The Influence of Machining Conditions on the Orientation of Nanocrystallites and Anisotropy of Physical and Mechanical Properties of Flexible Graphite Foils
Abstract
:1. Introduction
2. Materials and Test Methods
2.1. Production of Flexible Graphite Foils
2.2. Measurement of Flexible Graphite Foil Density
2.3. Study of the Fractional Composition of Graphite Ash
2.4. Examination of Foil Samples Using SEM
2.5. The GFs Samples Investigation by TEM
2.6. XRD Analysis of the Test Samples
2.7. Investigation of the Nanocrystallites Misorientation Angles in Graphite Foils
2.8. Preparation of Flexible Graphite Foils Samples for the Study of Mechanical Properties
3. Results and Discussion
3.1. Structural Changes of the Graphite Matrix at Different Technological Stages
3.2. Structural Changes in Flexible Graphite Foils
3.3. Tensile Strength of Flexible Graphite Foils
3.4. Elastic Characteristics of Flexible Graphite Foils
3.5. Anisotropy of Structural Characteristics and Physical and Mechanical Properties of Flexible Graphite Foils
3.5.1. Forced Reorientation of Nanocrystallites
3.5.2. Misorientation Angles of Nanocrystallites
3.5.3. Tensile Strength of Flexible Graphite Foils
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, Y.; Li, K.; Wang, Z.; Hu, M.; Cao, H.; Liu, Q. Fluctuations in Graphitization of Coal Seam-Derived Natural Graphite upon Approaching the Qitianling Granite Intrusion. Minerals 2021, 11, 1147. [Google Scholar] [CrossRef]
- Gan, L.; Xin, J.; Jiao, L. Statistical analysis of the effects of graphite crucible on viscosity measurement of silicate melts. Measurement 2019, 131, 7–12. [Google Scholar] [CrossRef]
- Kwon, H.J.; Woo, S.W.; Lee, Y.J.; Kim, J.Y.; Lee, S.M. Achieving High-Performance Spherical Natural Graphite Anode through a Modified Carbon Coating for Lithium-Ion Batteries. Energies 2021, 14, 1946. [Google Scholar] [CrossRef]
- Ariskina, R.; Stiller, M.; Precker, C.E.; Böhlmann, W.; Esquinazi, P.D. On the Localization of Persistent Currents Due to Trapped Magnetic Flux at the Stacking Faults of Graphite at Room Temperature. Materials 2022, 15, 3422. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Xiong, R.; Wang, Y.; Zhou, C.; Li, Y.; Pang, C.; Li, Z.; Zou, L.; Guo, K. Facile fabrication of low-cost and scalable graphite tape as novel current collectors for flexible supercapacitors. J. Alloys Compd. 2021, 861, 158476. [Google Scholar] [CrossRef]
- Larsson, E.; Westbroek, R.; Leckner, J.; Jacobson, S.; Rudolphi, Å.K. Grease-lubricated tribological contacts—Influence of graphite, graphene oxide and reduced graphene oxide as lubricating additives in lithium complex (LiX)- and polypropylene (PP)-thickened greases. Wear 2021, 486–487, 204107. [Google Scholar] [CrossRef]
- Qi, M.-B.; Lian, P.-F.; Li, P.-D.; Zhang, H.-Y.; Cheng, J.-X.; Wang, Q.-B.; Tang, Z.-F.; Pan, T.J.; Song, J.-L.; Liu, Z.-J. Diffusion Behavior of Iodine in the Micro/Nano-Porous Graphite for Nuclear Reactor at High Temperature. C 2023, 9, 81. [Google Scholar] [CrossRef]
- Lin, Z.; Karthik, P.S.; Hada, M.; Nishikawa, T.; Hayashi, Y. Simple Technique of Exfoliation and Dispersion of Multilayer Graphene from Natural Graphite by Ozone-Assisted Sonication. Nanomaterials 2017, 7, 125. [Google Scholar] [CrossRef]
- Correa, O.; de Abreu Filho, P.P.; Moshkalev, S.; Swart, J. Piezoresistive Sensor Based on Micrographite-Glass Thick Films. Sensors 2022, 22, 3256. [Google Scholar] [CrossRef]
- Chow, D.; Burns, N.; Boateng, E.; van der Zalm, J.; Kycia, S.; Chen, A. Mechanical Exfoliation of Expanded Graphite to Graphene-Based Materials and Modification with Palladium Nanoparticles for Hydrogen Storage. Nanomaterials 2023, 13, 2588. [Google Scholar] [CrossRef]
- Celzard, A.; Marêché, J.F.; Furdin, G. Modelling of Exfoliated Graphite. Prog. Mater. Sci. 2005, 50, 93–179. [Google Scholar] [CrossRef]
- Efimova, E.A.; Syrtsova, D.A.; Teplyakov, V.V. Gas Permeability through Graphite Foil: The Influence of Physical Density, Membrane Orientation and Temperature. Sep. Purif. Technol. 2017, 179, 467–474. [Google Scholar] [CrossRef]
- Celzard, A.; Marêché, J.F. Permeability and Formation Factor in Compressed Expanded Graphite. J. Phys. Condens. Matter 2001, 13, 4387. [Google Scholar] [CrossRef]
- Ivanov, A.V.; Yurkov, A.L.; Kalachev, I.L.; Maksimova, N.V.; Malakho, A.P.; Volkova, S.I.; Avdeev, V.V. The Influence of Processing Conditions on Gas Transport and Thermal Properties of Graphite Foil Compressed from Exfoliated Graphite. Processes 2023, 11, 144. [Google Scholar] [CrossRef]
- Cermak, M.; Perez, N.; Collins, M.; Bahrami, M. Material properties and structure of natural graphite sheet. Sci. Rep. 2020, 10, 18672. [Google Scholar] [CrossRef]
- Szweda, R. Non-Asbestos Seals and Gaskets—Pain or Boon? Seal. Technol. 2001, 2001, 7–10. [Google Scholar] [CrossRef]
- Yakovlev, A.V.; Finaenov, A.I.; Zabud’kov, S.L.; Yakovleva, E.V. Thermally Expanded Graphite: Synthesis, Properties, and Prospects for Use. Russ. J. Appl. Chem. 2006, 79, 1741–1751. [Google Scholar] [CrossRef]
- Solfiti, E.; Berto, F. Mechanical Properties of Flexible Graphite: Review. Procedia Struct. Integr. 2020, 25, 420–429. [Google Scholar] [CrossRef]
- Ionov, S.G.; Avdeev, V.V.; Kuvshinnikov, S.V.; Pavlova, E.P. Physical and Chemical Properties of Flexible Graphite Foils. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A Mol. Cryst. Liq. Cryst. 2000, 340, 349–354. [Google Scholar] [CrossRef]
- Örüm Aydin, A.; Zajonz, F.; Günther, T.; Dermenci, K.B.; Berecibar, M.; Urrutia, L. Lithium-Ion Battery Manufacturing: Industrial View on Processing Challenges, Possible Solutions and Recent Advances. Batteries 2023, 9, 555. [Google Scholar] [CrossRef]
- Qiu, T.; Liang, L.H. Research on the thickness effect and micro-fracture mechanism of graphite sheets with layered structures. Diam. Relat. Mater. 2024, 143, 110908. [Google Scholar] [CrossRef]
- Leng, Y.; Gu, J.; Cao, W.; Zhang, T.-Y. Influences of density and flake size on the mechanical properties of flexible graphite. Carbon 1998, 36, 875–881. [Google Scholar] [CrossRef]
- Harrington, G.F.; Santiso, J. Back-to-Basics tutorial: X-ray diffraction of thin films. J. Electroceram. 2021, 47, 141–163. [Google Scholar] [CrossRef]
- Schafhaeutl, C. Ueber die Verbindungen des Kohlenstoffes mit Silicium, Eisen und Anderen Metallen, Welche die Verschiedenen Gallungen von Roheisen, Stahl und Schmiedeeisen Bilden. J. Prakt. Chem. 1840, 21, 129–157. [Google Scholar] [CrossRef]
- Ebert, L.B. Intercalation Compounds of Graphite. Annu. Rev. Mater. Sci. 1976, 6, 181–211. [Google Scholar] [CrossRef]
- Fischer, J.E.; Thompson, T.E. Graphite Intercalation Compounds. Phys. Today 1978, 31, 36–45. [Google Scholar] [CrossRef]
- Noel, M.; Santhanam, R. Electrochemistry of Graphite Intercalation Compounds. J. Power Sources 1998, 72, 53–65. [Google Scholar] [CrossRef]
- Ivanov, A.V.; Volkova, S.I.; Maksimova, N.V.; Pokholok, K.V.; Kravtsov, A.V.; Belik, A.A.; Posokhova, S.M.; Kalachev, I.L.; Avdeev, V.V. Exfoliated graphite with γ-Fe2O3 for the removal of oil and organic pollutants from the water surface: Synthesis, Mossbauer study, sorption and magnetic properties. J. Alloys Compd. 2023, 960, 170619. [Google Scholar] [CrossRef]
- Lin, H.-Y.; Cheng, H.-Z.; Lee, K.-J.; Wang, C.-F.; Liu, Y.-C.; Wang, Y.-W. Effect of Carbonaceous Components on Tribological Properties of Copper-Free NAO Friction Material. Materials 2020, 13, 1163. [Google Scholar] [CrossRef]
- Chung, D.D.L. A Review of Exfoliated Graphite. J. Mater. Sci. 2016, 51, 554–568. [Google Scholar] [CrossRef]
- Aibada, N.; Manickam, R.; Gupta, K.; Raichurkar, P. Review on Various Gaskets Based on the Materials, Their Characteristics and Applications. Int. J. Text. Eng. Process 2017, 3, 12–18. [Google Scholar]
- Wei, X.H.; Liu, L.; Zhang, J.X.; Shi, J.L.; Guo, Q.G. Mechanical, electrical, thermal performances and structure characteristics of flexible graphite sheets. J. Mater. Sci. 2010, 45, 2449–2455. [Google Scholar] [CrossRef]
- Chung, D.D.L. Exfoliation of Graphite. J. Mater. Sci. 1987, 22, 4190–4198. [Google Scholar] [CrossRef]
- Balima, F.; Pischedda, V.; Le Floch, S.; Brûlet, A.; Lindner, P.; Duclaux, L.; San-Miguel, A. An In Situ Small Angle Neutron Scattering Study of Expanded Graphite under a Uniaxial Stress. Carbon 2013, 57, 460–469. [Google Scholar] [CrossRef]
- Balima, F.; Le Floch, S.; San-Miguel, A.; Lindner, P.; Brûlet, A.; Duclaux, L.; Pischedda, V. Shear Effects on Expanded Graphite under Uniaxial Pressure: An In Situ Small Angle Neutron Scattering Study. Carbon 2014, 74, 54–62. [Google Scholar] [CrossRef]
- Menegazzo, D.; Lombardo, G.; Bobbo, S.; De Carli, M.; Fedele, L. State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review. Energies 2022, 15, 2685. [Google Scholar] [CrossRef]
- Tarannum, F.; Danayat, S.S.; Nayal, A.; Muthaiah, R.; Annam, R.S.; Garg, J. Large Enhancement in Thermal Conductivity of Solvent−Cast Expanded Graphite/Polyetherimide Composites. Nanomaterials 2022, 12, 1877. [Google Scholar] [CrossRef]
- Papanikolaou, I.; Litina, C.; Zomorodian, A.; Al-Tabbaa, A. Effect of Natural Graphite Fineness on the Performance and Electrical Conductivity of Cement Paste Mixes for Self-Sensing Structures. Materials 2020, 13, 5833. [Google Scholar] [CrossRef]
- Hentrich, A.; Esquinazi, P.D. Effects of the Stacking Faults on the Electrical Resistance of Highly Ordered Graphite Bulk Samples. C 2020, 6, 49. [Google Scholar] [CrossRef]
- Acuña, P.; Li, Z.; Santiago-Calvo, M.; Villafañe, F.; Rodríguez-Perez, M.Á.; Wang, D.-Y. Influence of the Characteristics of Expandable Graphite on the Morphology, Thermal Properties, Fire Behaviour and Compression Performance of a Rigid Polyurethane Foam. Polymers 2019, 11, 168. [Google Scholar] [CrossRef]
- Hou, S.; He, S.; Zhu, T.; Li, J.; Ma, L.; Du, H.; Shen, W.; Kang, F.; Huang, Z.-H. Environment-Friendly Preparation of Exfoliated Graphite and Functional Graphite Sheets. J. Mater. 2021, 7, 136–145. [Google Scholar] [CrossRef]
- Ivanov, A.V.; Maksimova, N.V.; Manylov, M.S.; Kirichenko, A.N.; Kalachev, I.L.; Malakho, A.P.; Avdeev, V.V. Gas Permeability of Graphite Foil Prepared from Exfoliated Graphite with Different Microstructures. J. Mater. Sci. 2021, 56, 4197–4211. [Google Scholar] [CrossRef]
- Solfiti, E.; Berto, F. A review on thermophysical properties of flexible graphite. Procedia Struct. Integr. 2020, 26, 187–198. [Google Scholar] [CrossRef]
- Wang, F.Q.; Zhang, L.Z.; Li, Y.; Gong, B.Y.; Xu, H.Y.; Xiao, G.K.; Cai, R.L. Research on Compression Performance of Flexible Graphite Packing Rings with Different Density. Procedia Eng. 2015, 130, 644–651. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, X.; Li, K. High Pressure Sealing Characteristics of Combined Structure Based on Flexible Graphite Rings. Adv. Mech. Eng. 2023, 15, 16878132231182368. [Google Scholar] [CrossRef]
- Yurkov, A.L.; Malakho, A.P.; Ivanov, A.V.; Chernova, E.A.; Belogorlov, A.A.; Avdeev, V.V. Studying the porosity of graphite foil with different densities: Pore space model and gas permeability. J. Mater. Sci. 2022, 57, 21156–21171. [Google Scholar] [CrossRef]
- Saidaminov, M.I.; Maksimova, N.V.; Zatonskih, P.V.; Komarov, A.D.; Lutfullin, M.A.; Sorokina, N.E.; Avdeev, V.V. Thermal decomposition of graphite nitrate. Carbon 2013, 59, 337–343. [Google Scholar] [CrossRef]
- ASTM C561-23; Standard Test Method for Ash in a Graphite Sample. ASTM: West Conshohocken, PA, USA, 2023. Available online: https://www.astm.org/c0561-23.html (accessed on 10 March 2024).
- Lee, S.M.; Lee, S.H.; Roh, J.S. Analysis of Activation Process of Carbon Black Based on Structural Parameters Obtained by XRD Analysis. Crystals 2021, 11, 153. [Google Scholar] [CrossRef]
- Balzar, D.; Audebrand, N.; Daymond, M.R.; Fitch, A.; Hewat, A.; Langford, J.I.; Le Bail, A.; Louer, D.; Masson, O.; McCowan, C.N.; et al. Size–strain line-broadening analysis of the ceria round-robin sample. J. Appl. Cryst. 2004, 37, 911–924. [Google Scholar] [CrossRef]
- Warren, B.E. X-ray Diffraction; Addison-Wesley Publishing Company: Boston, MA, USA, 1969; p. 381. [Google Scholar]
- Scherrer, P. Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Göttinger Nachrichten Gesell. 1918, 2, 98–100. [Google Scholar]
- Patterson, A. The Scherrer Formula for X-ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Stokes, A.R.; Wilson, A.J.C. The diffraction of X rays by distorted crystal aggregates—I. Proc. Phys. Soc. 1944, 56, 174. [Google Scholar] [CrossRef]
- Williamson, G.K.; Hall, W.H. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953, 1, 22–31. [Google Scholar] [CrossRef]
- Cea, T.; Walet, N.R.; Guinea, F. Twists and the Electronic Structure of Graphitic Materials. Nano Lett. 2019, 19, 8683–8689. [Google Scholar] [CrossRef] [PubMed]
- ASTM F152-95(2017); Standard Test Methods for Tension Testing of Nonmetallic Gasket Materials. ASTM: West Conshohocken, PA, USA, 2017. Available online: https://www.astm.org/f0152-95r17.html (accessed on 10 March 2024).
- ASTM F36-15(2021); Standard Test Method for Compressibility and Recovery of Gasket Materials. ASTM: West Conshohocken, PA, USA, 2021. Available online: https://www.astm.org/f0036-15r21.html (accessed on 10 March 2024).
- Magazzù, A.; Marcuello, C. Investigation of Soft Matter Nanomechanics by Atomic Force Microscopy and Optical Tweezers: A Comprehensive Review. Nanomaterials 2023, 13, 963. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tu, C.; Liu, Y.; Liu, P.; Gong, P.; Wu, G.; Huang, X.; Chen, J.; Liu, T.; Jiang, J. Microstructure and mechanical properties of carbon graphite composites reinforced by carbon nanofibers. Carbon Lett. 2023, 33, 561–577. [Google Scholar] [CrossRef]
GF 365 | GF 366 | GF 367 | |||
---|---|---|---|---|---|
h, μm | ρ, g/cm3 | h, μm | ρ, g/cm3 | h, μm | ρ, g/cm3 |
282 ± 5 | 0.73 ±0.01 | 494 ± 7 | 0.705 ± 0.03 | 746 ± 8 | 0.70 ± 0.01 |
207 ± 3 | 0.99 ± 0.03 | 342 ± 3 | 1.03 ± 0.07 | 510 ± 5 | 1.02 ± 0.01 |
157 ± 5 | 1.30 ± 0.03 | 266 ± 4 | 1.29 ± 0.11 | 396 ± 5 | 1.30 ± 0.01 |
127 ± 5 | 1.58 ± 0.04 | 211 ± 4 | 1.56 ± 0.02 | 320 ± 4 | 1.59 ± 0.01 |
108 ± 3 | 1.75 ± 0.04 | 191 ± 6 | 1.74 ± 0.03 | 286 ± 8 | 1.73 ± 0.02 |
2θ, ° | d, nm | , ° | hk.l |
---|---|---|---|
21.33 | 0.41623 (7) | 0.079 (6) | 100 |
30.36 | 0.29416 (3) | 0.078 (3) | 110 |
37.43 | 0.24005 (2) | 0.085 (4) | 111 |
43.49 | 0.20790 (3) | 0.078 (6) | 200 |
48.95 | 0.18592 (1) | 0.085 (3) | 210 |
53.99 | 0.16969 (2) | 0.081 (5) | 211 |
63.22 | 0.14697 (1) | 0.071 (8) | 220 |
67.55 | 0.13856 (1) | 0.087 (3) | 300 |
71.75 | 0.13145 (1) | 0.078 (4) | 310 |
75.86 | 0.12532 (1) | 0.091 (7) | 311 |
79.91 | 0.11995 (2) | 0.100 (20) | 222 |
83.87 | 0.11527 (1) | 0.093 (17) | 320 |
87.81 | 0.11108 (1) | 0.093 (7) | 321 |
Graphite Type | 2θ, ° | d, nm | FWHM-, ° | Iint, Count·° | , nm | , nm | ε | hk.l |
---|---|---|---|---|---|---|---|---|
PG | 26.54 | 0.33557 (4) | 0.191 (2) | 51,320 | 57.3 ± 13.3 | 36.5 ± 0.9 | −0.0027 | 00.2 |
48.96 | 0.18590 (5) | 0.203 (15) | 32 | 10.2 | ||||
54.66 | 0.16776 (7) | 0.157 (3) | 2992 | 00.4 | ||||
59.81 | 0.15451 (19) | 0.790 (12) | 34 | 10.3 | ||||
87.07 | 0.11181 (1) | 0.159 (2) | 723 | 00.6 | ||||
GIC | 24.07 | 0.36948 (10) | 0.644 (5) | 45,393 | - | - | - | 00.3 |
24.50 | 0.36304 (3) | 0.261 (3) | 58,576 | 00.5 | ||||
30.99 | 0.28829 (5) | 0.421 (5) | 20,275 | 00.6 | ||||
32.03 | 0.27917 (8) | 0.730 (20) | 9624 | 00.4 | ||||
37.28 | 0.24097 (7) | 0.790 (20) | 2451 | 00.6 | ||||
40.43 | 0.22294 (17) | 0.780 (50) | 495 | 00.5 | ||||
49.15 | 0.18523 (4) | 0.400 (30) | 834 | 00.6 | ||||
50.28 | 0.18133 (4) | 0.492 (14) | 3034 | 00.8 | ||||
57.38 | 0.16054 (1) | 0.264 (4) | 4492 | 00.9 | ||||
57.87 | 0.15920 (1) | 0.480 (20) | 2858 | 00.7 | ||||
66.09 | 0.14125 (6) | 0.970 (17) | 81 | 00.8 | ||||
77.25 | 0.12340 (4) | 0.780 (50) | 228 | 00.9 | ||||
79.38 | 0.12061 (1) | 0.860 (50) | 241 | 00.12 | ||||
OG | 25.87 | 0.34409 (6) | 1.334 (9) | 150,868 | - | - | - | |
26.81 | 0.33229 (6) | 0.299 (6) | 81,535 | 00.2 | ||||
53.25 | 0.17188 (11) | 1.430 (60) | 1901 | |||||
55.26 | 0.16610 (1) | 0.606 (6) | 9837 | 00.4 | ||||
87.37 | 0.11153 (1) | 0.508 (14) | 589 | 00.6 | ||||
TEG | 26.57 | 0.33520 (40) | 0.410 (30) | 13 | 20.5 ± 1.5 | - | - | 00.2 |
GF | Thickness, µm | 2θ, ° | d, nm | FWHM -, ° | Iint, Count ° | , nm | ε | hk.l | |
---|---|---|---|---|---|---|---|---|---|
365 | 0.7 | 26.55 | 0.33547 (8) | 0.336 (8) | 20,282 | 24.8 ± 0.5 | 24.8 ± 1.3 | 0.0003 | 00.2 |
54.65 | 0.16779 (2) | 0.363 (7) | 908 | 00.4 | |||||
86.94 | 0.11195 (1) | 0.463 (19) | 101 | 00.6 | |||||
1.3 | 26.56 | 0.33531 (8) | 0.302 (8) | 37,966 | 24.5 ± 4.7 | 37.5 ± 1.7 | 0.005 | 00.2 | |
54.67 | 0.16774 (2) | 0.342 (7) | 1662 | 00.4 | |||||
87.05 | 0.11185 (2) | 0.587 (17) | 184 | 00.6 | |||||
1.7 | 26.53 | 0.33567 (7) | 0.285 (7) | 40,690 | 24.0 ± 5.2 | 39.7 ± 1.5 | 0.0057 | 00.2 | |
54.65 | 0.16779 (2) | 0.386 (8) | 1805 | 00.4 | |||||
87.13 | 0.11177 (1) | 0.590 (13) | 201 | 00.6 | |||||
366 | 0.7 | 26.54 | 0.33553 (7) | 0.367 (7) | 23,360 | 21.4 ± 3.0 | 27.2 ± 1.1 | 0.0035 | 00.2 |
54.63 | 0.16787 (2) | 0.390 (7) | 1105 | 00.4 | |||||
87.06 | 0.11184 (3) | 0.620 (20) | 124 | 00.6 | |||||
1.3 | 26.55 | 0.33550 (7) | 0.333 (8) | 43,738 | 24.4 ± 1.5 | 26.7 ± 0.8 | 0.0015 | 00.2 | |
54.65 | 0.16781 (2) | 0.360 (7) | 2109 | 00.4 | |||||
87.07 | 0.11183 (1) | 0.500 (2) | 274 | 00.6 | |||||
1.7 | 26.55 | 0.33551 (3) | 0.288 (2) | 60,881 | 23.3 ± 6.1 | 49.6 ± 1.9 | 0.0078 | 00.2 | |
54.67 | 0.16773 (2) | 0.379 (9) | 2812 | 00.4 | |||||
87.09 | 0.11181 (2) | 0.670 (20) | 356 | 00.6 | |||||
367 | 0.7 | 26.56 | 0.33530 (6) | 0.381 (7) | 25,849 | 20.7 ± 2.1 | 24.8 ± 1.0 | 0.0027 | 00.2 |
54.67 | 0.16775 (2) | 0.418 (7) | 1265 | 00.4 | |||||
87.04 | 0.11186 (3) | 0.610 (20) | 167 | 00.6 | |||||
1.3 | 26.55 | 0.33541 (7) | 0.350 (7) | 48,555 | 23.2 ± 1.3 | 25.2 ± 0.9 | 0.0012 | 00.2 | |
54.65 | 0.16781 (2) | 0.379 (6) | 2511 | 00.4 | |||||
87.08 | 0.11181 (1) | 0.515 (13) | 337 | 00.6 | |||||
1.7 | 26.53 | 0.33565 (8) | 0.321 (8) | 58,030 | 22.4 ± 4.1 | 33.9 ± 1.4 | 0.0052 | 00.2 | |
54.65 | 0.16781 (2) | 0.392 (7) | 2993 | 00.4 | |||||
87.068 | 0.11183 (2) | 0.621 (17) | 396 | 00.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shulyak, V.A.; Morozov, N.S.; Ivanov, A.V.; Gracheva, A.V.; Chebotarev, S.N.; Avdeev, V.V. The Influence of Machining Conditions on the Orientation of Nanocrystallites and Anisotropy of Physical and Mechanical Properties of Flexible Graphite Foils. Nanomaterials 2024, 14, 540. https://doi.org/10.3390/nano14060540
Shulyak VA, Morozov NS, Ivanov AV, Gracheva AV, Chebotarev SN, Avdeev VV. The Influence of Machining Conditions on the Orientation of Nanocrystallites and Anisotropy of Physical and Mechanical Properties of Flexible Graphite Foils. Nanomaterials. 2024; 14(6):540. https://doi.org/10.3390/nano14060540
Chicago/Turabian StyleShulyak, Vladimir A., Nikolai S. Morozov, Andrei V. Ivanov, Alexandra V. Gracheva, Sergei N. Chebotarev, and Viktor V. Avdeev. 2024. "The Influence of Machining Conditions on the Orientation of Nanocrystallites and Anisotropy of Physical and Mechanical Properties of Flexible Graphite Foils" Nanomaterials 14, no. 6: 540. https://doi.org/10.3390/nano14060540
APA StyleShulyak, V. A., Morozov, N. S., Ivanov, A. V., Gracheva, A. V., Chebotarev, S. N., & Avdeev, V. V. (2024). The Influence of Machining Conditions on the Orientation of Nanocrystallites and Anisotropy of Physical and Mechanical Properties of Flexible Graphite Foils. Nanomaterials, 14(6), 540. https://doi.org/10.3390/nano14060540