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Abstract: In this study, we used multilayer graphene oxide (GO) obtained by anodic oxidation of
graphite powder in 83% sulfuric acid. The modification of GO was carried out by its interaction with
hexamethylenediamine (HMDA) according to the mechanism of nucleophilic substitution between
the amino group of HMDA (HMDA) and the epoxy groups of GO, accompanied by partial reduction
of multilayer GO and an increase in the deformation of the carbon layers. The structure and properties
of modified HMDA-GO were characterized using research methods such as scanning electron
microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy
and Raman spectroscopy. The conducted studies show the effectiveness of using HMDA-OG for
modifying epoxy composites. Functionalizing treatment of GO particles helps reduce the free surface
energy at the polymer–nanofiller interface and increase adhesion, which leads to the improvement
in physical and mechanical characteristics of the composite material. The results demonstrate an
increase in the strength and elastic modulus in bending by 48% and 102%, respectively, an increase
in the impact strength by 122%, and an increase in the strength and elastic modulus in tension by
82% and 47%, respectively, as compared to the pristine epoxy composite which did not contain
GO-HMDA. It has been found that the addition of GO-HMDA into the epoxy composition initiates
the polymerization process due to the participation of reactive amino groups in the polymerization
reaction, and also provides an increase in the thermal stability of epoxy nanocomposites.

Keywords: graphene oxide; electrochemical synthesis; hexamethylenediamine; epoxy resin; modification;
structure; properties
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1. Introduction

Since the discovery of graphene [1], the relevance of the development of the scientific
component of this allotropic modification of carbon has been gaining importance. In
particular, the development of the chemistry of graphene derivatives, graphene oxide
(GO) being one of such graphene forms, has received great interest [2]. One of the ways
to change the functional properties of GO is covalent or non-covalent modification of
GO [3–5], which is essential for the creation of various composite materials [6,7]. Interest
in the derivatization of GO stems from the wide possibilities of regulating the chemical
and physical properties of the material which are due to the addition of a certain amount
of both organic functional groups on the basal plane and on the edge sections of GO and
of inorganic compounds [8–11]. There has been growing interest in the modification of
organic structures containing an amino group, especially aliphatic and/or aromatic amines,
to change the structure of the GO surface [12–14].

Thus, in [15], synthesis by a two-stage liquid-phase treatment with bromic acid and
ammonia solution is described. Using X-ray photoelectron spectroscopy (XPS), the degree
of amination of the resulting aminated graphene oxide is defined, which was about 4 atomic
%, the C/O ratio reached 8.8. The authors describe the chemical reactivity of the added
amines, which is confirmed by the successful testing of the covalent modification of the
resulting aminated graphene with 3-chlorobenzoyl chloride.

Chakraborty et al. [16] have demonstrated the possibility of amination of GO by a one-
step synthesis method using short-chain alkylamine n-butylamine without applying toxic
precursors such as thionyl/acyl chlorides. The method also eliminates the stage of reducing
other GO functional groups. The presence of nitrogen on the surface of graphene oxide
was confirmed using energy dispersive analysis and X-ray photoelectron spectroscopy. The
XPS spectrum of N1s further confirmed the presence of nitrogen in the form of a secondary
amine and amide, based on which the authors have proposed a model of the reaction
mechanism.

The authors in [17] have described a one-step procedure for the functionalization
of graphene oxide with aromatic and non-aromatic amines, such as dibenzylamine, p-
phenylenediamine, diisopropylamine and piperidine, using a microwave reaction. The
synthesized amine-functionalized materials of graphene oxide (amine-GO) were character-
ized by spectroscopic techniques including X-ray diffraction (XRD), FTIR, carbon-13 (C13)
nuclear magnetic resonance, XPS, transmission electron microscopy (TEM) and thermo-
gravimetric analysis (TGA). Comparative characteristics of analyses have confirmed the
functionalization for all amines, achieving relatively high surface atomic nitrogen concen-
trations of up to 8.8%. The addition of nitrogen-containing fragments will not only change
the functionality of GO, but also the chemical, optical and electronic properties, due to the
replacement of oxygen-containing groups by nitrogen-containing fragments.

Modified GO particles are widely used in the technology of producing polymer ma-
terials for various purposes. The functionalization of GO makes it possible to achieve
increased strength, thermal stability, fire safety, etc., due to the chemical interaction
of functional groups on the surface of GO with reactive groups of the matrix. In this
study [18], a nanocomposite coating based on the epoxy matrix and GO modified with p-
phenylenediamine was prepared. The anticorrosion properties of the resulting coating were
enhanced by an increase in the degree of filling to 0.1 wt.% due to the chemical interaction
between the matrix and amine functional groups; a further decrease in properties is ex-
plained by the formation of GO agglomerates. The lowest losses of adhesion were similarly
noted for the coating filled with 0.1 wt.% GO, which is explained by the formation of hy-
drogen bonds between the matrix and the steel substrate. Zhi and colleagues [19] gradually
grafted 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and vinyltriethoxysilane
(DOPO−VTES−GO) onto the GO surface to improve the thermal stability and fire safety
performance of the epoxy matrix. The addition of 5 wt.% DOPO−VTES−GO resulted in an
increase in coke yield in the matrix with pristine GO from 19.4 wt.% up to 30.2 wt.% due to
the fact that phosphorus accelerates the process of the formation of the coke layer, while
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silicon improves its stability in the process of the thermal destruction. In a similar way,
the functionalization effected the flammability of the polymer by increasing the following
indicators: limiting oxygen index (LOI) from 22.3 to 27.5%; the time before the ignition
from 88 to 106 s, having reduced the peak heat release rate from 526 to 390 kW/m2, as well
as the total heat release from 93 to 59 MJ/m2. The functionalization of GO changes the
structure of the coke layer to a more compact and homogeneous one, which allows us to
better protect the epoxy matrix from combustion and prevents the leakage of flammable
gases due to the barrier effect. In the study [20], it was possible to increase the main
deformation-strength characteristics of the epoxy matrix due to the treatment of GO par-
ticles with 3-glycidoxypropyltrimethoxy silane. Tensile, flexural and impact strengths
increased by ~10%, ~20% and ~24%, respectively, which is explained by better energy
dissipation because of crack deflection when it collides with GO particles.

This paper is devoted to the study of the synthesis conditions and possibilities of the
functionalization of electrochemically synthesized graphene oxide with hexamethylene-
diamine and its use as an effective modifier for epoxy composites. The choice of hexam-
ethylenediamine as a functionalizing agent is due to the fact that it contains functional
groups capable of chemical interaction with the functional groups of both GO and the epoxy
oligomer [21,22]. The functionalization of nanofillers with various functional reagents con-
taining groups capable of chemical interaction with both polymers and the nanofiller,
in most cases, significantly improves the interaction of the nanofiller with the polymer
matrix. At the same time, the surface free energy at the nanofiller–polymer interface de-
creases, while the adhesion increases, which generally results in a significant increase in
the deformation-strength properties of polymer composites [23–25].

2. Materials and Methods
2.1. Materials

Dispersed graphite powder (brand code IG-GNP-1) produced in Russia was used in
the studies. To obtain polymer composites, we used epoxy diane resin ED-20 and polyethy-
lene polyamine (PEPA) as a hardener, produced by CHIMEX Limited (St. Petersburg,
Russia). Tris(1-chloro-2-propyl) phosphate (TCPP) from Xuancheng City Trooyawn Refined
Chemical Industry Co., Ltd. (Xuancheng, China) was used to improve the elasticity and
reduce the fire hazard of epoxy composites. The presence of phosphorus and chlorine
atoms, which are combustion inhibitors in the TCPP molecule, allow us to use it as a fire
retardant. The mechanism of reducing the flammability of epoxy composites, when adding
TCPP into the composition, was studied by us earlier and described in detail in [26].

2.2. Preparation of GO-HMDA

Electrochemical measurements were carried out on a P-150x potentiostat (Elins LLC,
Zelenograd, Russia) in a three-electrode cell using a platinum cathode and anode current
collector and an 83% H2SO4 electrolyte. Electrode potentials were measured relative to
a mercury sulfate reference electrode (Hg/Hg2SO4/K2SO4). Electrochemically oxidized
graphite with an amount of electricity of 0.7 A·g·h−1 in a galvanostatic mode was washed in
double-distilled water (t = 15–18 ◦C) for 15 min to remove residual sulfuric acid compounds.
Electrochemically obtained multilayer graphene oxide (0.1 g) was dispersed in 10 mL of
N,N-dimethylformamide using ultrasonic treatment in a STEGLER 5 DT ultrasonic bath
(frequency 40 KHz) at 25 ◦C for 2 h. The resulting dispersion was refluxed at 90 ◦C with
0.3 g of 1,3-dicyclohexylcarbodiimide and 1 g of hexamethylenediamine (HMDA) for 10 h.
The resulting GO-HMDA was filtered and washed with 100 mL of distilled water and
100 mL of ethanol and dried at 80 ◦C.

2.3. Preparation of Epoxy Nanocomposites

The optimal content of TCPP in the epoxy composition is 40 parts by mass, so the
initial epoxy composition had the following composition: ED-20 (100 parts by mass), PEPA
(15 parts by mass) and TCPP (40 parts by mass). GO and GO-HMDA were added into the
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epoxy composition as a nanostructuring agent (0.1 parts by mass). To uniformly distribute
and prevent the aggregation of GO and GO-HMDA particles, the epoxy composition was
subjected to ultrasonic processing for 30 min at an ultrasonic frequency of 22 ± 2 kHz
and an emitter power of 400 W. Before being poured into molds, the epoxy composition
was degassed under vacuum for 30 min. Curing of the epoxy composition was carried
out in three stages: first, it was cured under natural conditions at room temperature for
24 ± 1 h; after that the samples were successively heat treated for 2 h at 90 ± 5 ◦C and then
120 ± 5 ◦C, respectively.

2.4. Methods

To record the diffraction patterns of GO and GO-HMDA, the ARL X’TRA instrument
(Thermo Scientific, Ecublens, Switzerland) was used with CuKα radiation (λ = 0.15412 nm).
Diffraction patterns were recorded in the 2θ range from 5◦ to 40◦ at a scanning speed of
2◦/min. The surface and structure of the nanostructured graphite particles and the structure
of the epoxy composite based on them were studied using a scanning electron microscope
with built-in energy dispersive analysis EXplorer (ASPEX, Framingham, MA, USA). Fourier
transform infrared spectroscopy (FTIR) was performed on the FT-801 FTIR spectrometer
(Simex, Novosibirsk, Russia) in the range of 4000–500 cm−1 at room temperature. Raman
spectra were recorded using a Renishaw InVia Reflex Raman spectrometer (Wotton-under-
Edge, England, UK) equipped with an air-cooled RenCam CCD detector. A laser line with a
wavelength of 532 nm was used as an excitation source. To record the spectra, an exposure
time of 60 s was used at a power of 1%.

To determine the deformation-strength properties of epoxy composites, a testing
machine WDW-5E from Time Group Inc (Beijing, China) was used. The corresponding
flexural and tensile strengths were determined according to [27] and [28], respectively,
and 5 samples were tested for each group. The impact strength of the epoxy composites
was determined according to [29] using an LCT-50D pendulum tester (Beijing United Test
Co., Ltd., China) and 5 samples were tested for each group. The heat resistance of the
composites according to Vicat softening temperature was determined according to [30]
using the B50 method. Kinetic curing curves of epoxy compositions were plotted according
to the method described in [31]. Data of differential scanning calorimetry were obtained
using a “DTAS-1300” device (Samara, Russia); the mass of the analyzed sample was 20 mg,
the heating rate was 16 degrees and the duration was a minute. Thermal resistance of the
samples was determined by thermogravimetric analysis using a Q-1500D derivatograph
(MOM, Budapest, Hungary) of the Paulik–Paulik–Erdey system; the mass of the analyzed
sample was 100 mg, and the studies were carried out in air, in the temperature range of
20–1000 ◦C and at a heating rate of 10 ◦C/min.

3. Results

Graphene oxide (multilayer) was obtained by electrochemical (anodic) oxidation of
dispersed graphite in sulfuric acid [32]. The surface modification was carried out using
the chemical reaction of HMDA and electrochemically synthesized graphene oxide (GO).
The probable interaction of graphene oxide with hexamethylenediamine occurs through
the mechanism of nucleophilic substitution between the amino group of HMDA and the
epoxy groups (-C-O-C-) of GO; the second possible process is the amidation of the carboxyl
groups of GO, as shown in Figure 1.
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Figure 1. Scheme for obtaining modification of graphene oxide with hexamethylenediamine.

To identify the structure and to study the properties of the synthesized GO and
GO-HMDA, methods of IR, IR-Raman spectroscopy and XRD SEM were used.

According to the results of scanning electron microscopy, shown in Figure 2c,d, the
structure of the GO-HMDA particles is presented by randomly distributed particles, in
contrast to the agglomerated clusters of particles of multilayer GO synthesized by the
electrochemical method, as shown in Figure 2a,b. It can be assumed that when modified
with hexamethylenediamine, partial reduction of multilayer graphene oxide occurs, since
the presence of surface oxygen groups contributes to the agglomeration of particles. At the
same time, the deformation of the surface of carbon particles increases after the interaction
with hexamethylenediamine.
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The IR spectrum of GO, shown in Figure 3, shows an intense peak at 3481 cm−1,
corresponding to vibrations of hydroxyl groups also located between the graphene layers
(peak~3300 cm−1). There is a peak at 1711 cm−1 (C=O group). The peak at 1635 cm−1 is
due to the presence of sp2-hybridization of C=C in the graphene structure. The broad band
at ~1103 cm−1 corresponds to the bending vibrations of the bonds of epoxy groups [33].
The band at 1350 cm−1 represents the bending vibration of -COOH groups. In the IR
spectrum of GO-HMDA, the peak corresponding to vibrations of hydroxyl groups shifts
to the region of ~3400 cm−1, the peak at 1635 cm−1 shifts to 1602 cm−1, and the peaks at
1711 and 1103 cm−1 are not observed, which likely indicates the reduction of carbonyl and
epoxy groups. The IR spectrum of GO-HMDA shows peaks at 1534 cm−1 and 1248 cm−1,
which correspond to the bending vibrations of the C-N fragment, and a broad peak of
bending vibrations at 1100 cm−1 (C-N stretching).
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The XRD results in Figure 4 show that a signal with a peak maximum at 2θ = 11.86◦,
corresponding to the diffraction index of the (001) plane, is recorded in the GO X-ray diffrac-
tion pattern. The reflection at 2θ = 26.12◦ corresponds to the graphite phase (002); however,
the peak of the graphene oxide (001) phase is absent in the GO-HMDA diffraction pattern.

The Raman spectrum of GO is characterized by intense D and G bands and a broad
2D band, as shown in Figure 5, the positions of which are given in Table 1.

The intense G band describes vibrations of the system of sp2-hybridized carbon bonds,
while the D band indicates the formation of sp3-hybridized bonds as a result of graphite
oxidation and increased structural defects, as follows from the table. The presence of
oxygen atoms causes both an increase in the interplanar distance and a change in the
vibration characteristics in the material lattice. For this reason, the Raman spectrum of
GO is characterized by more intense D peaks compared to the D peaks of non-oxidized or
exfoliated graphites [34].
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Table 1. Position of D, G and 2D bands in Raman spectra and crystallite size of samples of GO and
GO-HMDA.

Sample Position of the Band
(cm−1) Pick Identification ID/IG I2D/IG Crystalline Size La (nm)

GO

1358 D

0.91 0.95 21.13

1612 G

2708 2D

2953 D + D′

2477 D*

3198 2D′

GO-HMDA

1349 D

1.35 0.29 14.19

1587 G

1616 D′

2692 2D

2945 D + D′

3191 2D′

The greater the formation of oxygen-containing groups, the greater the intensity of
this peak. The spectrum also contains a 2D band, which characterizes the ordered stacking
of carbon layers. Depending on the position, shape and intensity in the two-dimensional
band obtained as a result of the decomposition of the Raman spectrum into components
(Lorentz curves), the number of graphene layers can be determined, as shown in Figure 6.
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In the case of a graphene monolayer, the 2D band appears as a single peak near
~2675 cm−1. However, with more layers, the 2D band consists of four peaks: D*, 2D, D + D′



Nanomaterials 2024, 14, 602 9 of 16

and 2D′. In this case, the peak D + D′ is more intense than the others. Increasing the
number of layers reduces the intensity of the D* and 2D peaks and shifts the components
toward higher wave numbers. The shape of the spectra and the appearance of D*, 2D,
D + D′ and 2D′ peaks indicate that GOs are composed of more than two layers of graphene.
The ratio of the intensities of the D and G peaks (ID/IG) can be a measure of randomness in
the sp2 carbon matrix.

This value can also be used to estimate the size of La sp2 domains in graphene oxide,
using the Tuinstra–Koenig relation [35]:

La =
(

2.4× 10−4
)
λ4

L

(
ID

IG

)−1
(1)

where λL is the wavelength (nm) of the exciting laser. The values obtained from the quantity
formula (for GO, this value is 21.13 nm; for GO-HMDA, it is 14.19 nm) indicate that the
sizes of graphene crystallites decrease during the interaction of the functional groups of
GO with the amino groups of hexamethylenediamine.

In the Raman spectrum of GO-HMDA, intense D and G bands are also present, but
the position of the maxima is shifted toward lower wave numbers, less than those of GO.
The G band is accompanied by the D′ shoulder band, indicating a defective structure,
which is also confirmed by an increase in the ID/IG ratio from 0.91 in GO to 1.35 in the
hexamethylenediamine-modified sample, verifying that the process of GO reduction leads
to an increase in structural defects.

The functionalization of nanofillers with various functional reagents containing groups
capable of chemical interaction with both polymers and the nanofiller, in most cases,
significantly improves the interaction of the nanofiller with the polymer matrix. At the
same time, the surface free energy at the nanofiller–polymer interface decreases, while the
adhesion increases, which generally results in a significant increase in the deformation-
strength properties of polymer composites [23–25].

The addition of GO-HMDA into the epoxy composition leads to a significant increase
in the deformation-strength characteristics of epoxy nanocomposites. At the same time, an
increase in the strength index and elastic modulus in bending by 48% and 102%, respectively,
was noted. The impact strength index increased by 122%, and an increase in the strength
index and tensile elasticity modulus by 82% and 47%, respectively, as compared to the
pristine epoxy composite containing no GO-HMDA, was noted, as shown in Figure 7. In
addition, the analysis of the obtained results shows that the addition of GO-HMDA has
a greater strengthening effect than that of the pristine GO. At the same time, an increase
in the deformation-strength properties of the nanocomposites by 19–54% was noted, as
compared to the epoxy nanocomposite containing the pristine GO, as shown in Figure 7.
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Figure 8a shows the fractography of epoxy resin composite samples without GO which
are characterized by a fairly smooth fracture surface, indicating low crack resistance [36,37].
However, when GO is added into the epoxy composition, it affects the morphology of the
matrix, increasing the number of defects at the fracture surface, as shown in Figure 8b. This
shows an increase in the required energy to destroy the polymer matrix.
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The presence of functional groups on the graphene oxide (GO) surface leads to an
increase in the depth and number of defects on the cleavage surface, as shown in Figure 8c.
This suggests that more energy is required to destroy the system, indicating increased
strength and stability [38,39].

Besides a brittle fracture, the epoxy composite also shows local areas indicating the
flow of the material during its destruction. This suggests that the material exhibits some
level of ductility or plastic deformation before ultimate failure. Furthermore, in certain
regions of plastic deformation, pronounced fibrous structures are observed. These fibrous
structures are formed due to the intense stretching of the polymer matrix, as shown in
Figure 8c.

The presence of increased plastic deformation in the composite material supports the
hypothesis that GO–hexamethylenediamine (GO-HMDA) can act as a solid-state hardener.
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This can be attributed to the functionalization of the GO surface, which results in the forma-
tion of a dense cross-linking network around the nanoparticles of GO-HMDA with epoxy
groups of the oligomer. This cross-linking network enhances the mechanical properties of
the composite, making it more resistant to deformation and failure.

The adsorption interaction of the components of the oligomeric composition with the
surface of a solid material (GO) can significantly affect the processes of polymerization
and the formation of the phase structure of the material [40,41]. Adsorption can lead to the
retention of oligomer molecules on the surface and the slowdown of the polymerization
reaction, as well as to changes in the structure of the material, for example, the formation of
denser surface layers. Thus, when assessing the effect of a modifying additive on network
polymers, it is necessary to take into account adsorption effects, which can change the
kinetic and structural properties of the material [42–44].

The study of the kinetic regularities of curing processes when adding GO and GO-
HMDA into the epoxy composition shows that they have different effects on the polymer-
ization processes of the epoxy composite, as shown in Figure 9.
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The addition of the pristine GO characterized by high surface activity shows that
adsorption results in the retention of epoxy oligomer molecules on the surface of GO,
which leads to a slowdown in the rate of the polymerization reaction; this ensures an
increase in the duration of the gelation process from 104 to 146 min and of curing from 146
to 195 min, while the maximum self-heating temperature of the sample during curing does
not practically change, as shown in Table 2.

Table 2. Values of curing indicators of epoxy compositions.

Composition τgel, min τres, min Tmax, ◦C

Pristine epoxy composition without GO 104 146 88
Epoxy composition containing GO 146 195 94

Epoxy composition containing GO-HMDA 68 105 116
Note: τgel—duration of gelation; τres—duration of curing; Tmax—maximum self-heating temperature of the
sample during curing.

The addition of GO-HMDA into the epoxy composition accelerates the curing reaction
and increases the amount of heat generated, thus confirming the existence of chemical
interaction between the functional groups of HMDA and the epoxy matrix. This fact is



Nanomaterials 2024, 14, 602 12 of 16

proven by a decrease in the duration of the gelation process to 68 min and of curing to
105 min, as well as an increase in the maximum reaction temperature to 116 ◦C, as shown
in Table 2.

The data on the curing kinetics obtained using the thermometric method are in good
agreement with the data obtained by the DSC method, as shown in Figure 10. The addition
of the pristine GO into the epoxy composition slows down the curing process, while the
enthalpy of the reaction decreases from 535.7 to 446.4 J/g as a result of increasing the
temperature of the onset of curing from 58.9 to 70.7 ◦C. The addition of GO-HMDA into
the epoxy matrix initiates the polymerization process, and the index of reaction enthalpy
increases from 535.7 to 614.5 J/g, while the onset temperature decreases from 58.9 to 45.5 ◦C,
as shown in Table 3.
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Table 3. Results of differential scanning calorimetry of epoxy compositions.

Composition
Tstart–Tend

Tmax
◦C

H, J/g

Pristine epoxy composition without GO 58.9–159.5
108.4 535.7

Epoxy composition containing GO 70.7–150.4
107.8 446.4

Epoxy composition containing GO-HMDA 45.5–174.8
108.4 614.5

Note: Tstart—Tend—the temperature of the onset and the end of the curing process, Tmax—the temperature of the
maximum heat release during curing, and H—the thermal effect of reaction.

The effect of adding GO and GO-HMDA into the epoxy composition on the heat resis-
tance and thermal stability of the epoxy composite was studied using thermogravimetry.
The obtained thermogravimetric analysis data are presented in Figure 11 and summarized
in Table 4.
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Table 4. The results of the TGA for epoxy nanocomposites.

Samples T5%, ◦C T10%, ◦C T30%, ◦C T50%, ◦C T60%, ◦C T80%, ◦C Residues at 900 ◦C, wt.%

EP 190 214 279 385 460 558 4.45
EP/GO 195 217 281 392 467 562 4.85
EP/GO-
HMDA 214 231 290 410 486 584 5.51

Note: EP—pristine epoxy composite; EP/GO—epoxy composite containing GO; EP/GO-HMDA—epoxy compos-
ite containing GO-HMDA.

From the analysis of the data obtained, it follows that the addition of GO does not
have a significant effect on the thermal stability of the epoxy composite, while the thermal
stability of the composite does not deteriorate throughout the entire temperature range
studied (20–900 ◦C). The addition of GO-HMDA into the epoxy composition provides
an increase in the thermal stability of the epoxy composite, while the temperature of the
onset of destruction increases from 190–195 to 214 ◦C. Moreover, an increase in the thermal
stability of the epoxy nanocomposites is noted throughout the entire temperature range
studied (20–900 ◦C), which is confirmed by an increase in indicators such as T10%–T80%. The
improvement in the thermal stability of the composites containing GO-HMDA is probably
explained by their better dispersion relative to the original GO and the chemical interaction
of HMDA with the epoxy matrix, which requires additional energy costs to destroy the
cross-linked structure of the epoxy composite [45,46]. It has been found that the addition
of both GO and GO-HMDA does not lead to a significant increase in the carbon residue
at 900 ◦C.

4. Conclusions

The possibility of chemical redox modification of electrochemically synthesized multi-
layer graphene oxide with hexamethylenediamine has been investigated. The results of
the modification show a reduction in the number of oxygen-containing functional groups
on the surface of multilayer graphene oxide and the appearance of amino groups that are
capable of chemical interaction with the polymer matrix, which is confirmed by Fourier
transform infrared spectroscopy. An increase in the efficiency of carbon particles is also
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noted. The functionalizing treatment of EGO particles helps reduce the free surface energy
at the polymer–nanofiller interface and increase adhesion, which results in improved phys-
ical and mechanical characteristics of the composite material. The addition of EGO-HMDA
into the epoxy composition leads to a significant increase in the deformation-strength
characteristics of the epoxy nanocomposites. At the same time, an increase in the strength
index and elastic modulus in bending by 48% and 102%, respectively, is noted. The impact
strength index increases by 122%, and an increase in the strength index and tensile elasticity
modulus by 82% and 47%, respectively, is noted, compared to the pristine epoxy composite
containing no EGO-HMDA. Analysis of the results shows that the addition of EGO-HMDA
has a greater strengthening effect than the addition of the pristine GO, while an increase in
the deformation-strength properties of the nanocomposites by 19–54% is noted compared
to the epoxy nanocomposite containing the pristine GO. The addition of functionalized
EGO-HMDA nanoparticles initiates the polymerization process due to the participation of
reactive amino groups in the polymerization reaction. This leads to a decrease in the initial
curing temperature and an increase in the thermal effect of the polymerization reaction. It
has been found that the addition of EGO-HMDA into the epoxy composition contributes to
an increase in the thermal stability of the epoxy composite, while the temperature of the
onset of destruction increases from 190–195 to 214 ◦C; an increase in the thermal stability
of the epoxy nanocomposites has been found throughout the entire temperature range
studied (20–900 ◦C), which is confirmed by an increase in indicators such as T10%–T80%.
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