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Abstract: The Vth stability and gate reliability of AlGaN/GaN metal–insulator–semiconductor high-
electron-mobility transistors (MIS-HEMTs) with alternating O2 plasma treatment were systematically
investigated in this article. It was found that the conduction band offset at the Al2O3/AlGaN
interface was elevated to 2.4 eV, which contributed to the suppressed gate leakage current. The
time-dependent dielectric breakdown (TDDB) test results showed that the ALD-Al2O3 with the
alternating O2 plasma treatment had better quality and reliability. The AlGaN/GaN MIS-HEMT with
the alternating O2 plasma treatment demonstrated remarkable advantages in higher Vth stability
under high-temperature and long-term gate bias stress.

Keywords: AlGaN/GaN MIS-HEMT; threshold voltage stability; gate reliability

1. Introduction

AlGaN/GaN metal–insulator–semiconductor high electron-mobility transistors (MIS-
HEMTs) have superior properties, including suppressed gate leakage current, large forward
gate swing range [1,2], which is required by power switches in high-efficiency, high-speed
power systems [3–5]. Different insulators (e.g., Al2O3, HfO2, SiO2, AlN and SiNx) [6–8] have
been used as AlGaN/GaN MIS-HEMTs gate dielectric. The atomic layer-deposited (ALD)
Al2O3 is more preferred because of its larger conduction band offset, high dielectric constant
and high breakdown field values [9–11]. However, it has been reported that there is a large
amount of hydroxyl (-OH) groups in ALD-Al2O3 [12,13] that use trimethylaluminum (TMA)
and water as precursors. These -OH groups act as trap states and cause the AlGaN/GaN
MIS-HEMTs to suffer from serious gate reliability and threshold voltage (Vth) instability
challenge [14,15].

It is suggested that using O3 as an oxidant during the deposition process of Al2O3
can improve device performance [16], but the carbon impurity in Al2O3 film increases [17].
It has been reported that there is less trap state density in the O2 plasma-assisted ALD-
Al2O3 film [18,19]. It has been reported that adding O2 plasma in each ALD cycle can
improve Al2O3 film quality [20]. However, the AlGaN surface can be damaged by O2
plasma at the initial stage of Al2O3 film deposition, since the O2 plasma can introduce
deep-level traps at the AlGaN surface, which leads to device performance degradation
and current collapse [21]. Meanwhile, there is little research on the threshold stability
and gate reliability of the ALD-Al2O3 gate dielectric. We have already characterized the
trap states and performance of the device with alternating O2 plasma treatment in our
previous articles [22]. In this work, the Vth stability and gate reliability characteristics of
the AlGaN/GaN MIS-HEMTs with the alternating O2 plasma treatment were investigated.
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2. Device Structure and Fabrication Process

The AlGaN/GaN MIS-HEMTs were fabricated on the AlGaN/GaN heterostructure
epitaxial sample, which was grown by metal–organic chemical vapor deposition (MOCVD).
It consists of a 20 nm undoped Al0.23Ga0.77N barrier layer, 180 nm unintentionally doped
GaN channel layer and 5.1 µm C-doped GaN buffer layer grown using MOCVD on a
6-inch Si (111) substrate. Figure 1a shows the schematic cross-sectional illustration of the
AlGaN/GaN MIS-HEMTs. The AlGaN/GaN MIS-HEMTs process began with AlN/SiNx
passivation layer deposition. The device active region was isolated by mesa etching using
BCl3/Ar. Then, a Ti/Al/Ni/Au metal stack with a thickness of 20/160/50/50 nm was
deposited by Electron Beam Evaporation (EBE) on the source/drain region, and ohmic
contact was achieved by rapid thermal process (RTP) at 780 ◦C for 30 s in N2 ambient. The
transfer length method (TLM) test results show that the contact resistance was 1Ω·mm. The
ALD-Al2O3 gate dielectrics with and without the alternating O2 plasma treatment were
deposited and denoted as devices A and B, respectively. Finally, Ni/Au metal stack was
deposited for the gate electrode.
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Figure 1. (a) Schematic cross-sectional illustration of the AlGaN/GaN MIS-HEMT. (b) Schematic
process flow of depositing ALD-Al2O3 film with the alternating O2 plasma treatment.

The schematic process flow of depositing ALD-Al2O3 film with the alternating O2
plasma treatment is shown in Figure 1b. The entire depositing process was carried out
using a Sentech SI ALD system. The deposition process consisted of a cycle of two sub-
processes. Sub-process one: 4 nm ALD-Al2O3 was deposited with TMA and H2O as
precursors. Sub-process two: The film deposited in sub-process one was treated with in situ
O2 plasma for 2 min. The O2 gas flow was 100 sccm, gas pressure was 15 Pa, and the plasma
power was 100 W. Throughout the process, the substrate temperature was maintained at
300 ◦C. Sub-process one and sub-process two were repeated five times. Finally, a 20 nm
ALD-Al2O3 film with alternating O2 plasma treatment was obtained. It is worth noting
that the deposited 4 nm ALD-Al2O3 film could serve as a protective layer on the AlGaN
surface to prevent the O2 plasma damage [23].

3. Results and Discussion

Figure 2 exhibits the atomic force microscopy (AFM) image of the Al2O3 film surface
with an area of 2 µm × 2 µm. For the Al2O3 film with and without the alternating O2 plasma
treatment, the root mean square (RMS) of surface roughness is 0.094 nm and 0.096 nm,
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respectively. This indicates that the alternating O2 plasma treatment will not have adverse
effects on the surface morphology of the Al2O3 film.
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The gate leakage current density of the device is illustrated in Figure 3a. The gate
leakage density of device A significantly decreased compared with that of device B. The
breakdown voltage of device A also improved. In order to explore the reasons for the reduc-
tion of gate leakage in device A, the gate leakage mechanism was analyzed. Considering
that ALD-Al2O3 has good quality, Fowler–Nordheim (FN) tunneling was believed to be
the dominant gate leakage mechanism [24]. The effective barrier width of the dielectric nar-
rowed under the forward gate voltage, and driven by the electric field in the gate dielectric,
electrons at the Al2O3/AlGaN interface could directly tunnel through the gate dielectric.
Leakage current by FN tunneling is illustrated in Figure 3b, which can be expressed as

JFN =
q2

16πℏφox
E2

oxexp

−
4
√

2m ∗ (qφox)
3

3ℏqEox

 (1)

where q is the charge of electrons, ℏ is the Planck’s constant, φox is the conduction band
offset at Al2O3/AlGaN interface, Eox is the electric field strength in Al2O3 gate dielectric,
m∗ is the effective electron mass in Al2O3, and 0.23 m0 of an electron mass was used for the
Al2O3 film [19]. The FN plots of log

(
J/E2

ox
)

versus 1/Eox were straight lines, as shown in
Figure 3b, indicating that FN tunneling was the dominant gate leakage mechanism under a
high electric field. The linear slope was used to extract the conduction band offset at the
Al2O3/AlGaN interface, which were 2.40 and 1.87 eV, respectively, for devices A and B.
The lower gate leakage current density of device A was attributed to the higher conduction
band offset at the Al2O3/AlGaN interface. The conduction band offset for device A was
larger than the value of 2.2 eV in Ref. [25].

Time-dependent dielectric breakdown (TDDB) is one of the most common charac-
terization methods for evaluating gate dielectric reliability [26]. The testing process of
TDDB involves applying a constant bias stress on the gate dielectric for a long time, and
monitoring the variation in leakage current passing through the dielectric layer. The quality
of the gate dielectric can be evaluated using the magnitude of leakage and the time to
breakdown (tBD) under the same gate bias stress. The reasons for leakage current and
breakdown of the gate dielectric are as follows. There are defects inside the gate dielectric
at the initial state, and these defects are mainly bulk defects formed during the sedimen-
tation process. Applying electrical stress to the gate dielectric can induce random defects
within the gate dielectric, causing leakage current. In addition, when electrons accelerate
through the gate dielectric, it can also cause damage to the gate dielectric and form new
defects. When the defects form a continuous seepage path inside the gate dielectric, the
leakage current rapidly increases and the gate dielectric layer undergoes breakdown. High
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electrical stress will accelerate the generation of defects, generate higher leakage current,
and thus accelerate the breakdown process of the gate dielectric. Due to the different
breakdown voltages for device A and device B, two sets of gate bias were used to stress
the devices A and B, respectively. The time-dependent gate breakdown characteristics are
shown in Figure 4a,b. The tBD for gate dielectric at different gate voltages statistically obey
the Weibull distribution, which can be described by [27]
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where t is the gate voltage application time, β is the Weibull slope, and η is the characteristic
lifespan or scale factor.
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A larger β indicates a more concentrated distribution of tBD in the breakdown char-
acteristic [28]. Figure 4c,d shows the Weibull plots of the tBD distribution for devices A
and B. Weibull slope β was extracted and found to be 5 and 4.5 for devices A and B, which
indicated that ALD-Al2O3 with alternating O2 plasma treatment has better quality and
reliability. These results were larger than the value of 4.45 in Ref. [29], although Al2O3 had
a thicker thickness (25 nm).

The Vth instability induced by high-temperature operation and long-term gate stress
limits the commercial application of AlGaN/GaN MIS-HEMTs. To investigate the thermal
stability of Vth, the transfer characteristic curves of device A and device B at various
temperatures from 30 ◦C to 150 ◦C in steps of 30 ◦C were measured, as is shown in Figure 5.
The OFF-state drain current increased by about two orders of magnitude as a result of
increased buffer leakage current [30]. The ON-state IDS decreased slightly due to the lower
carrier mobility at higher temperatures [31].
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Figure 6 shows the temperature-dependence Vth shift (∆Vth) for devices A and B. The
device A demonstrated a better Vth thermal stability and the maximum ∆Vth of 0.24 V was
achieved at 150 ◦C at the IDS level of 1 µA/mm, less than that of 0.55 V for device B at
150 ◦C. However, ∆Vth in Ref. [30] is larger than 1V at the same test temperature.
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To assess the Vth stability of the device under long-time gate bias stress, the forward
gate bias stress (VG_stress) of 2 V was applied to the gate with source and drain grounded.
A quick ID-VGS test was conducted after certain interval times (1, 5, 10, 20, 40, 60, 80, 100,
200, 400, 500, 600, 800, 1000, 2000, and 3000 s). Figure 7 shows the multiple ID-VGS curves
throughout the entire testing process. The ID-VGS curves positively shift under the forward
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gate bias stress, which corresponded to electrons in the channel being trapped [32]. During
the forward gate bias stress application process, the electric field in the AlGaN barrier layer
is very high, especially at the edge of the gate. A strong electric field can cause electrons to
tunnel from the defects in the AlGaN barrier layer to the valence band, which is known as
Zener trapping. Electrons in 2DEG are then emitted into the defects, causing a decrease in
electron concentration in the channel and a positive shift in the Vth.
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2 V for device A and device B.

As shown in Figure 8, the extracted ∆Vth after the 3000 s gate bias stress of 2 V were
0.55 V and 0.88 V for devices A and B, respectively. Device A showed a relatively small
∆Vth compared to device B. This indicated that the trap state density in the dielectric was
reduced by the alternating O2 plasma treatment [15]. Furthermore, subthreshold slope (SS)
did not show any significant changes after long-time gate bias stress for both devices.
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4. Conclusions

The Vth stability and gate reliability of the AlGaN/GaN MIS-HEMTs with alternating
O2 plasma treatment were investigated in this article. The conduction band offset at the
Al2O3/AlGaN interface was elevated to 2.4 eV after the alternating O2 plasma treatment,
and hence resulted in lower gate leakage current density. The gate dielectric reliability was
also improved, which was characterized by the TDDB test. The device with the alternating
O2 plasma treatment also showed improved thermal stability of Vth and long-time gate
bias induced Vth instability. The proposed O2 plasma alternating treatment technique was
found to exhibit superior performance, which is highly desirable in high-performance and
reliable power devices.
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