Characterization of Mn5Ge3 Contacts on a Shallow Ge/SiGe Heterostructure
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. X-ray Diffraction Analysis
3.2. Scanning Transmission Electron Microscopy Analysis
3.3. Electrical Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, J.; Wang, C.Y.; Hung, M.H.; Jiang, X.; Chang, L.T.; He, L.; Liu, P.H.; Yang, H.J.; Tuan, H.Y.; Chen, L.J.; et al. Ferromagnetic germanide in Ge nanowire transistors for spintronics application. ACS Nano 2012, 6, 5710–5717. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Wang, C.Y.; Chang, L.T.; Fan, Y.; Nie, T.; Chan, M.; Jiang, W.; Chen, Y.T.; Yang, H.J.; Tuan, H.Y.; et al. Electrical spin injection and detection in Mn5Ge3/Ge/Mn5Ge3 nanowire transistors. Nano Lett. 2013, 13, 4036–4043. [Google Scholar] [CrossRef] [PubMed]
- Morrison, C.; Wiśniewski, P.; Rhead, S.; Foronda, J.; Leadley, D.R.; Myronov, M. Observation of Rashba zero-field spin splitting in a strained germanium 2D hole gas. Appl. Phys. Lett. 2014, 105, 182401. [Google Scholar] [CrossRef]
- Hardy, W.J.; Harris, C.T.; Su, Y.H.; Chuang, Y.; Moussa, J.; Maurer, L.N.; Li, J.Y.; Lu, T.M.; Luhman, D.R. Single and double hole quantum dots in strained Ge/SiGe quantum wells. Nanotechnology 2019, 30, 215202. [Google Scholar] [CrossRef]
- Sammak, A.; Sabbagh, D.; Hendrickx, N.W.; Lodari, M.; Paquelet Wuetz, B.; Tosato, A.; Yeoh, L.; Bollani, M.; Virgilio, M.; Schubert, M.A.; et al. Shallow and undoped germanium quantum wells: A playground for spin and hybrid quantum technology. Adv. Funct. Mater. 2019, 29, 1807613. [Google Scholar] [CrossRef]
- Hendrickx, N.; Lawrie, W.; Petit, L.; Sammak, A.; Scappucci, G.; Veldhorst, M. A single-hole spin qubit. Nat. Commun. 2020, 11, 3478. [Google Scholar] [CrossRef] [PubMed]
- Hendrickx, N.; Franke, D.; Sammak, A.; Scappucci, G.; Veldhorst, M. Fast two-qubit logic with holes in germanium. Nature 2020, 577, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Hendrickx, N.W.; Lawrie, W.I.; Russ, M.; van Riggelen, F.; de Snoo, S.L.; Schouten, R.N.; Sammak, A.; Scappucci, G.; Veldhorst, M. A four-qubit germanium quantum processor. Nature 2021, 591, 580–585. [Google Scholar] [CrossRef]
- Van Riggelen, F.; Hendrickx, N.; Lawrie, W.; Russ, M.; Sammak, A.; Scappucci, G.; Veldhorst, M. A two-dimensional array of single-hole quantum dots. Appl. Phys. Lett. 2021, 118, 044002. [Google Scholar] [CrossRef]
- Miller, A.J.; Hardy, W.J.; Luhman, D.R.; Brickson, M.; Baczewski, A.; Liu, C.Y.; Li, J.Y.; Lilly, M.P.; Lu, T.M. Effective out-of-plane g factor in strained-Ge/SiGe quantum dots. Phys. Rev. B 2022, 106, L121402. [Google Scholar] [CrossRef]
- Lodari, M.; Kong, O.; Rendell, M.; Tosato, A.; Sammak, A.; Veldhorst, M.; Hamilton, A.; Scappucci, G. Lightly strained germanium quantum wells with hole mobility exceeding one million. Appl. Phys. Lett. 2022, 120, 122104. [Google Scholar] [CrossRef]
- Kong, Z.; Li, Z.; Cao, G.; Su, J.; Zhang, Y.; Liu, J.; Liu, J.; Ren, Y.; Li, H.; Wei, L.; et al. Undoped Strained Ge Quantum Well with Ultrahigh Mobility of Two Million. ACS Appl. Mater. Interfaces 2023, 15, 28799–28805. [Google Scholar] [CrossRef] [PubMed]
- Hutchins-Delgado, T.A.; Miller, A.J.; Scott, R.; Lu, P.; Luhman, D.R.; Lu, T.M. Characterization of Shallow, Undoped Ge/SiGe Quantum Wells Commercially Grown on 8-in. (100) Si Wafers. ACS Appl. Electron. Mater. 2022, 4, 4482–4489. [Google Scholar] [CrossRef]
- Chou, C.T.; Jacobson, N.T.; Moussa, J.E.; Baczewski, A.D.; Chuang, Y.; Liu, C.Y.; Li, J.Y.; Lu, T.M. Weak anti-localization of two-dimensional holes in germanium beyond the diffusive regime. Nanoscale 2018, 10, 20559–20564. [Google Scholar] [CrossRef]
- Virgilio, M.; Grosso, G. Optical spin orientation in strained Ge/SiGe quantum wells: A tight-binding approach. Phys. Rev. B 2009, 80, 205309. [Google Scholar] [CrossRef]
- Pezzoli, F.; Bottegoni, F.; Trivedi, D.; Ciccacci, F.; Giorgioni, A.; Li, P.; Cecchi, S.; Grilli, E.; Song, Y.; Guzzi, M.; et al. Optical spin injection and spin lifetime in Ge heterostructures. Phys. Rev. Lett. 2012, 108, 156603. [Google Scholar] [CrossRef]
- Schmidt, G.; Ferrand, D.; Molenkamp, L.; Filip, A.; Van Wees, B. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 2000, 62, R4790. [Google Scholar] [CrossRef]
- Fert, A.; Jaffres, H. Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B 2001, 64, 184420. [Google Scholar] [CrossRef]
- Jeon, K.R.; Min, B.C.; Jo, Y.H.; Lee, H.S.; Shin, I.J.; Park, C.Y.; Park, S.Y.; Shin, S.C. Electrical spin injection and accumulation in CoFe/MgO/Ge contacts at room temperature. Phys. Rev. B 2011, 84, 165315. [Google Scholar] [CrossRef]
- Zhou, Y.; Han, W.; Chang, L.T.; Xiu, F.; Wang, M.; Oehme, M.; Fischer, I.A.; Schulze, J.; Kawakami, R.K.; Wang, K.L. Electrical spin injection and transport in germanium. Phys. Rev. B 2011, 84, 125323. [Google Scholar] [CrossRef]
- Iba, S.; Saito, H.; Spiesser, A.; Watanabe, S.; Jansen, R.; Yuasa, S.; Ando, K. Spin accumulation and spin lifetime in p-type germanium at room temperature. Appl. Phys. Express 2012, 5, 053004. [Google Scholar] [CrossRef]
- Jain, A.; Vergnaud, C.; Peiro, J.; Le Breton, J.; Prestat, E.; Louahadj, L.; Portemont, C.; Ducruet, C.; Baltz, V.; Marty, A.; et al. Electrical and thermal spin accumulation in germanium. Appl. Phys. Lett. 2012, 101, 022402. [Google Scholar] [CrossRef]
- Sharma, S.; Spiesser, A.; Dash, S.P.; Iba, S.; Watanabe, S.; Van Wees, B.; Saito, H.; Yuasa, S.; Jansen, R. Anomalous scaling of spin accumulation in ferromagnetic tunnel devices with silicon and germanium. Phys. Rev. B 2014, 89, 075301. [Google Scholar] [CrossRef]
- Picozzi, S.; Continenza, A.; Freeman, A. First-principles characterization of ferromagnetic Mn5Ge3 for spintronic applications. Phys. Rev. B 2004, 70, 235205. [Google Scholar] [CrossRef]
- Spiesser, A.; Saito, H.; Jansen, R.; Yuasa, S.; Ando, K. Large spin accumulation voltages in epitaxial Mn5Ge3 contacts on Ge without an oxide tunnel barrier. Phys. Rev. B 2014, 90, 205213. [Google Scholar] [CrossRef]
- Ponath, P.; Posadas, A.; Demkov, A. Ge (001) surface cleaning methods for device integration. Appl. Phys. Rev. 2017, 4, 021308. [Google Scholar] [CrossRef]
- Wittmer, M.; Nicolet, M.A.; Mayer, J. The first phase to nucleate in planar transition metal-germanium interfaces. Thin Solid Films 1977, 42, 51–59. [Google Scholar] [CrossRef]
- Gokhale, A.; Abbaschian, R. The Ge-Mn (germanium-manganese) system. J. Phase Equilibria 1990, 11, 460–468. [Google Scholar] [CrossRef]
- Gates-Rector, S.; Blanton, T. The powder diffraction file: A quality materials characterization database. Powder Diffr. 2019, 34, 352–360. [Google Scholar] [CrossRef]
- Olive-Mendez, S.; Spiesser, A.; Michez, L.; Le Thanh, V.; Glachant, A.; Derrien, J.; Devillers, T.; Barski, A.; Jamet, M. Epitaxial growth of Mn5Ge3/Ge (111) heterostructures for spin injection. Thin Solid Films 2008, 517, 191–196. [Google Scholar] [CrossRef]
- Spiesser, A.; Olive-Mendez, S.; Dau, M.T.; Michez, L.; Watanabe, A.; Le Thanh, V.; Glachant, A.; Derrien, J.; Barski, A.; Jamet, M. Effect of thickness on structural and magnetic properties of Mn5Ge3 films grown on Ge (111) by solid phase epitaxy. Thin Solid Films 2010, 518, S113–S117. [Google Scholar] [CrossRef]
- Nishimura, T.; Nakatsuka, O.; Akimoto, S.; Takeuchi, W.; Zaima, S. Crystalline orientation dependence of electrical properties of Mn Germanide/Ge (1 1 1) and (0 0 1) Schottky contacts. Microelectron. Eng. 2011, 88, 605–609. [Google Scholar] [CrossRef]
- Xie, Y.; Yuan, Y.; Wang, M.; Xu, C.; Hübner, R.; Grenzer, J.; Zeng, Y.J.; Helm, M.; Zhou, S.; Prucnal, S. Epitaxial Mn5Ge3 (100) layer on Ge (100) substrates obtained by flash lamp annealing. Appl. Phys. Lett. 2018, 113, 222401. [Google Scholar] [CrossRef]
- Abbes, O.; Portavoce, A.; Le Thanh, V.; Girardeaux, C.; Michez, L. Phase formation during Mn thin film reaction with Ge: Self-aligned germanide process for spintronics. Appl. Phys. Lett. 2013, 103, 172405. [Google Scholar] [CrossRef]
- Myagkov, V.; Zhigalov, V.; Matsynin, A.; Bykova, L.; Mikhlin, Y.L.; Bondarenko, G.; Patrin, G.; Yurkin, G.Y. Formation of ferromagnetic germanides by solid-state reactions in 20 Ge/80 Mn films. Thin Solid Films 2014, 552, 86–91. [Google Scholar] [CrossRef]
- Myagkov, V.; Bykova, L.; Matsynin, A.; Volochaev, M.; Zhigalov, V.; Tambasov, I.; Mikhlin, Y.L.; Velikanov, D.; Bondarenko, G. Solid state synthesis of Mn5Ge3 in Ge/Ag/Mn trilayers: Structural and magnetic studies. J. Solid State Chem. 2017, 246, 379–387. [Google Scholar] [CrossRef]
- Cowley, J.M. Diffraction Physics; Elsevier: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Adachi, S. Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Chuang, S.L. Physics of Photonic Devices; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Mamor, M.; Nur, O.; Karlsteen, M.; Willander, M.; Auret, F. Fermi-level pinning and Schottky barrier heights on epitaxially grown fully strained and partially relaxed n-type Si1−x Gex layers. J. Appl. Phys. 1999, 86, 6890–6894. [Google Scholar] [CrossRef]
- Sellai, A.; Mesli, A.; Petit, M.; Le Thanh, V.; Taylor, D.; Henini, M. Barrier height and interface characteristics of Au/Mn5Ge3/Ge (1 1 1) Schottky contacts for spin injection. Semicond. Sci. Technol. 2012, 27, 035014. [Google Scholar] [CrossRef]
- Lepselter, M.; Sze, S. SB-IGFET: An insulated-gate field-effect transistor using Schottky barrier contacts for source and drain. Proc. IEEE 1968, 56, 1400–1402. [Google Scholar] [CrossRef]
- Snyder, J.P.; Helms, C.; Nishi, Y. Experimental investigation of a PtSi source and drain field emission transistor. Appl. Phys. Lett. 1995, 67, 1420–1422. [Google Scholar] [CrossRef]
- Li, R.; Yao, H.; Lee, S.; Chi, D.; Yu, M.; Lo, G.; Kwong, D. Metal-germanide Schottky source/drain transistor on germanium substrate for future CMOS technology. Thin Solid Films 2006, 504, 28–31. [Google Scholar] [CrossRef]
- Sze, S.M.; Li, Y.; Ng, K.K. Physics of Semiconductor Devices; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Chang, L.T.; Fischer, I.A.; Tang, J.; Wang, C.Y.; Yu, G.; Fan, Y.; Murata, K.; Nie, T.; Oehme, M.; Schulze, J.; et al. Electrical detection of spin transport in Si two-dimensional electron gas systems. Nanotechnology 2016, 27, 365701. [Google Scholar] [CrossRef] [PubMed]
- Dankert, A.; Dulal, R.S.; Dash, S.P. Efficient spin injection into silicon and the role of the Schottky barrier. Sci. Rep. 2013, 3, 3196. [Google Scholar] [CrossRef] [PubMed]
Phase | 2 | Plane | d-Value | Unit Cell Volume | Crystallite Size | Crystallite Size | Crystallite Size | Crystallite Size | Crystallite Size |
---|---|---|---|---|---|---|---|---|---|
(h k l) | (Å) | (Å3) | (200 °C) | (250 °C) | (300 °C) | (350 °C) | (400 °C) | ||
Mn- | ° | 4 1 1 | 2.201 | 707.85 | Å | Å | Å | - | - |
MnO | 40.55° | 2 0 0 | 2.223 | 87.88 | - | - | Å | - | Å |
34.74° | 1 2 1 | 2.580 | 337.59 | - | - | Å | - | Å | |
35.46° | 0 0 2 | 2.530 | 226.114 | - | - | - | - | - | |
38.24° | 2 1 0 | 2.352 | 226.114 | - | - | - | - | - | |
38.38° | 1 0 2 | 2.343 | 226.114 | - | - | - | - | - | |
42.35° | 2 1 1 | 2.132 | 226.114 | - | - | Å | Å | Å | |
43.61° | 3 0 0 | 2.074 | 226.114 | - | - | - | - | - | |
43.73° | 1 1 2 | 2.066 | 226.114 | - | - | - | - | - | |
46.22° | 2 0 2 | 1.963 | 226.114 | - | - | - | - | - | |
35.80° | 0 0 2 | 2.487 | 218.45 | - | - | - | - | - | |
38.37° | 2 1 0 | 2.331 | 218.45 | - | - | - | - | - | |
42.53° | 2 1 1 | 2.111 | 218.45 | - | - | Å | - | Å | |
44.03° | 1 1 2 | 2.039 | 218.45 | - | - | - | - | - | |
39.32° | 3 5 1 | 2.290 | 1055.77 | - | - | - | - | - | |
41.49° | 6 1 0 | 2.175 | 1055.77 | - | - | - | - | - | |
42.26° | 2 7 0 | 2.137 | 1055.77 | - | - | - | - | - | |
42.73° | 6 2 0 | 2.115 | 1055.77 | - | - | - | - | Å | |
44.69° | 3 3 2 | 2.026 | 1055.77 | - | - | - | - | - | |
45.50° | 4 1 2 | 1.992 | 1055.77 | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hutchins-Delgado, T.A.; Addamane, S.J.; Lu, P.; Lu, T.-M. Characterization of Mn5Ge3 Contacts on a Shallow Ge/SiGe Heterostructure. Nanomaterials 2024, 14, 539. https://doi.org/10.3390/nano14060539
Hutchins-Delgado TA, Addamane SJ, Lu P, Lu T-M. Characterization of Mn5Ge3 Contacts on a Shallow Ge/SiGe Heterostructure. Nanomaterials. 2024; 14(6):539. https://doi.org/10.3390/nano14060539
Chicago/Turabian StyleHutchins-Delgado, Troy A., Sadhvikas J. Addamane, Ping Lu, and Tzu-Ming Lu. 2024. "Characterization of Mn5Ge3 Contacts on a Shallow Ge/SiGe Heterostructure" Nanomaterials 14, no. 6: 539. https://doi.org/10.3390/nano14060539
APA StyleHutchins-Delgado, T. A., Addamane, S. J., Lu, P., & Lu, T. -M. (2024). Characterization of Mn5Ge3 Contacts on a Shallow Ge/SiGe Heterostructure. Nanomaterials, 14(6), 539. https://doi.org/10.3390/nano14060539