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Abstract: Renewable solar energy storage facilities are attracting scientists’ attention since they can
overcome the key issues affecting the shortage of energy. A nanofluid phase change material (PCM)
is introduced as a new sort of PCM is settled by suspending small proportions of nanoparticles in
melting paraffin. ZnO/α-Fe2O3 nanocrystals were prepared by a simple co-precipitation route and
ultrasonically dispersed in the paraffin to be a nanofluid-PCM. The behaviors of the ZnO/α-Fe2O3

nanocrystals were verified by X-ray diffraction (XRD) analysis, and the average particle size and
the morphology of the nanoparticles were explored by transmission electron microscopy (TEM).
For the object of industrial ecology concept, aluminum-based waste derived from water-works
plants alum sludge (AS) is dried and augmented with the ZnO/α-Fe2O3 nanocrystals as a source
of multimetals such as aluminum to the composite, and it is named AS-ZnO/α-Fe2O3. The melting
and freezing cycles were checked to evaluate the PCM at different weight proportions of AS-ZnO/α-
Fe2O3 nanocrystals, which confirmed that their presence enhanced the heat transfer rate of paraffin.
The nanofluids with AS-ZnO/α-Fe2O3 nanoparticles revealed good stability in melting paraffin.
Additionally, the melting and freezing cycles of nanofluid-PCM (PCM- ZnO/α-Fe2O3 nanoparticles)
were significantly superior upon supplementing ZnO/α-Fe2O3 nanoparticles. Nanofluid-PCM
contained the AS-ZnO/α-Fe2O3 nanocrystals in the range of 0.25, 0.5, 1.0, and 1.5 wt%. The results
showed that 1.0 wt% AS-ZnO/α-Fe2O3 nanocrystals contained in the nanofluid-PCM could enhance
the performance with 93% with a heat gained reached 47 kJ.

Keywords: phase change materials (PCM); water fluid; alum sludge; ZnO/Fe2O3 composite; thermal
energy storage; nanofluid

1. Introduction

The main responsibility of science and technology is signified as the creation of sustain-
able energy solutions to overcome the substantial use of conventional fossil fuel resources.
The globe is suffering from an energy crisis due to the modern lifestyle since the massive
gross in population and technological development as well as the energy consumption
in the industrial sector [1]. Solar energy is suggested to be a reliable substitution among
the accessible renewable energy sources to overcome the energy crisis. However, its avail-
ability during the daytime might be diluted and intermittent [2]. Therefore, to satisfy and
overcome such inadequacy, energy storage is a must [3]. This technique is based on the
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capture of sun energy through the daytime to use later, such as thermal energy storage
(TES). TES is signified as one of the simple and cost-efficient arrangements and is techni-
cally used for energy storage [3]. Numerous ways have been introduced for TES; however,
according to the reported literature articles [1,4,5], the proper and widely used is the phase
change material (PCM) technology. PCMs suggest numerous solar heat storing capacities
in lessening heat losses via the storing period [6].

PCM substances appeared in recent decades as the most applicable TES systems
and are signified by the way that they are capable of modifying their physical state and
proficient in storing TE by discharging their “latent heat” [7]. Such a technique might be
attained through melting and solicitation cyclic processes. PCMs might be signified by
their presence in at least two structurally different solid phases. These phases could be
amorphous phases and one or maybe more in crystalline phase [8,9]. Novel substances,
including thermal phase alteration and chemical reactions, are available to be favorable key
technologies exhibiting their great TES capacity [10]. The attained TES can be introduced in
numerous domestic and industrial applications, i.e., heating, drying, and thermodynamic
solar plant industries. Thereby, the research dealing with the TES media applied for using
PCM systems is on an upsurge [3,11].

PCM-based TES can fall into three categories: (i) sensible heat, (ii) latent heat, and
(iii) thermochemical heat storage systems. A sensible heat storage system (SHS) might store
energy by temperature difference in the substances in addition to the transformation of the
thermal phase altered substances. SHS substances are signified by their superior density,
specific heat, and suitable thermal conductivity. Water and rock are the most available
sensible heat energy storing examples [11]. However, latent heat thermal energy storage
(LHS) is higher than SHS since the enthalpy change through the process of phase change is
high. Furthermore, LHS across the SHS showed its superiority since LHS materials possess
versatile applications as their excellent heat recovery with small temperature difference
signifies high-energy storage density substances [10,11]. PCMs are a class of TES that is
contingent on latent heat storage media [8]. Various types of organic (i.e., paraffin-based
materials) [12] or inorganic materials (i.e., salt hydrates substances) [8] are applied as
PCMs substances for TES facilities. However, thermochemical heat energy storage (TCS)
is based on heat storage through chemical bonds based on endothermic or exothermic
reactions. However, TCS does not have available commercial applications since it requires
phase material development [13–15]. Among the various types of TES techniques, latent
heat energy storage materials are the most reliable ones since their operating temperature
ranges [14]. But, LHS systems are still prerequisites for essential improvement to promote
their applications and determine their associated concerns [14,15].

PCMs are based on LHS technology produced by transferring from solid to liquid
phase and vice versa on a round cycle [16]. During the phase transition cycles, the energy
could be absorbed or released, and the overall energy is stored. Various PCMs are used
to overcome sophisticated and expensive systems [12,17,18]. Paraffin-based PCMs are
categorized as a good candidate since their wide temperature ranges and superior thermal
storage capacity help avoid the problems of supercooling [19–21]. However, it is noteworthy
to mention that the main shortcoming of the most pristine PCM substances is related to
their low thermal conductivity.

Paraffin material-based PCMs could be used for TES, which might be well insulated
for less complicated and inexpensive systems. Paraffin-based substances possess a large
amount of latent heat energy, negligible supercooling, and a suitable melting temperature
profile [16]. But, the advantage attained by the inclusion of nanoparticle-embedded PCM is
resolved in the effective thermophysical properties [17]. For instance, numerous studies
have been reported dealing with the enhancement of their critical effectiveness. PCMs are
included with various types of nanoparticles [20] to improve their thermal conductivity,
including some additives such as carbon nanotubes into paraffin, which is essential for
enhancing PCM performances. [22] CuO [23] is embedded in 5 weight% nanoparticles in
pure paraffin wax, improving the PCM performance for the melting cycle and enhancing
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the overall efficiency. ZnO [23] is used as a microencapsulated phase change material
integrated into a commercial water tank for cold thermal energy storage improvement.
Furthermore, a previous investigation conducted on metal–organic framework (MOF)-
based graphene offers numerous merits, including higher thermal conductivity than the
pristine PCM [19]. Also, metal–organic PCMs [1] showed superior efficiency in building
energy savings. The addition of carbon fiber and carbon nanotubes showed good thermal
conductivity [20]. Nano graphite, copper nanowires, titanium carbide, and multiwalled
carbon nanotubes also showed an improvement, reaching an 87% increase when just five
weight percent is added [21]. However, the application of hybrid metals as a source of
nanofluid-PCM to improve their thermal properties is still limited. Also, there is a lack of
literature on the use of composite material from waste streams as a source of nanofiller
PCM candidates, which is required for further research in such an area.

Herein, the current phase change thermal energy storage system with spherical
capsules was developed. ZnO/α-Fe2O3 nanocrystals were developed by a simple co-
precipitation route. Also, the alum sludge waste derived from water-works plants is dried
and mixed with the ZnO/α-Fe2O3 nanocrystals. Then, the X-ray diffraction (XRD) analysis
and the morphology using transmission electron microscopy (TEM) were applied, and the
ZnO/α-Fe2O3 nanocrystals were verified. The feasibility of embedded organic paraffin
PCM with ZnO/α-Fe2O3 nanocrystal to be a ZnO/α-Fe2O3 nanofluid-PCM for latent heat
energy storage was studied. Overall heat gained through the melting/solidification cycles
was applied to attain the implementation of the ZnO/α-Fe2O3 nanocrystal substance base
of PCM nanofluid. Hence, the current study presents a novel phase change material system
based on the application of waste material as an inexpensive and effective system to attain
the benefits of using a nanoparticle composite and a value-added material to improve the
PCM system.

2. Experimental Section
2.1. Synthesis of ZnO/α-Fe2O3 Nanoparticles

Nanosized ZnO/α-Fe2O3 crystals have been synthesized through the simple co-
precipitation route technology as a cost-efficient and straightforward method. The method
is applied under a mild temperature range [24], and the essential precursors are added to
proceed with the reaction [25]. The analytical grade precursors used during the current
co-precipitation route are Fe2(SO4)3 and ZnSO4, supplied by Sigma-Aldrich with a purity
of 97 and 99%, respectively, and used without any extra purification according to the molar
contents of ferrite. The precursor fractions were supplied to the reaction solution media,
and thereby, magnetic stirring was applied to attain a homogenous mixture. In a solution
of sodium hydroxide, dropwise was added to the mixture to raise the solution pH under
heating to reach a black precipitate, which signifies the ferrite formation. Subsequently, the
as-synthesized crystals were exposed to successive distilled water washing, and the resul-
tant precipitate is ZnO/α-Fe2O3 crystals. The graphical presentation of the preparation
steps is illustrated in Figure 1.
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In parallel, water-works plant waste is named alum sludge (AS) as a result of using
aluminum sulfate as a primary coagulant in the flocculating reservoir. The alum sludge
(AS) was collected from a local water-works facility from the underflow channel of the
sedimentation tank. Alum sludge is generated by the application of aluminum sulfate as a
primary coagulant. Prior to the alum sludge being treated, the excess water is descanted
from the sludge by gravity settling and then subjected to open-air drying to reduce the
moisture content to only 10%, which is named alum sludge cake. The sludge cake is then
subjected to cleaning with distilled water and then oven-dried at 105 ◦C. The resultant
powder is calcinated at 400 ◦C then ground by a ball mill for one hour. The resultant dried
sludge is mixed with the prepared nanoparticles of ZnO/α-Fe2O3 in a mass proportion of
1:1 weight percent and introduced as an AS-ZnO/α-Fe2O3 PCM.

2.2. Characterization Study

The crystal structure of the synthesized ZnO/α-Fe2O3 nanoparticles was characterized
by single-crystal X-ray diffraction (XRD) analysis, which was performed under step-scan
mode and conducted via a Bruker–Nonius Kappa CCD diffractometer with CuKα radiation
source (λ = 1.5406). The diffractometer works at 40 kV with a scan step time of 0.6 s.
Also, the morphology of the synthesized ZnO/α-Fe2O3 nanoparticles was imaged by SEM
micrograph using FE-SEM, Quanta FEG 250.

2.3. Experimental Methodology

A shell-and-tube heat exchanger, STHE, was applied for the melting/solidification
cycles of the PCM. Very refined paraffin wax (PW) (95% purity) with a melting point of
around 53 ◦C was chosen as the base PCM. The thermophysical properties of paraffin
wax include a latent heat of fusion of 190 kJ/kg, a liquid density of 830 kg/m3, and a
thermal conductivity of 0.21 kJ/kg ◦C. The essential amount of PW (15 gm) was melted
on a hot plate at 60 ◦C, followed by AS-ZnO/α-Fe2O3 nanocrystal addition at a certain
weight percent (0.25, 0.5, 1.0, and 1.5 wt%) selected according to the preliminary work.
Subsequently, the heterogeneous mixture of PW, as well as AS-ZnO/α-Fe2O3 nanocrystals,
was explored to sonication in an ultrasonic bath and subjected for 30 min sonication at
60 ◦C (DAIHAN Wisd model WUC-A03H, 40 kHz) to attain the nanofluid-PCM.

Initially, 15 gm of PCM is subjected to the shell and tube of the heat exchanger and
filled the tube. Water is used as the heat transfer fluid carrier and flows in the shell of the
heat exchanger, which supplies the heating and cooling cycles. Heat transfer fluid, water, is
exposed to the system at the mass flow rate of 0.0013 kg/s. In order to analyze the system
performance, digital thermocouples are mounted to check the melting and solidification
temperatures, hot water, and PCM. T-type thermocouples (copper/constantan) are used
to investigate the surface temperature of the PCM, as well as the heat transfer fluid. Two
thermocouples are monitored in the inlet and outlet heat transfer fluid to record the
temperatures and further investigate the heat gained. The thermocouple accuracy is
±0.25 ◦C accuracy. Thermocouples are subjected to the inlet water and outlet water
and inserted in the PCM to monitor the temperatures. All the data are recorded in three
replicates, and the average is monitored. After the discharging cycle, the hot water absorbed
the heat from the PCM collected in the tank, as shown in Figure 2. The hot water storage
tank is well insulated in order to avoid heat losses. The graphical representation of the
experimental lab-scale setup is exhibited in Figure 2.
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3. Results and Discussion
3.1. Structural and Morphological Characterization

The XRD diffractogram of the ZnO/α-Fe2O3 nanocrystals is exhibited in Figure 3. The
crystalline phase of the catalyst was investigated, and the XRD patterns showed several
diffraction peaks. The spectrum of the XRD diffractogram pattern exposes the formation
and presence of the ZnO phases. The presence of the diffraction peak located at 34.4, 36.2,
and 47.5 correspond to planes of [002], [101], and [102], and these values correspond to
the file (JCPDS Card No.00-005-0664) [26]. Also, the attained XRD pattern verifies that the
nanocrystals contain α-Fe2O3 particles with definite crystalline planes for each peak. The
major two peaks are signified at 2θ of 33.1◦ and 35.6◦ and are linked to the orientation
planes of [104] and [110], respectively, that categorized the presence of α-Fe2O3.
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The morphology of the synthesized ZnO/α-Fe2O3 nanocrystals was assessed by
high-resolution transmission electron microscopy (TEM), and the images are displayed in
Figure 4a–c at different magnifications. A TEM micrograph of the ZnO/α-Fe2O3 nanocrys-
tals revealed a successful construction of the composite ZnO/α-Fe2O3 nanocrystals in a
spherical-like shape. Also, the histogram in Figure 4d exposes that the attained particles
are almost spherical in shape with nanoscale size ranges from 6 to 24 nm and the most
abundant particle size of about 12.5 nm.
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Figure 4. TEM micrographs of (a–c) as-synthesized ZnO/α-Fe2O3 nanocrystals at different magnifi-
cations with (d) particle size histogram.

Figure 5 displays the TEM images of the alum sludge (Figure 5a) and the AS-ZnO/α-
Fe2O3 composite (Figure 5b). The alum sludge material obviously shows mixed hexagonal-
like sheets, as seen in Figure 5a. Furthermore, it is obviously seen from Figure 5b that the
composite material showed the alum sludge (AS) showed mixed hexagonal-like particles
with uniform distribution attached to its surface with spherical shape particles that signify
the ZnO/α-Fe2O3 nanocrystals. The ZnO/α-Fe2O3 were well deposited on the surface
of alum sludge. However, in some parts of the surface of alum sludge, the ZnO/α-
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Fe2O3 nanocrystals became aggregated. Overall, hexagonal-like particles of alum sludge,
accompanied by a spherical smaller particle of ZnO/α-Fe2O3, form the AS-ZnO/α-Fe2O3
composite material.
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3.2. Performance of PCM Analysis
3.2.1. Melting/Solidification Cycles

Nanofluid-PCM based on AS-ZnO/α-Fe2O3 nanocrystals in various systems, as well
as the pristine PW-PCM, were subjected to melting (Tω) and solidification (Tα) temperature
cycles. The data displayed in Figure 6 exhibited the Tω and Tα at different times and for
various AS-ZnO/α-Fe2O3 nanocrystals in nanofluid-PCM systems using 0.25, 0.5, 1.0, and
1.5 wt% of AS-ZnO/α-Fe2O3 nanocrystals.
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AS-ZnO/α-Fe2O3 nanocrystal addition to nanofluid-PCM. The most pronounced system
is observable and corresponds to the embedded 1.0% AS-ZnO/α-Fe2O3 nanofluid-PCM.
However, beyond or above this weight percent, the Tω melting starts to reduce. Particularly,
this could be illustrated by embedded PCM with the nanoparticles helping in convincing a
change in the shape of the heat flow of the thermally changed substance, which thereby
adapts the value of the melting temperature of the PCM substance [27–29]. Also, AS-
ZnO/α-Fe2O3 addition enhances the latent heat of the PW-based PCM.

Solidification cycles of the AS-ZnO/α-Fe2O3 nanofluid-PCM, as well as the PCM of the
pristine PW, are displayed in Figure 7. As the experimental data displayed in Figure 7 shows,
the melting temperature with AS-ZnO/α-Fe2O3 addition into the nanofluid-PCM enhanced
the solidification temperature, which thereby is further increased. This could be attributed
to AS-ZnO/α-Fe2O3 addition into PWPCM possessing a higher solidification temperature,
which is dependent on the weight percent of the AS-ZnO/α-Fe2O3 nanoparticle fraction in
the nanofluid-PCM.
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The results in Figure 7 noticeably illustrated a relative enhancement of the system
by the (1.0%) AS-ZnO/α-Fe2O3 embedded in the PCM. It is noteworthy to mention that
above such amount, Tα deduced and thereby the system becomes unfavorable. Such a
phenomenon is commonly experimentally observed due to the presence of extra nanopar-
ticles, which might decline the PCM stability, which is unsettled by the agglomeration
and sedimentation action. Therefore, choosing the optimal presence of AS-ZnO/α-Fe2O3
nanoparticles in the nanofluid-PCM is crucial in enhancing the melting/solidification
performances. This is in accordance with the previous findings of reported research in
the literature [12,30–34]. Notably, it is significant to determine that the AS-ZnO/α-Fe2O3
nanoparticles could increase the dynamic viscosity of thermally changed substance that
results in a diminution in heat transfer rate of the phase change substance [23].

3.2.2. Heat Profile Yield

Accordingly, choosing the optimal AS-ZnO/α-Fe2O3 nanofluid-PCM additives results
in a heat profile that yields a better range of thermal phase change temperature gained and
phase change heat. The gained temperature and heat, Tβ, and Qβ, respectively, through
melting and solidification cycles, are monitored to evaluate the performance of the AS-
ZnO/α-Fe2O3 nanofluid-PCM system. The experimental data illustrated in Figure 8 expose
that AS-ZnO/α-Fe2O3 conjugates in the PW could enhance both the range of temperatures
and the amount of acquired heat. Hence, the results are raising the temperature range of the
nanofluid-PCM system, which could be applied to a heat storage facility. AS-ZnO/α-Fe2O3
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embedded in PW upsurges the temperature by 15 ◦C, accordingly increasing the stored-up
heat in comparison to the corresponding pristine PW.
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3.2.3. Overall Heat and System Performance

Overall, the heat attained by AS-ZnO/α-Fe2O3 nanofluid-PCM systems, as well as
the pristine PCM-based PW system, is calculated and compared. The results displayed in
Figure 9 illustrate and compare the heat rate gained by the PCM that is calculated for the
whole process for the entire system by Equation (1). The pristine PW and PW conjugates
AS-ZnO/α-Fe2O3 display that the dispersion of AS-ZnO/α-Fe2O3 increases the overall
heat rate achieved from the nanofluid-PCM scheme. According to the experimental data,
the useful rate of heat gained is higher for AS-ZnO/α-Fe2O3 nanofluid-PCM (47 kJ/min)
than for the solo PW-PCM system (8 kJ/min). According to this comparison, it is notable
that the suggestive greater heat rate gained by the ZnO/α-Fe2O3 nanofluid-PCM system is
linked to the increase in the heat transfer as a result of higher thermal conductivity for the
conjugated PW and AS-ZnO/α-Fe2O3 system [35].

Qυ =
.

w Cwθw (1)

where
.

w: Mass flow rate of HTC (g/s);
θ: Temperature range between inlet and outlet water entering and leaving the heat

exchanger;
Cw: Specific heat capacity of heat transfer fluid (4.18 kJ/kg K).
According to the abovementioned data, it is interesting to estimate the overall stor-

ing efficiency of the AS-ZnO/α-Fe2O3 nanofluid-PCM system over the pristine PW solo
system. Hence, the overall storing efficiency for all systems is compared and illustrated
in Figure 9. Based on the data of the heat gained (Equation (1)) and the heat gained from
the PCM substance (Equation (2)), the system efficiency (ƒ) is determined according to
Equation (3) [36,37].

QPCM = mCp(TPCMi − TPCMo) + m H (2)
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where m is the PCM mass (kg), Cp is the specific heat capacity of PCM (kJ/kg K), TPCMi
and TPCMo are the inlet and outlet PCM temperature, respectively, from the STHE, and H is
the latent heat of fusion of PCM (kJ/kg).

ƒ =
Qβ

QPCM
× 100 (3)

Figure 10 displays that the efficiency of AS-ZnO/α-Fe2O3 nanofluid-PCM system
and the pristine PW-PCM and the maximum efficiency was observed linked to the (1.0%)
AS-ZnO/α-Fe2O3 nanofluid-PCM. Therefore, the efficiency and heat stored for 1.0% weight
AS-ZnO/α-Fe2O3 nanofluid-PCM is an optimal PCM system.
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Numerous PW-based PCM systems improved through various addition enhancement
materials from the literature are concluded and compared with the introduced study. The
data presented in Table 1 showed that various systems are enhanced through the various
embedded nanofiller substances. As displayed from the data tabulated in Table 1, the
upgraded PCM system is achieved from the current work, and a reasonable improvement
is attained.

It is noteworthy to report that, although some other systems showed a more pro-
nounced improvement than the suggested current study, the current investigation is based
on the use of only 1% of the nanofiller in comparison to 10% in some cases [38]. The
enhancement system proficient from the current study is amongst the greatest values. Ap-
plying such inorganic capsulations as the supporting substance accessible thermal behavior
greater than the solo paraffin PCM is a promising result.

Table 1. Comparison of nanoparticle-enhanced PW-PCM systems investigated through various
studies *.

Nanomaterial Addition
Weight (%) Key Results Application Ref.

AS-ZnO/α-Fe2O3 1.0% Efficiency increased 93% Heating Current investigation

Al2O3 2.0% Temperature enhanced with 1.5 ◦C Heating [39]

SiO2 NA Efficiency increased 9% Heating [40]

TiO2 1.0% Reduce in PCM heat by 0.5% NA [12]

CuO 0.02% Increase in thermal conductivity Heating [41]

ZnO 3.0% Thermal conductivity increased Heating [42]

ZnO/SiO2 3.0% Efficiency increased 19% Heating [43]

ZSM-12 NA Temperature enhanced with 21 ◦C Heating [44]

Carbon 1.0% Thermal conductivity increased 49% Heating [45]

Carbon 10% Thermal conductivity increased 31% Photovoltaic cells [38]

Carbon nanotube 5% Thermal conductivity increased 87% Heating [21]

Ag 10% Thermal conductivity increased Heating [46]

carbon nanofiber 10% Thermal conductivity enhancement 31% photovoltaic cells [47]

MgO 1% Thermal conductivity enhancement 17% Supercooling [48]

nanographene Thermal conductivity enhancement 10% Water heating [49,50]

PCM containing mortar A reduction of almost 10 ◦C Ventlation [51]

PCM in the gypsum Thermal dynamic characteristics improved 45% Thermal inertia of buildings [52]

Double layer PCM Energy saving 38% Building’s energy efficiency and
thermal comfort [53]

* NA: not available.

4. Conclusions

Experimental work was explored, and data were used to assess the thermophysical
characteristics through melting and solidification cycles for both solo pristine paraffin wax
and AS-ZnO/α-Fe2O3 nanofluid-PCM systems. A mixture of 0.25, 0.5, 1.0, and 1.5% by
weight of AS-ZnO/α-Fe2O3 nanoparticles was embedded into the paraffin wax as the base
material. The nanofluid-PCM systems displayed a superior thermal behavior displayed
in terms of melting/solidification cycles. The addition of nanoparticles enhanced thermal
heat storing capacity compared to the pristine paraffin wax PCM system. For 1.0 wt%
nanoparticles of the AS-ZnO/α-Fe2O3 nanofluid-PCM system, the heat storing capacity
showed the highest among the proposed systems. By considering such data, it can be
concluded that the composite thermally phase change substance with 1.0 wt% with 1.0 wt%
ZnO/α-Fe2O3 nanoparticles could be a potential candidate to store energy. Thus, further
future work is required to harvest solar energy using flat plat collectors using such a
proposed system for building heating applications due to its superior thermal consistency.
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Nomenclature

PCMs Phase change material
TES thermal energy storage
XRD X-ray diffraction analysis
TEM transmission electron microscopy
STHE Shell-and-tube heat exchanger
LHS Latent heat thermal storing
SHS Sensible heat storing
TCS thermochemical heat energy storage
PW Paraffin wax
Tω Melting temperatures, ◦C
Tα Solidification temperatures, ◦C
Tβ Gained temperature after storing, ◦C
.

w Mass flow rate of heat transfer fluid, g/s
θ Temperature range between inlet and outlet water
Cw Specific heat capacity of heat transfer fluid, kJ/kg K
ƒ Overall system efficiency, %
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