Theoretical Analysis of a Magnetic Shielding System Combining Active and Passive Modes
Abstract
:1. Introduction
2. Basic Theory of Magnetic Shielding
3. Simulation of Magnetic Shielding Efficiency
3.1. Simulation of Passive Magnetic Shielding Efficiency
3.2. Active Magnetic Shielding of Helmholtz Coil
3.3. Simulation of Magnetic Shielding Efficiency for the Combined Active and Passive Mode
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Yu, M.; Yu, Z.; Nicolosi, V. Design and advanced manufacturing of electromagnetic interference shielding materials. Mater. Today 2023, 66, 245–272. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhu, W.; Lu, X.; Wang, C. One-dimensional metallic, magnetic, and dielectric nanomaterials-based composites for electromagnetic wave interference shielding. Nano Res. 2022, 15, 9595–9613. [Google Scholar] [CrossRef]
- Ito, Y.; Igarashi, H.; Suzuki, M.; Iwasaki, Y.; Kawano, K. Effect of magnetic contact on macroscopic permeability of soft magnetic composite. IEEE Trans. Magn. 2016, 52, 9400804. [Google Scholar] [CrossRef]
- Fionov, A.; Kraev, I.; Yurkov, G.; Solodilov, V.; Zhukov, A.; Surgay, A.; Kuznetsova, I.; Kolesov, V. Radio-Absorbing materials based on polymer composites and their application to solving the problems of electromagnetic compatibility. Polymers 2022, 14, 3026. [Google Scholar] [CrossRef]
- Keshtkar, A.; Maghoul, A.; Kalantarnia, A.; Hashempour, H. Simulation of shielding effectiveness in low frequencies for conductive enclosure. Int. C. Comp. Elec. Eng. 2009, 2, 372–377. [Google Scholar]
- Song, Y.; Lin, H.; Manikandan, S.; Chang, L. A magnetic field canceling system design for diminishing electromagnetic interference to avoid environmental hazard. Int. J. Environ. Res. Public Health 2022, 19, 3664. [Google Scholar] [CrossRef] [PubMed]
- Ridard, J.; Rozand, V.; Millet, G.; Lapole, T. On-field low-frequency fatigue measurement after repeated drop jumps. Front. Physiol. 2022, 13, 1039616. [Google Scholar] [CrossRef] [PubMed]
- Seomun, G.; Lee, J.; Park, J. Exposure to extremely low-frequency magnetic fields and childhood cancer: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0251628. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.; Bo, H.; Wu, J.; Guo, J.; Lu, Z.; Zhou, S. Microstructure and magnetic properties of plasma-sprayed Fe73.5Cu1Nb3Si13.5B9 coatings. Thin Solid Films 2011, 519, 8287–8291. [Google Scholar] [CrossRef]
- Huang, X.; Wu, G.; Zhang, Q.; Jiang, L.; Chen, X. Electromagnetic shielding properties of Open-Pore Fe-Ni foams. Rare Metal Mat. Eng. 2010, 39, 731–734. [Google Scholar]
- Madhu, B.; Chandan, B.; Deshnoor, S.; Shruthi, B.; Nagaraja, D.; Virupakshappa, G. Graphite oxide/Polyvinyl alcohol nanocomposites with excellent dielectric and AC conductivity properties for efficient electromagnetic interference shielding. Mater. Today Proc. 2018, 5, 21517–21522. [Google Scholar] [CrossRef]
- Bajtos, M.; Radil, R.; Janousek, L.; Bajtos, M.; Dang, N. Numerical simulations of static magnetic fields with Mu-metal cage shielding. In Proceedings of the 24th International Conference on Computational Problems of Electrical Engineering, Grybow, Poland, 10–13 September 2023; pp. 1–4. [Google Scholar]
- Pang, J.; Chen, Y.; Li, J.; Gong, S.; Lei, X.; Wu, C.; Zhu, Z.; Li, Z. Experiment and simulation of flexible CNT/ SA/PDMS electromagnetic shielding composite. Nanotechnology 2022, 33, 175601. [Google Scholar] [CrossRef] [PubMed]
- Gozzelino, L.; Gerbaldo, R.; Ghigo, G.; Laviano, F.; Torsello, D.; Bonino, V.; Truccato, M.; Batalu, D.; Grigoroscuta, M.; Burdusel, M.; et al. Passive magnetic shielding by machinable MgB2 bulks: Measurements and numerical simulations. Supercond. Sci. Technol. 2019, 32, 034004. [Google Scholar] [CrossRef]
- Xu, X.; Liu, W.; Huang, Y.; Li, W.; Che, S. Magnetic shielding mechanism and structure design of composites at low frequency: A review. J. Magn. Magn. Mater. 2023, 570, 170509. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, Q.; Chen, X.; Wu, G. Geomagnetic shielding property and mechanism of Fe-Ni laminated composite. Acta. Metall. Sin. 2014, 27, 918–923. [Google Scholar] [CrossRef]
- Yu, Z.; Dai, T.; Yuan, S.; Zou, H.; Liu, P. Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels. ACS Appl. Mater. Interfaces 2020, 12, 30990–31001. [Google Scholar] [CrossRef]
- Xie, Q.; Yan, Z.; Qin, F.; Wang, L.; Mei, L.; Zhang, Y.; Wang, Z.; Zhao, G.; Jiang, R. Metal carbide/Ni hybrids for high-performance electromagnetic absorption and absorption-based electromagnetic interference shielding. Inorg. Chem. Front. 2020, 7, 4832–4844. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, J.; Shi, L. Simulation study on magnetic shielding characteristics of multi-layer shielding materials containing superconductivity. Chin. J. Low Temp. Phys. 2017, 39, 16–21. [Google Scholar]
Magnetic Shielding Material | Magnetic Shielding Method | Magnetic Shielding Efficiency | References |
---|---|---|---|
Single-layer polyimide material | Passive | 26.1–28.8 dB | [17] |
Ti3C2TxMXene/Ni thin film materials | Passive | 41.7 dB | [18] |
Single layer superconducting material | Passive | 18–24.5 dB | [19] |
Multilayer superconductivity/iron materials | Passive | 53.5–70 dB | |
Multi-layer permalloy | Active/Passive | 113.98 dB | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Q.; Wang, Z.; Lin, Q.; Ju, D.; Liang, X.; Xian, D. Theoretical Analysis of a Magnetic Shielding System Combining Active and Passive Modes. Nanomaterials 2024, 14, 538. https://doi.org/10.3390/nano14060538
Meng Q, Wang Z, Lin Q, Ju D, Liang X, Xian D. Theoretical Analysis of a Magnetic Shielding System Combining Active and Passive Modes. Nanomaterials. 2024; 14(6):538. https://doi.org/10.3390/nano14060538
Chicago/Turabian StyleMeng, Qingzhi, Zelin Wang, Qijing Lin, Dengfeng Ju, Xianfeng Liang, and Dan Xian. 2024. "Theoretical Analysis of a Magnetic Shielding System Combining Active and Passive Modes" Nanomaterials 14, no. 6: 538. https://doi.org/10.3390/nano14060538
APA StyleMeng, Q., Wang, Z., Lin, Q., Ju, D., Liang, X., & Xian, D. (2024). Theoretical Analysis of a Magnetic Shielding System Combining Active and Passive Modes. Nanomaterials, 14(6), 538. https://doi.org/10.3390/nano14060538