Cellulose Sulfate Nanofibers for Enhanced Ammonium Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Cellulose Sulfate Nanofibers
2.3. Cellulose Sulfate Nanofiber Characterization
2.3.1. Transmission Electron Microscopy
2.3.2. Fourier Transform Infrared Spectroscopy
2.3.3. 13C Cross Polarization Magic-Angle Spinning Nuclear Magnetic Resonance
2.3.4. Sulfur Elemental Analysis
2.3.5. Wide-Angle X-ray Diffraction
2.3.6. Thermogravimetric Analysis
2.3.7. Zeta Potential
2.3.8. Ammonium Ion-Selective Electrode
2.3.9. Ammonium Adsorption Data Analysis Using Langmuir Isotherm Model
3. Results and Discussion
3.1. Product Yield, Crystallinity, and Morphology of CSNFs
3.2. Structure and Composition Characterization of Cellulose Sulfate Nanofibers
3.3. Evaluation of Ammonium Removal Efficiency
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Isogai, A.; Saito, T.; Fukuzumi, H. TEMPO-oxidized cellulose nanofibers. Nanoscale 2011, 3, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.R.; Joshi, R.; Sharma, S.K.; Hsiao, B.S. A simple approach to prepare carboxycellulose nanofibers from untreated biomass. Biomacromolecules 2017, 18, 2333–2342. [Google Scholar] [CrossRef]
- Jensen, D.; Weiss, J.; Rey, M.A.; Pohl, C.A. Novel weak acid cation-exchange column. J. Chromatogr. A 1993, 640, 65–71. [Google Scholar] [CrossRef]
- Kunin, R.; Vassiliou, B. New deionization techniques based upon weak electrolyte ion exchange resins. Ind. Eng. Chem. Process Des. Dev. 1964, 3, 404–409. [Google Scholar] [CrossRef]
- Chen, Y.G.; Sofińska-Chmiel, W.; Lv, G.Y.; Kołodyńska, D.; Chen, S.H. Application of modern research methods for the physicochemical characterization of ion exchangers. Materials 2021, 14, 7067. [Google Scholar] [CrossRef]
- Basu, S.; Debnath, A.K. Chapter II—Main Equipment. In Power Plant Instrumentation and Control Handbook; Basu, S., Debnath, A.K., Eds.; Academic Press: Boston, MA, USA, 2015; pp. 39–146. [Google Scholar]
- Davis, J.R.; Chen, Y.; Baygents, J.C.; Farrell, J. Production of acids and bases for ion exchange regeneration from dilute salt solutions using bipolar membrane electrodialysis. ACSNF Sustain. Chem. Eng. 2015, 3, 2337–2342. [Google Scholar] [CrossRef]
- Meyers, P.; Gottlieb, L.; DeSilva, F. Lead removal by ion exchange. In Recycling of Metals and Engineercd Materials; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 675–685. [Google Scholar]
- Luo, J.; Semenikhin, N.; Chang, H.; Moon, R.J.; Kumar, S. Post-sulfonation of cellulose nanofibrils with a one-step reaction to improve dispersibility. Carbohydr. Polym. 2018, 181, 247–255. [Google Scholar] [CrossRef]
- Mestechkina, N.M.; Shcherbukhin, V.D. Sulfated polysaccharides and their anticoagulant activity: A review. Appl. Biochem. Microbiol. 2010, 46, 267–273. [Google Scholar] [CrossRef]
- Zhang, K.; Brendler, E.; Geissler, A.; Fischer, S. Synthesis and spectroscopic analysis of cellulose sulfates with regulable total degrees of substitution and sulfation patterns via 13C NMR and FT Raman spectroscopy. Polymer 2011, 52, 26–32. [Google Scholar] [CrossRef]
- Strätz, J.; Liedmann, A.; Trutschel, M.-L.; Mäder, K.; Groth, T.; Fischer, S. Development of hydrogels based on oxidized cellulose sulfates and carboxymethyl chitosan. Cellulose 2019, 26, 7371–7382. [Google Scholar] [CrossRef]
- Pingrey, B.; Hsieh, Y.-L. Sulfated cellulose nanofibrils from chlorosulfonic acid treatment and their wet spinning into high-strength fibers. Biomacromolecules 2022, 23, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Chen, X. Modeling of experimental adsorption isotherm data. Information 2015, 6, 14–22. [Google Scholar] [CrossRef]
- Liu, X.; Chen, T.; Hu, Y.; Li, K.; Yan, L. Catalytic synthesis and antioxidant activity of sulfated polysaccharide from Momordica charantia L. Biopolymers 2014, 101, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Wohlert, M.; Benselfelt, T.; Wågberg, L.; Furó, I.; Berglund, L.A.; Wohlert, J. Cellulose and the role of hydrogen bonds: Not in charge of everything. Cellulose 2022, 29, 1–23. [Google Scholar] [CrossRef]
- Malaspina, D.C.; Faraudo, J. Molecular insight into the wetting behavior and amphiphilic character of cellulose nanocrystals. Adv. Colloid Interface Sci. 2019, 267, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Kačuráková, M.; Capek, P.; Sasinková, V.; Wellner, N.; Ebringerová, A. FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses. Carbohydr. Polym. 2000, 43, 195–203. [Google Scholar] [CrossRef]
- Vane, C.H.; Drage, T.C.; Snape, C.E.; Stephenson, M.H.; Foster, C. Decay of cultivated apricot wood (Prunus armeniaca) by the ascomycete Hypocrea sulphurea, using solid state 13C NMR and off-line TMAH thermochemolysis with GC–MS. Int. Biodeterior. Biodegrad. 2005, 55, 175–185. [Google Scholar] [CrossRef]
- Brebu, M.; Vasile, C. Thermal degradation of lignin—A review. Cellul. Chem. Technol. 2010, 44, 353. [Google Scholar]
- Long, Y.; Yu, Y.; Chua, Y.W.; Wu, H. Acid-catalysed cellulose pyrolysis at low temperatures. Fuel 2017, 193, 460–466. [Google Scholar] [CrossRef]
- Johnson, K.I.; Ilacas, G.; Das, R.; Chang, H.Y.; Sharma, P.R.; Dimkpa, C.O.; Hsiao, B.S. A circular solution to enhance the food-water nexus by nanocellulose technologies for ammonium recovery and reuse. Sustain. Sci. Technol. 2024; under review. [Google Scholar]
- Widiastuti, N.; Wu, H.; Ang, H.M.; Zhang, D. Removal of ammonium from greywater using natural zeolite. Desalination 2011, 277, 15–23. [Google Scholar] [CrossRef]
- Weatherley, L.R.; Miladinovic, N.D. Comparison of the ion exchange uptake of ammonium ion onto New Zealand clinoptilolite and mordenite. Water Res. 2004, 38, 4305–4312. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, S.; Xu, Z.; Han, T.; Chuan, S.; Zhu, T. Ammonia removal from leachate solution using natural Chinese clinoptilolite. J. Hazard. Mater. 2006, 136, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Vu, N.-T.; Do, K.-U. Insights into adsorption of ammonium by biochar derived from low temperature pyrolysis of coffee husk. Biomass Convers. Biorefinery 2021, 13, 2193–2205. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, Y.; Wang, A. Fast removal of ammonium ion using a hydrogel optimized with response surface methodology. Chem. Eng. J. 2011, 171, 1201–1208. [Google Scholar] [CrossRef]
CSNF | Raw Jute (g) | DMF (mL) | Time (Hours) | CSA (mL) | Yield (%) |
---|---|---|---|---|---|
1 | 2.0 | 35 | 6 | 1.0 | 54.1 |
2 | 2.0 | 35 | 6 | 1.5 | 50.3 |
3 | 2.0 | 35 | 6 | 2.0 | 47.5 |
4 | 2.0 | 35 | 6 | 2.5 | 44.2 |
Raw Jute | ||||
---|---|---|---|---|
Peak (Index) | Area | FWHM | Peak position | Area (%) |
1 (101) | 4,313.1 | 3.0 | 13.2 | 4.3 |
) | 13,371.7 | 3.0 | 15.9 | 13.2 |
3 (amorphous) | 46,812.4 | 13.2 | 22.0 | 46.2 |
4 (021) | 3,958.2 | 3.0 | 19.7 | 3.9 |
5 (002) | 28,842.5 | 2.6 | 22.6 | 28.5 |
6 (040) | 3981.1 | 3.0 | 35.4 | 3.9 |
CSNF 1 | ||||
Peak (Index) | Area | FWHM | Peak position | Area (%) |
1 (101) | 9,317.6 | 2.6 | 15.0 | 7.5 |
) | 7,116.5 | 2.2 | 16.7 | 5.7 |
3 (amorphous) | 65,030.8 | 12.8 | 19.6 | 52.2 |
4 (021) | 2,718.1 | 2.0 | 20.4 | 2.2 |
5 (002) | 39,594.5 | 2.5 | 22.5 | 31.8 |
6 (040) | 717.9 | 2.0 | 34.3 | 0.6 |
CSNF 2 | ||||
Peak (Index) | Area | FWHM | Peak position | Area (%) |
1 (101) | 4,004.2 | 3.1 | 14.7 | 6.2 |
) | 4,463.5 | 2.9 | 16.9 | 6.9 |
3 (amorphous) | 37,201.5 | 10.0 | 21.3 | 57.8 |
4 (021) | 4,207.8 | 3.0 | 20.8 | 6.5 |
5 (002) | 14,452.1 | 2.7 | 22.6 | 22.5 |
6 (040) | ~0 | 2.0 | 34.0 | ~0 |
CSNF 3 | ||||
Peak (Index) | Area | FWHM | Peak position | Area (%) |
1 (101) | 452.9 | 2.0 | 15.0 | 0.7 |
) | 720.1 | 2.6 | 16.8 | 1.1 |
3 (amorphous) | 47,997.6 | 12.5 | 21.5 | 76.1 |
4 (021) | 1,021.1 | 2.2 | 20.6 | 1.6 |
5 (002) | 11,760.9 | 2.9 | 22.5 | 18.6 |
6 (040) | 1,155.0 | 3.3 | 34.4 | 1.8 |
CSNF 4 | ||||
Peak (Index) | Area | FWHM | Peak position | Area (%) |
1 (101) | ~0 | 2.6 | 14.4 | ~0 |
) | ~0 | 2.6 | 16.7 | ~0 |
3 (amorphous) | 4,802.1 | 11.2 | 21.5 | 80.5 |
4 (021) | 482.9 | 2.6 | 20.5 | 1.9 |
5 (002) | 3,000.9 | 3.0 | 22.5 | 13.4 |
6 (040) | 821.9 | 3.4 | 34.6 | 4.2 |
CSNF | Intercept | Slope | R2 | Qm (mg/g) |
---|---|---|---|---|
1 | 0.676 | 0.0492 | 0.999 | 20.329 |
2 | 1.096 | 0.0294 | 0.996 | 33.990 |
3 | 1.079 | 0.0272 | 0.992 | 36.791 |
4 | 1.071 | 0.0243 | 0.998 | 41.084 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, K.I.; Borges, W.; Sharma, P.R.; Sharma, S.K.; Chang, H.-Y.; Abou-Krisha, M.M.; Alhamzani, A.G.; Hsiao, B.S. Cellulose Sulfate Nanofibers for Enhanced Ammonium Removal. Nanomaterials 2024, 14, 507. https://doi.org/10.3390/nano14060507
Johnson KI, Borges W, Sharma PR, Sharma SK, Chang H-Y, Abou-Krisha MM, Alhamzani AG, Hsiao BS. Cellulose Sulfate Nanofibers for Enhanced Ammonium Removal. Nanomaterials. 2024; 14(6):507. https://doi.org/10.3390/nano14060507
Chicago/Turabian StyleJohnson, Ken I., William Borges, Priyanka R. Sharma, Sunil K. Sharma, Hao-Yen Chang, Mortaga M. Abou-Krisha, Abdulrahman G. Alhamzani, and Benjamin S. Hsiao. 2024. "Cellulose Sulfate Nanofibers for Enhanced Ammonium Removal" Nanomaterials 14, no. 6: 507. https://doi.org/10.3390/nano14060507
APA StyleJohnson, K. I., Borges, W., Sharma, P. R., Sharma, S. K., Chang, H. -Y., Abou-Krisha, M. M., Alhamzani, A. G., & Hsiao, B. S. (2024). Cellulose Sulfate Nanofibers for Enhanced Ammonium Removal. Nanomaterials, 14(6), 507. https://doi.org/10.3390/nano14060507