer itself is also a hot topic. Prakasam
reported that the reduction in the thickness of the MAPbBr3 layer and the increase in the
ratio of MABr to PbBr2 during synthesis can reduce the crystallite size and surface rough-
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ness [219]. The device balanced charge injection, space charge limitation, and reduction in
non-radiative sites, resulting in improved device performance. Cho (Figure 22) doped Cs+

in FAPbBr3 halide perovskite, which can significantly reduce the average grain size and trap
density [220]. However, as the Cs molar ratio further resulted in decreasing crystallinity
and purity, trap density increased and efficiency reduced.
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acid additives into the perovskite precursor solution of methyl methoxide as a cation, re-
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Wu et al. added small basic ions such as Na+ to replace the long organic molecules in
the inorganic–organic perovskite to form a microcrystalline orientation [221]. The authors
also found that the incorporated Na+ salt produced amorphous NaPbBr3, which was able
to form a nanocrystalline halide perovskite film as a spacer in the halide perovskite, en-
hancing the photoluminescence lifetime. The final device achieved a high EQE of 15.9%.
Cao was capable of spontaneously forming sub-micron structures by introducing amino
acid additives into the perovskite precursor solution of methyl methoxide as a cation, result-
ing in an astonishing 20.7% EQE [222]. Studies have shown that additives can effectively
passivate surface defects of halide perovskites and reduce non-radiative recombination,
thereby improving efficiency. In Figure 23, Zou found that by adjusting the proportion of
large and small organic cations in the precursor solution, it was easy to increase the width of
the quantum well in the halide perovskite, reduce the non-radiative Auger recombination,
and reduce the fluorescence quenching to improve the efficiency [223].
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Figure 23. Device structure and efficiency roll-off of halide perovskite MQW LEDs. (a) Schematic rep-
resentation of the flat-band energy level diagram and structures of the 30 nm thick halide perovskite
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In Figure 23b, the PLQE and EQE were measured simultaneously on a working LED
device. The excellent correlation between the PLQE and EQE at high current intensities
indicates that luminescence quenching is responsible for the EQE roll-off [223].

Table 4. Halide perovskite LED performance.

Years Perovskite Type EQE PLQY EL Lmax CE Device Structure Ref.

Inorganic
BLUE

2015.10 CsPb(BrxCl1-x)3 QDs 0.07 455 742 ITO/PEDOT:PSS/PVK/CsPb(Br1−xClx)3/TPBi/
LiF/Al [47]

2018.03 CsPbBrxCl3−x 3D 0.5 469 ITO/Pedot/TFB/PFI/CsPbBrxCl3−x/TPBi/
LiF/Al [224]

2018.05 CsPbBr3 2D 0.1 25
ITO/PEDOT:PSS/Poly-TPD/CsPbBr3/

TPBi/
LiF/Al

[225]

2019.05 CsPb(Br/Cl)3 3D 1.4 463 ITO/PEDOT:PSS/PolyTPD/CBP/CsPb(Br/Cl)3/
B3PYMPM/LiF/Al [226]

2021.04 CsPbBr3-xClx 3D 1.18 490 1468 ITO/PEDOT:PSS/CsPbBr3-xClx/TPBi/LiF/Al [227]

2021.11 CsPbBr2Cl 3D 3.71 66.8 475 51 ITO/Glass/ CsPbBr2Cl/TPBi/LiF/Al [228]

2022.10 CsPb(Br0.65Cl0.35)3 3D 4.6 468 1680 ITO/PEDOT:PSS/CsPb(Br0.65Cl0.35)3/TPBi/
LiF/Al [229]

2023.09 CsPbBr3 3D 12 463 2100 ITO/PEDOT:PSS/PVK/CsPbBrCl3/CNT2T/
LiF/Al [230]

GREEN

2016.04 CsPbBr3-
CsPb2Br5

QDs 2.21 527 3853 8.98 ITO/PEDOT:PSS/CsPbBr3CsPb2Br5/
TPBi/Al [231]

2016.11 CsPbBr3 QDs 6.27 515 15,000 ITO/PEDOT:PSS/poly-TPD/CsPbBr3/
TPBi/LiF/Al [232]

2017.05 CsPbBr3 QDs 8.73 42 512 1660 ITO/PEDOT:PSS/poly-TPD/CsPbBr3/
TPBi/LiF/Al [233]

2017.06 CsPbBr3 3D 1.37 522 13,752 5.39 FTO/Buf-HILs/CsPBBr3/TPBi/LiF/Al [234]

2017.06 CsPbBr3 QDs 1.194 515 12,090 3.1 ITO/PEDOT:PSS/poly-TPD/CsPbBr3/
TPBi/LiF/Al [235]

2017.07 CsPbBr3 3D 527 10,700 2.9 ITO/PEDOT:PSS/CsPbBr3/TPBi/LiF/Al [236]

2017.10 Cs2PbBr5 2D 1.1 520 7317 ITO/PEDOT:PSS/Cs2PbBr5/TPBi/LiF/Al [237]

2018.01 CsPbBr3 QDs 3.79 6093.2 7.96 ITO/NiO/CsPbBr3/ZnO/Al [238]
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Table 4. Cont.

Years Perovskite Type EQE PLQY EL Lmax CE Device Structure Ref.

2018.02 CsPbBr3 QDs 4.626 10,206 8.736 In/ZnO/MgZnO/CsPbBr3/NiO/Au [239]

2018.05 CsPbBr3 3D 2.99 ~13,000 10.5 ITO/LiF/CsPbBr3/LiF/Bphen/LiF/Al [240]

2019.02 CsPbBr3 2D 11.1 512 40.4 ITO/PEDOT:PSS/PVK/Betaine/
CsPbBr3/TPBi/LiF/Al [216]

2019.04 CsPbBr3 3D 28.2 88.7 ITO/ZnO/PEDOT:PSS/CsPbBr3/TPBi/LiF/Al [36]

2021.07 CsPbBr3 3D 531 n-ZnO/Al2O3/CsPbBr3/p-GaN [241]

2022.03 CsPbBr3 3D 2.7 21,815 ITO/ZnO/Al2O3/PEIE/perovskite/polyTPD/
MoO3/Au [242]

2023.07 CsPbBr3 2D 4.87 5 512 7143 ITO/PEDOT:PSS/CsPbBr3/TPBi/LiF/Al [243]

RED

2017.01 CsPbI3 2D 10.4 750 0.22 ITO/PVK/BAI:MAPbBr3/TPBi/LiF/Al [244]

2018.02 α-CsPbI3 3D 5 695 ITO/ZnO:PEIE/α-CsPbI3/Poly-TPD/WO3/Al [245]

2018.10 α-CsPbI3 3D 8.65 682 210 ITO/PEDOT:PSS/PVK/α-CsPbI 3/TPBi/LiF/Al [246]

2021.10 CsPbI3 3D 13 1858 ITO/ZnO/PNCs/TCTA/MnO2/Ag [247]

2022-12 CsPbI3 QDs 18 800 ITO/PEDOT:PSS+PFI/Poly-TPD/PEA-I/QDs/
PO-T2T/LiF/Al [248]

Organic

BLUE

2016.05 MAPb(BrCl)3 QDs 1.38 445 2673 4.01 ITO/PEOT:PSS/PVK/MAPb(BrCl)3/TPBi/LiF/Al [249]

2016.06 (PEA)2PbBr4 2D 0.04 410 ITO/PEDOT:PSS/ (PEA)2PbBr4/TPBi/Ca/Al [250]

2018.08 PEA2 A1.5Pb2.5
Br8.5

2D 88 477 2480 ITO/PEDOT:PSS/PEA2A1.5Pb2.5Br8.5/TPBi/
LiF/Al [251]

2021.09 PFNBr 3D 11.2 82 485 3377 ITO/PVK/PFNBr/PO-T2T/Lig/Al [252]

2023.06 GA0.1Rb0.1Cs0.8
PbBr2Cl 3D 1.5 469 ITO/PEDOT:PSS/GA0.1Rb0.1Cs0.8PbBr2Cl/

TPBi/LiF/Al [253]

2023.07 PEA 2D 10.6 494 ITO/PEDOT:PSS+K2SO4/PVP/PEA/TPBi/
LiF/Al [254]

GREEN

2014.08 MAPbBr3 3D 517 154 0.3 ITO/PEDOT:PSS/MAPbBr3/F8/Ca/Ag [255]

2015.01 MAPbBr3 3D 0.0065 515 21 ITO/PEDOT:PSS/TPD/MAPbBr3/Ag [256]

2015.02 MAPbBr3 3D 3.5 532 ~20,000 ITO/ZnO/PEI/TFB/MoOx/Au [257]

2015.02 MAPbBr3/PIP 3D 1.2 532 200 ITO/PEDOT:PSS/MAPbBr3-PIP/F8/Ca/Ag [258]

2015.03 MAPbBr3 3D 0.1 536 1000 (ITO)/PEDOT:PSS/MAPbBr3/TmPyPB/
LiF/Al [259]

2015.07 MAPbBr3/PEO 3D 532 4064 0.74 ITO/PEO-MAPbBr3/Au [260]

2015.10 MAPbBr3 3D 540 ~10,000 42.9 SOCP/MAPbBr3/TPBI/LiF/Al [261]

2015.12 MAPbBr3 QDs 1.1 92 525 4.5 ITO/PEDOT:PSS/MAPbBr3/TPBi/CsF/Al [262]

2015.12 MAPbBr3/PEO 3D 1.1 545 21,014 4.91 ITO,CNT/PEO,MAPbBr3/AgNWs [263]

2016.04 MAPbBr3 3D 0.43 536 ~5000 ITO/ZnO/MAPbBr3/TFB/MoOx/Au [264]

2016.08 CH3NH2-
MAPbBr3

3D 550 65,300 15.9 ITO/NiOx/MAPbBr3/TPBi/LiF/Al [265]

2017.04 MAPbBr3:PVK QDs 2.28 512 7263 9.45 ITO/PEDOT:PSS/MAPbBr3:PVK/TPBi/
Cs2CO3/Al [266]

2017.05 PEA2(MA)4Pb5Br16 2D 7.4 60 8400 ITO/PEODOT:PSS
/PEA2(MA)4Pb5Br16/TPBi/LiF/Al [267]

2017.08 FAPbBr3 QDs 2.05 530 278 9.16 ITO/PEDOT:PSS/FAPbBr3/TPPi/LiF/Al [268]

2018.02 PEA2(FAPbBr3)n−1
PbBr4

2D 14.36 73.8 62.4 ITO/PEDOT:PSS/PEA2(FAPbBr3)n−1PbBr4
/TPBi/LiF/Al [214]
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Table 4. Cont.

Years Perovskite Type EQE PLQY EL Lmax CE Device Structure Ref.

2018.03 (OA)2(FA)n−1
PbnBr3n+1

2D 13.4 530 34,480 57.6 ITO/PEDOT:PSS/(OA)2(FA)n−1PbnBr3n+1
/TPBi/PO-T2T/Ca/Al [269]

2018.03 MAPbBr3 3D 12.1 55,400 55.2 ITO / PEDOT:PSS/MAPbBr3/TPBi/LiF/Al [270]

2018.04 MAPbBr3 QDs 12.9 524 22,830 ITO/PEDOT:PSS/MAPbBr3
/TPBi/B3PYMPM/Cs2CO3/Al [271]

2018.05 FAPbBr3 3D 5.53 9472 20.3 ITO/LiF/FAPbBr3/LiF/Bphen/LiF/Al [240]

2018.05 MAPbBr3 3D 2.36 36,854 8.67 ITO/LiF/MAPbBr3/LiF/Bphen/LiF/Al [240]

2018.05 MAPbBr3 3D 5.66 18,100 25.97 ITO/CPEs/MAPbBr3/TPBi/LiF/Ag [211]

2018.08 FAPbBr3 3D 4.66 10,900 21.3 ITO/PEDOT/FAPbBr3/ZnO/Ag [213]

2018.09 PEABr 2D-
3D 15.5 78 ITO/Poly-TPD/PEABr/TPBi/LiF/Al [272]

2018.11 FAPbBr3 3D 11.3 535 79,700 ITO/Poly-TPD/FAPbBr3/TPBi/Al [273]

2018.11 MAPbBr3 3D 3.9 17,600 ITO/PEDOT/Di-NPB/MAPbBr3
/BmPyPhB/LiF/Al [219]

2019.01 MAPbBr3 3D 0.17 1260 0.79 PDZ/MAPbBr3/SPW-111/PFN/AgNW [274]

2019.01 MAPbBr3 3D 9.2 VHB/PI/AgNWs/PEDOT:PSS/PVK/
MAPbBr3/TPBi/CsF/Al [275]

2019.02 MAPbBr3 3D 17.5 AAM/ITO/PEDOT:PSS/MAPbBr3/
F8/Ca/Ag [212]

2019.04 (PEA)2(MA)m-1
PbBr3m+1

2D 30.3 20.18 FTO/Buf-HILs/(PEA)2(MA)m-1PbBr3m+1/
TPBi/LiF/Al [276]

2019.04 PMA2FA2Pb3Br10 2D 10.2 14,800 43.6 ITO/FPS-TMA/PMA2FA2Pb3Br10/TPBi/
LiF/Al [215]

2019.07 BA-MAPb
(Br/I)3

2D/
3D 7.42 ITO/Poly-TPD/BA-MAPb(Br/I)3/

Bphen/LiQ/Al [277]

2020.06 FAPbBr3/CsPbBr3
NCs 3D 8.1 93 504 1758 ITO/Poly-TPD/ PeNCs/TPBI/LiQ/Al [278]

2021.11 (DDAxHDA1−x)
Csn−1PbnBr3n+1

Q-2D 12.85 41.5 512 2726 ITO/PEDOT:PSS/(DDAxHDA1-x)
Csn1PbnBr3n+1/TPBi/LiF/Al [279]

2022.10 CsPbBr3-PEO 3D 12.8 10,737 TO/PEDOT:PSS/PVK-CBP/CsPbBr3-PEO/
PMMA/AgNWs [280]

2023.01 BMIMBF4-
CsPbBr3

3D 13.75 523 328,000 ITO/PEDOT:PSS/IL-CsPbBr3/PMMA/
TPBi/LiF/Al [281]

RED

2014.08 MAPbBr2I 3D 630 16.2 0.03 ITO/PEDOT:PSS/CH3NH3PbBr3/F8/Ca/Ag [255]

2018.02 FAPbI3 3D 12.7 ITO/PEIE-ZnO/perovskite (30 nm)/TFB/
MoO3/Au [223]

2018.10 FAPbI3 3D 20.7 70 ITO/ZnO-PEIE/Organic layer/FAPbI3
/TFBMoOx/Au [222]

2018.11 MAPbI3 3D 13.5 ITO/MAPbI3/LiF/Al [282]

2018.11 MAPbI3 3D 14.3 755 ITO/Poly-TPD/MAPbI3/TPBi/Al [273]

2018.11 FAPbI3 3D 10.1 771 ITO/Poly-TPD/FAPbI3/TPBi/Al [273]

2018.11 TFB-PFO 2D/
3D 20.1 800 ITO/MZO/PEIE/PPBH/TFB-PFO/MoOx/Au [283]

2019.01 MAPbI3 QDs 15 750 ITO/Poly-TPD/MAPbI3/TPBi/LiF/Al [284]

2019.03 FAPbI3 3D 21.6 ITO/ZnO:PEIE/FAPbI3/TFB/MoOx/Au [285]

2019.07 EDBE-
FA3Pb4I13

2D 12 803 ITO/ZnMgO/EDBE/EDBEFA3Pb4I13/TFB/
MoO3/Au [9]

2021.03 MAPb(I1−xBrx)3 3D 20.3 620 TO/PEDOT:PSS/Poly-TPD/MAPb(I1−xBrx)3/
TPBi/LiF/Al [286]

2022.02 CF3PEAI-
CsPbI3

QDs 12.5 685 4550 ITO/ZnO/PEI/CF3PEAI- CsPbI3/TCTA/MnO2 [287]
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Table 4. Cont.

Years Perovskite Type EQE PLQY EL Lmax CE Device Structure Ref.

2022.06 EDABr2 2D 17.03 671 10,745 ITO/ZnO/PEIE/EDABr2/TPBi/LiF/Au [288]

2023.08 PPT Q-2D 26.2 730 ITO/Poly-TPD/PVP/PPT/TPBi/LiF/Al [289]

2023.09 PEA2CsPb2I7 Q-2D 20.73 656 6483 ITO/PEDOT:PSS/PTAA/PVK/PEA2CsPb2I7/
MoO3/Ag [290]

3.3. Single-Layer Halide Perovskite Light Emitting

The single-layer halide perovskite light emitting devices have only a metal electrode,
ITO, and a halide perovskite light emitting layer. There are no obvious PN junctions. Thus,
light emitting devices may be a better term here than LED. They have the advantages of
simple preparation process, fewer steps, and low cost compared with the multi-layer LEDs.

In 2015, Li prepared single-layer halide perovskite light emitting devices made of
halide perovskites and poly(ethylene oxide) composite films [260]. The halide perovskite
layer was spin-coated between indium tin oxide and indium-gallium alloy. The single-layer
light emitting device exhibited a low on-voltage and high brightness due to ionic conduc-
tivity of the composite film and the p-i junction was formed. Bade used ITO or carbon
nanotubes (CNTs) as an anode, and a printed composite film oxide (PEO) composed of
methylammonium bromide (Br-Pero) and poly(ethylene) as a light emitting layer [263].
Silver nanowires used as cathodes and the manufacturing can be carried out in air. The
device on ITO/glass had a low on-voltage of 2.6 V, a maximum brightness intensity of
21,014 cd/m2, and a maximum external quantum efficiency (EQE) of 1.1%, and the device
on the CNT/polymer can be strained to a radius of curvature of 5 mm. Mirershadi synthe-
sized a tunable band gap of CH3NH3PbX3 (X=Br, Cl) and produced a halide perovskite-
based monolayer and halide perovskite-based double layer device [291]. Using electron
beam deposition techniques, CH3NH3PbX3 was deposited on ITO to form a thin film.
Vassilakopoulou synthesized a mixture of quasi-two-dimensional hydrophobic halide
perovskite semiconductors, which were spin-coated on ITO to produce single-layer light
emitting devices [292]. It was found that a mixture of 3D halide perovskites and unproto-
nated amines provides a near-semiconductor property. It can also be adjusted by simple
halide substitution, and can exhibit a strong bound exciton state, and the oscillator strength
increases at room temperature. Light emitting device fabrication was achieved by a single
deposition of the hydrophobic mixture, reducing device complexity, cost, and degradability.
Li (Figure 24) et al. prepared a single-layer light emitting device by spin- coating CsPbBr3
onto ITO using an In-Ga alloy without the EIL or HIL [210]. The light emitting layer
exhibited a sub-band gap conduction voltage. The device had 591,197 cd/m2 luminance
at 4.8 V with 5.7% external quantum efficiency and 14.1 lm/W power efficiency. These
researches show that the high electron and hole injection efficiencies can be achieved in
halide perovskite light emitting devices without EIL or HIL, which can greatly reduce the
cost of halide perovskite light emitting devices.
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lighting environment (right) [210].

3.4. Challenges and Future

Halide perovskite light emitting devices have shown great potential so far, not only
with full bandgap, but also with high brightness, high external quantum efficiency, and a
wider color gamut. However, there are still some problems, most notably the stability of
the device and the efficiency of the device.

The instability of the device is mainly reflected in the instability of the material itself
and the instability of the interface when the device is formed. To solve this problem, we
can establish the Ruddlesden–Popper phase [276], using ions and barriers to inhibit ion
migration [221,240,277,285], to prepare a uniform bulk polycrystalline halide perovskite
layer [293], and to produce stable materials. Meanwhile, the use of the multifunctional
molecular additive can slow down the crystallization rate of halide perovskites, promote the
formation of high-quality and large-grain perovskite films, and form coordination bonds
with Pb2+ to passivate uncoordinated Pb2+ defects, thereby it can improve the stability of the
films [294]. The following strategies were also used: titanium ore nanoparticles [223,246],
the preparation of core-shell structure [239], the setting of A-site ions, etc. [295,296].

Reducing contact between halide perovskites, air and water naturally enhances its sta-
bility in these environments. A straightforward approach is to embed the halide perovskite
within silica spheres. This method effectively minimizes direct exposure to potentially
degrading elements, thereby improving the halide perovskite materials’ durability and
longevity in various conditions [297]. Three-dimensional halide perovskites are prone
to surface defects, leading to significant Shockley–Read–Hall (SRH) recombination and
insufficient interaction between components, resulting in lower efficiency and stability. In
contrast, two-dimensional (2D) halide perovskites exhibit superior stability in humid and
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thermal environments. This distinction highlights the potential of 2D halide perovskites
for more durable and efficient photovoltaic applications compared to their 3D counter-
parts. Therefore, another strategy is to surface-passivate 3D halide perovskites with 2D
halide perovskites, thereby obtaining mixed halide perovskites (2D/3D) that exhibit better
stability without compromising efficiency. This approach leverages the inherent stability
of 2D structures to enhance the overall performance and durability of halide perovskite-
based devices [298].

The toxicity of halide perovskites poses a significant challenge to their widespread
application. Lead free halide perovskites are considered potential substitutes due to their
non-toxicity and high stability. A recent method to stabilize lead free halide perovskite
materials involves substituting Pb2+ with heterovalent M3+ cations. A promising candidate
for this type of substitution is the non-toxic Bi3+, which is isoelectronic with Pb2+. This
approach aims to mitigate the environmental and health concerns associated with halide
perovskites while maintaining their desirable optoelectronic properties [299].

To obtain a more efficient device, we can also reduce the non-radiative recombina-
tion from the material itself and reduce the loss caused by the transport layer interface.
More uniform halide perovskite films can be created [233,244], such as optimized
crystals [271,296], optimized film thickness [272], better contact transport layers [216,300,301],
reduced trap defects [35,302], A-site ion setting, and other methods [221].

4. Conclusions

In this review, the recent significant advances in the field of halide perovskite materials
for solar cells and light emitting are highlighted.

We summarized the application of halide perovskite materials in the research and
application in:

1. Halide perovskite solar cells: due to the suitable energy gap of the perovskite material,
high absorption coefficient, low electron–hole pair binding energy, balanced carrier
mobility, long photon carrier lifetime, etc. These advantages make it as the most
potential in solar cell materials. However, halide perovskite solar cells still have some
problems in stability, which are susceptible to temperature, moisture, oxygen, and
other conditions, and the stability of the hole layer of solar cells is also a direction that
we need to explore in depth.

2. Light emitting devices: materials in semiconductor light emitting devices (including
organic LEDs) typically need to be processed at high temperatures in a vacuum
chamber to ensure that the resulting semiconductor is pure. However, perovskites can
be prepared by the simple wet chemistry method. And light emitting devices based
on halide perovskite materials have the advantage that the band gap is adjustable.
However, the most critical issue for light emitting is the stability problem, as well as
the toxicity of halide perovskite. It is also an important research direction to produce
high-efficiency Pb free halide perovskite light emitting devices.

Although halide perovskite materials have excellent performance in both solar cells
and light emitting, there are still many problems to be solved at present, the most important
of which are the stability problems of halide perovskite and HTM and lead pollution. The
preparation of high-stability, high-efficiency greener halide perovskite materials is the most
important direction in the future. With the help of AI/machine learning, these problems
will be solved [303,304].
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277. Fakharuddin, A.; Qiu, W.; Croes, G.; Devižis, A.; Gegevičius, R.; Vakhnin, A.; Rolin, C.; Genoe, J.; Gehlhaar, R.; Kadashchuk,
A.; et al. Reduced Efficiency Roll-Off and Improved Stability of Mixed 2D/3D Perovskite Light Emitting Diodes by Balancing
Charge Injection. Adv. Funct. Mater. 2019, 29, 1904101. [CrossRef]

278. Zhang, C.; Wang, S.; Li, X.; Yuan, M.; Turyanska, L.; Yang, X. Core/Shell Perovskite Nanocrystals: Synthesis of Highly Efficient
and Environmentally Stable FAPbBr3/CsPbBr3 for LED Applications. Adv. Funct. Mater. 2020, 30, 1910582. [CrossRef]

279. Qin, X.; Liu, F.; Leung, T.L.; Sun, W.; Chan, C.C.S.; Wong, K.S.; Kanižaj, L.; Popović, J.; Djurišić, A.B. Compositional
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