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Abstract: In recent years, advances in materials engineering based on adaptive electronics have found a
new paradigm to optimize drawbacks in signal processing. A two-layer MnO/ZnO:Zn heterostructure
envisioned for frequency adaptive electronic signal processing is synthesized by sputtering, where the
use of internal states allows reconfigurability to obtain new operating modes at different frequency
input signals. X-ray diffraction (XRD) analysis is performed on each layer, revealing a cubic structure
for MnO and a hexagonal structure for ZnO:Zn with preferential growth in [111] and [002] directions,
respectively. Scanning electron microscope (SEM) micrographs show that the surface of both materials is
homogeneous and smooth. The thickness for each layer is determined to be approximately 106.3 nm for
MnO, 119.3 nm for ZnO:Zn and 224.1 nm for the MnO/ZnO:Zn structure. An electrical characterisation
with an oscilloscope and signal generator was carried out to obtain the time-response signals and
current-voltage (I–V) curves, where no degradation is detected when changing frequencies within the
range of 100 Hz to 1 MHz. An equivalent circuit is proposed to explain the effects in the interface.
Measurements of switching speeds from high resistance state (HRS) to low resistance state (LRS) at
approximately 17 ns, highlight the device’s rapid adaptability, and an estimated switching ratio of
approximately 2 × 104 indicates its efficiency as a memristive component. Finally, the MnO/ZnO:Zn
heterojunction delivers states that are stable, repeatable, and reproducible, demonstrating how the
interaction of the materials can be utilised in adaptive device applications by applying frequencies
and internal states to create new and innovative design schematics, thus reducing the number of
components/connections in a system for future sustainable electronics.

Keywords: MnO; ZnO:Zn; memristor; I–V curves; adaptive electronics; sustainable electronics

1. Introduction

Different approaches of signal processing are being developed largely driven by
Moore’s law [1,2]. One of these approaches is through adaptive electronics. An adaptive de-
vice can be defined as an electronic structure designed to incorporate internal mechanisms
(states) capable of reconfiguration, enabling new operating modes. The structure’s reaction
to an external stimulus (such as a change in frequency) will self-adjust the parameters
of those properties to carry out certain electronic operations [3–5].Therefore, frequency-
adaptive electronic signal processing devices can be considered as a feasible solution for
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the future of high-speed and low-power electronic devices in which dynamic self-adjusting
parameters can be reconfigured by manipulating its properties. Examples of adaptive
behaviour can include the use of polarization (spintronics), oxide attributes (multiferroics,
piezoelectricity, strain), modifications in dimensions (thickness and area), and nonlinear
conduction (memristors) [6–11]. Memristive behaviour (memristor is a combination of
the words “memory” and “resistor”) [12] are typically found on metal oxides where the
switching of different states can be manipulated with electronic transport mechanisms
such as migration of oxygen vacancies, conduction through filament paths, and capacitive-
inductive effects [13–17]. A main characteristic of an ideal memristor is a zero-crossing
pinched current-voltage (I–V) hysteresis curve (I = 0 and V = 0). Several previous works
have found that the interaction of heterojunctions of transition metal oxides (TMOs) can
create non-zero-crossing points in the I–V curve [10,16,18,19]. This phenomenon can occur
for various reasons [10,16] such as inductive and capacitive effects, indicating a need for
expanding the memristive theory to assign more coupled effects and new applications.

A number of TMO structures involving ZnO and MnOx (such as MnOx/HfOx [20],
Pt/MnOx/Pt [21], Pt/ZnO/Pt [22]) have reported resistive switching characteristics.

Table 1 presents a brief comparison of memristive devices of different materials, show-
ing key attributes such as thickness, conduction mechanisms, I–V curve types, threshold
voltages, switching ratios, and switching speeds. The threshold voltage and switching
ratio serve as critical indicators of the energy requirements and data distinction capabilities
of these devices, while the switching speed focuses on the performance in high-speed
applications. Commercial memristors typically have switching speeds in the range of
50 ns–100 µs [23]. A more profound study of switching mechanisms is needed to fully
understand how speed affects application performance. As can be seen from Table 1 and
other comparison tables reported [11,24–27], most structures consist of three or more lay-
ers/interfaces. This reflects greater complexity for the synthesis process and likewise, the
transport mechanisms become more intricate to study. The proposed bilayer structure
reduces the memristive response to one interface and two materials with their oxides. Due
to the simplicity of the structure, it is possible to propose an equivalent circuit to explore
how the interface could be translated to already known electronic components, with the
purpose of understanding the internal switching adaptive mechanisms through frequency
variation. In this work, switching is proposed to occur with the variation of frequency in
order to control the states.

These behaviours and parameters are of great interest to the development of neu-
romorphic materials as well as new applications for sustainable electronics [28–31], as
different transport mechanisms in the interface can help reduce the number of elements in a
structure, making it efficient, reconfigurable, responsive, and low power where components
can be passive (resistors, inductors, capacitors) or active (transistors, diodes).

In this paper, a simple MnO/ZnO:Zn bilayer thin-film heterostructure is synthesized
by the sputtering technique to improve electronic signal processing as a frequency adaptive
memristive system. The ZnO has a direct wide bandgap of approximately 3.3 eV, and its
most common potential applications are for laser diodes, light-emitting diodes (LEDs) [32],
and transparent thin-film transistors (TTFT). Furthermore, Zn-doped ZnO (ZnO:Zn) can
be used as a thin-film to design structures to drive the electrical responses using transport
and interface phenomena [6,13,15,26]. The Mn and its oxides continue to be an inorganic
material of technological importance for environmental remediation, electrochemical ca-
pacitors [33–35] as well as metal oxide-based RRAM devices due to the defects, vacancies
and oxidation propensity of MnOx [36,37]. Many of the reported memristive systems are
thin-films prepared by different methods such as pulsed laser deposition (PLD), chemi-
cal vapour deposition (CVD), and electrochemical and magnetron sputtering deposition.
The sputtering offers repeatable, reproducible, scalable, uniform, and high-quality films.
These properties are needed to form stable heterostructures/heterojunctions, and this work
considers previously determined experimental conditions [38,39].
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Table 1. Comparison of different materials memristive devices and their reported characteristics.

Materials Thickness of
Structure

Conduction
Mechanism

I–V Curve
Type

Threshold
Voltage (V)

Switching
Ratio

Switching
Speed (ns) Ref.

Pt/Ta2O5−x/TaO2−x/Pt ~110 nm Oxygen
vacancies Zero crossing 1 >10 10 [40]

Ag/MnOx/Pt ~282 nm
Ag filament or

by oxygen
vacancies

Zero crossing 0.95 ~3.2 × 103 - [20]

Ag/HfOy/Pt ~282 nm
Bipolar
resistive

switching
Zero crossing 0.45 8.21 × 104 - [20]

Ag/MnOx/HfOy/Pt ~282 nm
Bipolar
resistive

switching
Zero crossing 0.65 6.91 × 105 - [20]

Pt/MnOx/Pt ~250 nm Ohmic
conduction

Non-zero
crossing 12 >103 100 [21]

Pt/MnOx/Al ~250 nm Ohmic
conduction

Non-zero
crossing 0.3 >103 100 [21]

Ag–ZnO/ZnSnO3–Ag

ZnO NW’s
(100 nm
diameter,

0.5 mm length)

Bipolar
resistive

switching

Non-zero
crossing 1.7 5.8 × 102 - [41]

Pt/ZnO/Pt
~220 µm

100 nm for
ZnO

Bipolar
resistive

switching
Filament

Zero crossing 3.3 103–104 - [22]

MnO/ZnO:Zn ~200 nm

Bipolar
resistive

switching
Filament

Non-zero
crossing

(f > 100 kHz)
0.44 ~2.11 × 104 ~17 This work

For the MnO/ZnO:Zn heterostructure of this project, morphological and structural
characterisations were carried out by X-ray diffraction (XRD), scanning electron microscopy
(SEM), and energy dispersive X-ray spectroscopy (EDS), and were discussed in terms of the
electrical performance. The electrical response of the films is studied in the frequency range
of 100 Hz to 1 MHz with a digital oscilloscope and function generator. The adaptability
of the system through different frequencies and the combination of the proposed metal
oxides were analysed in this manuscript to determine potential applications as a frequency-
adaptive structure for future sustainable memristive electronic systems.

2. Materials and Methods

The synthesis is crucial to obtain the desired characteristics of the memristive system.
For this reason, a detailed explanation of the substrate cleaning procedure, as well as the
deposition by sputtering, is provided below.

2.1. Substrate Cleaning Procedure

To remove contaminants on the surface that can lead to defects in the thin-film, af-
fecting its properties, the cleaning of the glass substrate before the deposition is a critical
step to ensure the quality and performance of the heterostructure. The cleaning process (as
seen in Figure 1) typically involves sonication of the substrate in each reagent, followed by
drying it with nitrogen.

This process ensures that the glass substrate is free from organic and inorganic residues,
fingerprints, dust particles, and other contaminants that could affect the adhesion and
uniformity of the thin-films.
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Figure 1. Substrate cleaning process before sputtering deposition.

2.2. Thin-Film Deposition by Sputtering

The Mn and ZnO:Zn samples were synthesized using a physical vapor deposition
(PVD) sputtering system from Kurt J. Lesker (Jefferson Hills, PA, USA) with a configuration
of two sputter gun sources, DC and RF. The vacuum chamber is evacuated by a mechanical
pump for 2 h and later by a turbomolecular pump for 5 min to achieve a pressure of
2.5 mTorr. After that, ultra-high purity (99.999%) Argon (Ar) gas was introduced in the
chamber. The targets used are 2′′ in diameter and 0.256′′ in thickness; Mn of 99.9%, ZnO
of 99.99% and Zn of 99.999% purity. The deposition process was carried out at room
temperature and in different stages to guarantee the desires thickness (100 nm) of each film.

In the first stage, the Mn target was used with DC Sputtering source at 30 W and
5 SCCM (Standard Cubic Centimeters per Minute) of Ar with a working pressure of
3.5 mTorr for 90 min.

The next step considers a ZnO:Zn film co-deposition using a RF/DC configuration.
The applied power was 125 W for ZnO (RF source) and 5 W for Zn (DC source) with
a working pressure of 5 mTorr, Ar flow of 10 SCCM, and a deposition time of 25 min.
These conditions have been optimised [39] and offer interesting electrical responses for
adaptive devices. Both stages were carried out several times to ensure repeatability and
reproducibility. Each set of samples were studied separately and are labelled as MnGl and
ZnGl (Gl meaning “on glass”). Table 2 presents the summarized deposition conditions for
each layer.

Table 2. Parameters for thin-film deposition.

Sample Sputtering Target Power Source Ar Atmosphere Working Pressure

MnGl Mn, 99.9% purity DC, 30 W 5 SCCM 3.5 mTorr

ZnGl
ZnO, 99.99% purity RF, 125 W 10 SCCM 5 mTorr

Zn, 99.999% purity DC, 5 W 10 SCCM 5 mTorr

In the final stage, to obtain the bilayer heterostructure, a conventional deposition with
a stainless-steel mask was employed. In this process, a grid of circular geometries was used
to define the areas of each oxide layer during the deposition (Figure 2).

2.3. Characterisations

A profilometer (KLA-TENCOR) was used to corroborate the average thickness of
the films.

XRD was performed to evaluate the structural characteristics of the samples synthe-
sized by sputtering. X-ray diffraction patterns (XRDP) were obtained with a PANalytical
X’Pert Pro diffractometer (radiation CuKα, λ = 0.15418 nm) in the range of 30–60◦ with a
step size of 0.04◦ in 2 Theta-Omega (powder) configuration.
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Figure 2. (a) Photograph of complete MnO/ZnO heterostructure, (b) cross-sectional diagram of
structure, indicating thickness of as-prepared films, (c) area of deposition showing stainless-steel
mask to define each material.

The incident optics used were with 1/8 divergent slit, mirror (parallel beam), and
10 mm of mask. A Pixcell ultrafast detector was used with 256 channels to obtain the
pattern. The voltage at 45 kV and current at 40 mA were used for the X-ray tube power.

An estimation of the crystallite size for each sample was caried out using the Debye–Scherrer
equation (Equation (1)):

D =
kλ

βcosθ
(1)

D indicates the crystallite size in nm, λ is 0.15418 nm from the CuKα probe of
the diffractometer and β is the full-width at half maximum (FWHM) of the peak from
XRDP with instrumental correction due to the measurements. HighScore Plus software
(version 3.0e) from PANalytical (Malvern, UK) was used to calculated D.

The strain (ε) of the deposited film was calculated by (Equation (2)):

ε =
d − d0

d0
× 100 (2)

where d0 is the theoretical interplanar distance for each peak, and d is the interplanar
distance measured from XRDP.

Scanning electron microscopy (SEM) micrographs of the surface and cross-sections of
the samples were obtained with a JEOL JSM-6701F (Tokyo, Japan). An energy dispersive
X-ray spectroscopy (EDS) attached to the SEM was used to obtain a semi-quantitative
analysis of the elements present in each layer.

For the electrical response of the as-prepared heterostructures, I–V (Current-Voltage)
curves were acquired and analysed at different frequencies with a Keysight EDUX1002G
oscilloscope (Santa Rosa, CA, USA). A function generator integrated into the oscilloscope
was employed to produce the sinusoidal signal to emulate transient polarization at a
frequency range of 100 Hz to 1 MHz with voltage from −4 V to 4 V corresponding to the
low-level injection.

Figure 3a shows the electrical diagram used to measure the MnO/ZnO:Zn heterostruc-
ture. A sinusoidal signal was connected in series with a 1 kΩ load resistor designated as
R. The voltage signal across the heterostructure was measured directly as CHX, and the
equivalent current was monitored by determining the voltage across the load resistor as
CHY. The MnO/ZnO:Zn structure acts as a device under test (DUT) in which we know the
input and output, and the inside can be modelled with an equivalent circuit in Figure 3b.
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Figure 3. (a) Electrical diagram proposed to evaluate MnO/ZnO:Zn heterostructure. CHX and
CHY are channels of oscilloscope. (b) Heterostructure is a DUT where, with analysis of signals
obtained with oscilloscope, adaptive behaviour dependant of frequency can be related to an analogy
of a circuit.

3. Results and Discussion
3.1. Average Thickness of the Films

The PVD sputtering technique allows for fine control of the thickness in the synthesis
process. With the purpose of corroborating the measurements made by the equipment, a
profilometer is used in each set of samples using a step made with Kapton® tape before
each deposition.

The thickness average was found to be 107.1 ± 9.8 nm for Mn and 116.9 ± 8.4 nm
for ZnO:Zn under the sputtering conditions described above. These results are consistent
with the information that the sputtering thickness monitor (Inficon SQM-160, Bad Ragaz,
Switzerland) exhibits at the end of the synthesis.

3.2. XRD

The XRDP of the MnGl and ZnGl films are shown in Figure 4. The MnGl diffraction
pattern shows two peaks: the peak at 34.448◦ corresponds to MnO cubic (111) phase
according to the ICDD #98-065-7311 crystallographic chart. The second peak was observed
at 42.378◦, which is related to the cubic (101) Mn phase (ICDD #00-017-0910).
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From this characterisation, two main statements can be established: (1) MnO films
grow with a preferential orientation of the crystals at (111); and (2) it is possible to observe
a minimal quantity of metallic Mn indicating that, during the sputtering process, the
deposited Mn was not fully oxidised and implies the presence of Mn as conglomerates,
and it can be described as a MnO:Mn film at the defined synthesis conditions.

The XRDP for the ZnGl film reveals only one peak at 34.133◦ with a high preferential
orientation, corresponding to the plane (002) of ZnO, according with the ICDD #00-036-1451
chart. Structural parameters were calculated using Equations (1) and (2). The results are
presented in Table 3.

Table 3. Crystallite size (D), strain (ε), 2θ (measured θm and reference, θr) and 2θ displacement (∆θ).

Plane Phase 2θm (◦) 2θr (◦) ∆θ D (nm) ε (%)

(111) MnO 34.448 34.446 0.002 10.3 −80 × 10−6

(002) ZnO 34.133 34.422 −0.289 16.14 −0.77

In a sputtering and co-sputtering process, the deposition of the film is affected by
parameters such as pressure, power, and gas flux, which can provoke stress and defects,
altering the stability of the lattice, more so, in the case of the ZnO:Zn. To assess the stress in
the as-obtained films, Equation (2) was used. The strain (ε) results indicate that there are
tensile stresses in the perpendicular direction to the (002) plane of ZnO and compression
in the parallel direction to the plane of the samples. This deformation is associated to
interstitial Zn (Zni), in which the atom of Zn has a radius of 137 pm and is introduced to the
ZnO lattice in the co-sputtering process [42–44]. Zni generates an increase in the interplanar
distance, which produces defects, stress and strain in the lattice. This inclusion can be
linked to an increase in electrical conductivity as the film can be electrically measured
(Appendix A). Pure ZnO films display dielectric behaviour whereas the ZnO:Zn system
can present an important resistivity decrease [26,45–47].

The MnO films presents almost no strain and is conforming to the glass substrate.
Conditions for bilayer thin-films growth of semiconductors (in this case ZnO:Zn on

top of MnO) requires that both materials have a close interplanar distance as to avoid
generating interfacial defects. For this reason, the parameter ∆d/d between top and bottom
layers were calculated as follows [48]:

∆d
d

=
top material − bottom material

bottom material
× 100 (3)

In this equation, d is the interplanar distance from the diffraction patterns for MnO
(bottom) and ZnO:Zn (top) respectively. The mismatch is presented on Table 4.

Table 4. Parameters of interplanar distance (d) for MnO (bottom) and ZnO:Zn (top) films.

Plane Layer d (Å) ∆d/dMnO (%)

(111) MnO 2.601 -

(002) ZnO:Zn 2.623 0.846

Table 4 displays the differences involving the semiconductor films deposited by sput-
tering. The ∆d/dMnO percentage of the synthesized heterostructure is 0.846%. The relation
∆d/d must be less than 1% to assure a good coupling between the lattices of the materials
and to reduce the probability of defects in the interface [48]. The proposed MnO/ZnO:Zn
heterostructure meets the requirement for the bilayer and, as a consequence, is a good
candidate for stable memristive systems.
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3.3. SEM Micrographs, EDS Analysis, and Substrate Temperature Model

For a morphological and thickness analysis of the samples, SEM micrographs were
obtained at ×10,000 and 5 kV for the surface analysis and at ×20,000 and 10 kV for the
cross-section images of both the MnO (MnGl) and ZnO:Zn (ZnGl) layers. Additionally,
images were taken at ×50,000 and 10 kV for the MnO/ZnO:Zn structure. Figure 5 shows
the surface of the samples in Figure 5a, Figure 5c, and Figure 5e respectively. The Mn
deposition on glass is uniform and almost no defects are observed. The MnO film exhibits
a characteristic mirror-like finish on glass, and upon application of the top ZnO:Zn film, no
further oxidation is detected in the original film, which functions as a passivation layer [49].
Figure 5c shows the ZnO:Zn on glass where a labyrinth pattern can be detected [15]. The
layer is transparent as already known in ZnO films, only with a certain tinted blue hue for
the ZnO:Zn.
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In Figure 5e, the surface of the MnO/ZnO:Zn also shows a homogeneous and smooth
surface where the ZnO:Zn pattern prevails as is the top layer of the structure. A homoge-
neous surface ensures consistent electrical properties across the film, and the smoothness
minimizes defect sites and irregularities that could lead to unpredictable switching be-
haviour or degrade the device response over time.

For the film thickness by SEM, Figure 5b,d,f show MnO, ZnO:Zn, and the final het-
erostructure of MnO/ZnO:Zn, respectively. The average thickness is determined by six
measurements of each layer, resulting in 106.3 ± 10.8 nm for MnO, 119.3 ± 6.5 nm for
ZnO:Zn, and 224.7 ± 10.1 nm for the final MnO/ZnO:Zn structure. These results closely
align with those obtained by the profilometer for each layer, thereby corroborating the infor-
mation provided by both the profilometer and the sputtering thickness monitor. Figure 5g,h
present the EDS analysis of MnO and ZnO:Zn, respectively, showing that the materials of
each film are present as the main elements, with no other atoms found aside from C.

By examining the morphological characteristics of the MnO/ZnO:Zn heterostructure
and considering the room-temperature deposition process, we have established a substrate
temperature model. Following the method of Khelfaoui and Aida [50], we employ a 1D heat
equation model (Equation (4)) to calculate the surface temperature of the Mn and ZnO:Zn
films during sputtering. This model allows us to estimate the films’ surface temperatures
throughout the sputtering process, aiding in corroborating the low-thermal-impact assump-
tion associated with room-temperature sputtering and deepening our comprehension of
how temperature influences the deposition and, subsequently, the film’s final properties.

∂T
∂t

=
kgl

Cgl ·ρgl

∂2T
∂x2 (4)

where kgl is the glass substrate thermal conductivity at 0.0014 W
cm·K , Cgl specific heat of the

glass at 0.75 J
g·K , and ρgl is the density of glass at 2.5 g

cm3 . They indicated that the temper-
ature mostly depends on the substrate material thermal conductivity and thickness [50].
For the 1 mm-thick glass substrate used, the following assumptions are considered for
the model:

• There is no heating source for the substrate/substrate holder, so the initial temperature
(T0) is room temperature (fixed at 300 K).

• The energy flux from the targets and subsequently generated plasma is the heat-
ing source for the glass substrate and the temperatures are considered equal in the
substrate for the growing process.

• The boundary conditions are:
T(x, 0) = T0 (5)

T(0, t) = T0 (6)

−dT(x, t)
dx

∣∣∣∣
x
= Pd (7)

where Pd is the power density of each target. While there are numerous interactions
in the sputtering process (including sputtered atoms, Ar atoms, photons, etc.), we
primarily consider the energy flux is mainly influenced by the power conditions of
each target from the DC and RF sources. The effective area of the target is associated
with the toroidal electromagnetic plasma generated during deposition. For our 2′′

(approximately 5 cm) targets, a radius of 2 cm (effective radius—ref) is utilized for
the power density calculations provided in Table 5. For the co-sputtering process, the
power densities were summed, although the 5 W contribution of Zn is minimal com-
pared to the ZnO power. Figure 6 presents the results of the solved 1D heat equation
as well as the graphical model illustrating the assumptions, where x represents the
thickness of the substrate.
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Table 5. Power density of each target used in MnO/ZnO:Zn heterostructure.

Target Power (W) Power Density, Pd
(W/cm2)

Mn 30 2.4

ZnO 125 9.94

Zn 5 0.4
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Based on the XRD results and with this model, it can be concluded that the tempera-
tures of the substrate during the sputtering process do not exceed 320 K (47 ◦C), and the
crystallinity of the samples indicates that, under the power conditions presented in this
paper, the growth film does not exhibit significant defects or stress. Furthermore, SEM
corroborates this observation, as the samples shown are homogeneous, and almost no
rugosity is visible on the surface.

3.4. Frequency Adaptive Signal Processing

To investigate the adaptive behaviour of the MnO/ZnO:Zn, a bilayer structure was
produced with the two-stage synthesis procedure described previously.

The interface operates under a dynamical polarization (time response), exhibiting both
resistive and reactive (capacitive and inductive) impedance in the space-charge (SC) region.
Therefore, to assess the technological capabilities of the MnO/ZnO:Zn heterostructure,
the SC region of the heterojunction is analysed as a transfer function, defined as the ratio
between the output and input signals.

Under the measurement technique shown in Figure 3, the dynamic behaviour of the
MnO/ZnO:Zn structure can represent the correlation between the transfer function and
the corresponding I–V characteristics to reveal internal states under specific operating
conditions (in this case, changes in frequency).

The transient activation of states provides a qualitative understanding of the transport
mechanisms involved in operating the MnO/ZnO:Zn heterojunction. The input consists of
a sinusoidal signal of 4 V for each cycle, representing the condition for reproducible and
repeatable states. At 4.8 V, the potential barrier is breached, resulting in a permanent loss
of the rectifying behaviour.

The time-response signals, I–V curves, and equivalent circuit with the proposed
contribution of each element are illustrated in Figure 7. The time is indicated as arbitrary
units (a.u.) as the oscilloscope averages thousands of signals in each period. A time/div is
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displayed in each frequency to denote the equivalent period for each grid division on the
time axis. It is important to note that the higher the frequency, the shorter the time, as there
is an inverse relation.

Nanomaterials 2024, 14, x FOR PEER REVIEW 13 of 21 
 

 

Figure 7. States of heterostructure where time response, I–V curve, and equivalent circuit are shown 
for each frequency (external stimulus). CHX and CHY are visible in time-response graph, each hav-
ing a different scale given attenuation of output signal (CHY). I–V curves reveal evolution of space-
charge region at each frequency. Analogy of the circuit is also presented, where simulation for a 
1N4007 diode, L = 27 uH, C = 100 pF and Rload = 1 kΩ shows a similar output signal to ones of 
heterostructure at those frequencies. States are stable and can be achieved repeatedly under a signal 
of 4 V or less in the input. 

 Time Response I–V Curve  Equivalent circuit 

10
0 

H
z 

 

 
Rectifying state 

10
0 

kH
z 

 

 
Rectifying and low capacitive 

state 

30
0 

kH
z 

  

 
Low rectifying, capacitive and 

inductive state 

80
0 

kH
z 

 

 
Capacitive and inductive 

state 

1 
M

H
z 

 

 
Capacitive and inductive 

state 

Figure 7. States of heterostructure where time response, I–V curve, and equivalent circuit are shown
for each frequency (external stimulus). CHX and CHY are visible in time-response graph, each
having a different scale given attenuation of output signal (CHY). I–V curves reveal evolution of
space-charge region at each frequency. Analogy of the circuit is also presented, where simulation for
a 1N4007 diode, L = 27 uH, C = 100 pF and Rload = 1 kΩ shows a similar output signal to ones of
heterostructure at those frequencies. States are stable and can be achieved repeatedly under a signal
of 4 V or less in the input.



Nanomaterials 2024, 14, 659 12 of 19

An analysis of the performance at different test frequencies, ranging from 100 Hz to
1 MHz, follows. At lower frequencies (100 Hz to 10 kHz), a barrier forms at the interface
of MnO/ZnO:Zn, causing the heterojunction to behave as a diode (half wave rectifier).
However, at higher frequencies (100 kHz and 1 MHz), the rectifying behaviour changes due
to the frequency increase, leading to a transformation of the signal. This change is reflected
in the space charge region, which increases as the frequency rises. The hysteresis of the I–V
curves is directly related to this alteration. A detailed explanation of the behaviour at each
frequency is provided for better understanding of the frequency adaptive signal processing
of the device.

At 100 Hz, a rectifying and resistive switching state is observed, with the threshold
voltage of the device measured at 440 mV (sinusoidal input). This indicates the onset of
diode response, which remains consistent across all frequencies. A filament conduction is
presumed at the interface. The presence of filament conduction at the interface is presumed,
as evidenced by the time response signal of forward bias rectification and the I–V curve.
The rectification originates from the interface between the MnO and ZnO:Zn layers, where
a certain number of electrons and holes have flowed, generating the electrical field of
the space charge region. Consequently, this resistive switching state can be attributed
to space-charge limited currents (SCLC), characterized by charge trapping, leading to a
transition from a high-resistance state (HRS) to a low-resistance state (LRS) under forward-
bias conditions. This transition corresponds to bipolar resistive switching. From 100 Hz to
almost 100 kHz, the signal behaviour resembles that of a rectification-only state.

For 100 kHz, the capacitive rectifying state expands from −4 V to 4 V, indicating
that the velocity of injected carriers is lower than the velocity of charge trapping. This
extension of the state encompasses the reverse bias region (negative cycle), manifesting as
a broadening in the I–V curve within the same voltage range. During this period, there is
a transient accumulation of electron and hole carriers around the interface, accompanied
by additional charge trapping in the space charge (SC) region. As a result of this transient
condition, the SC region extends (with a corresponding reduction in the electric field),
leading to a random distribution of carriers in the ZnO:Zn region beyond the interface. This
distribution may contribute to the slow ionization of defects, thereby inducing a hysteresis
phenomenon in the I–V curve.

In 300 kHz, the rectification effect becomes nearly imperceptible, and a crossing is
observed in the hysteresis curve. This phenomenon, known as pinched hysteresis, is
characteristic of ideal memristors, which exhibit a zero-crossing pinched hysteresis crossing
at I = 0 and V = 0 (Table 1). However, in several reported structures, meminductive and
memcapacitive effects can occur at interface [51,52]. In the case of the MnO/ZnO:Zn
heterojunction, the pinched response is shifted and asymmetric, indicating imperfect
memristors with a non-zero crossing I–V hysteresis [10,12,53]. This suggests that the
MnO/ZnO:Zn heterojunction should be considered as an extended memristive device.

At 800 kHz and 1 MHz, the time-response signal does not deliver a rectifying be-
haviour anymore. A greater capacitive response than the one at 300 kHz is present, as
evidenced by the delay of the signal in the negative cycle of CHY relative to CHX. When
the signal rises (negative to positive), the capacitive contributions are greater than the
resistive ones. On the contrary, when the signal falls (positive to negative) the contributions
are almost purely resistive. This capacitive response can be attributed to an expansion of
the space charge (SC) region, where holes fill more rapidly due to the higher frequency
of the state. This phenomenon is also reflected in the broader hysteresis of the I–V curve.
The capacitive response has been studied separately in other work for a similar struc-
ture [54]. Appendix B, Figure A1 presents the comparison of the V–t and I–V curves of a
simulated circuit compared to the MnO/ZnO:Zn heterostructure for further exploration of
the equivalent circuit.

To analyse the transient switching characteristics of the memristor, a square signal of
±4 V is used as a pulsed signal at 500 kHz with the same configuration as before. Figure 8a
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illustrates the input signal, while the response of the structure is depicted in Figure 8b and
the conductance for the applied pulses is showed in Figure 8c.
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Figure 8. Applying a ±4V square signal to MnO/ZnO:Zn structure, we obtain (a) input signal
with rise and fall signals indicated in red and blue, respectively; (b) response of structure as pulses,
where the switching speed is measured in oscilloscope and indicated as 17 ± 0.82 ns for HRS to LRS
and 439 ± 21.9 ns for LRS to HRS; and (c) conductance for applied pulses where switching ratio is
calculated as 2.11 × 104 ± 6.59 × 104.

Figure 8a depicts the rise/SET and fall/RESET characteristics of the square signal to
simulate pulses at 500 kHz. This frequency was chosen due to its features being represen-
tative of both 300 and 800 kHz. In Figure 8b, the response signal was used to measure
the switching speeds in the oscilloscope using cursors. The determined values were
17 ± 0.82 ns from HRS to LRS and 439 ± 21.9 ns from LRS to HRS. These speed disparities
not only emphasize the heterostructure’s quick adaptability to changing electrical condi-
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tions but also point towards its potential applications where fast switching mechanisms
are needed. Using Ohm’s law (V = IR), the resistance values (V as the input voltage and
I as the relation of the response voltage and the Rload of 1 kΩ), were calculated to obtain
the conductance of each pulse (conductance is the inverse of resistance and measured
in Siemens, S = Ω−1). Lastly, the switching ratio value was estimated as 2.11 × 104 ±
6.59 × 104. This value, reflective of the device’s ability to differentiate between resistance
states, serves as a fundamental parameter for optimizing the material’s nanocomposition
and configuration to enhance its memristive efficiency. Appendix C presents the power
consumption of the device at different frequencies for additional efficiency parameters.

Finally, the heterojunction does not degrade with the changes in frequency and the
states remain repeatable over the spectrum of 100 Hz–1 MHz (meaning that, for example,
a jump from 1 MHz to 100 Hz, does deliver the same signal seen in each state). Both the
external stimulus of the frequency and the stable, repeatable signals of each state, allows us
to determine that the MnO/ZnO:Zn heterostructure can be deemed as a first approach to
future sustainable frequency-adaptive memristive systems.

4. Conclusions

A simple MnO/ZnO:Zn heterostructure of approximately 200 nm was synthesized by
sputtering and was found to have characteristics of extended memristive devices through
frequency analysis. Unlike conventional multilayer memristive systems, this heterostruc-
ture capitalizes on a single interface of two materials, streamlining the complexity typically
associated with such devices. XRD data show a MnO phase with high texture in (111)
whereas the ZnO:Zn film is preferential towards (002) and the doped Zn atoms are in-
troduced as interstitial Zn (Zni) which enhances the conductive behaviour of the film
in comparison to pure ZnO. SEM showcases a uniform and smooth surface across both
materials, a critical attribute for ensuring consistent device performance.

Electrical characterisation, using an oscilloscope and function generator in the range of
100 Hz to 1 MHz, revealed a non-zero crossing I–V hysteresis, as well as capacitive effects
associated to the interface, thus demonstrating the frequency adaptability of the system.
The responses are stable, repeatable, and reproducible as long as the bias voltage does not
exceed the ±4 V limit. The simple structure allows the analysis of an equivalent circuit
model with the purpose of understanding the internal switching adaptive mechanisms
through frequency. The switching speed from HRS to LRS of 17 ± 0.82 ns, highlight the
heterostructure’s potential in fast-switching applications. Furthermore, the switching ratio
of 2.11 × 104 ± 6.59 × 104, opens possibilities for optimising the material’s composition
and structure to enhance this parameter, such as the improved conductance of the ZnO:Zn
which can be exploited for future devices in which conductive, transparent, and easy to
deposit ZnO films could be of use for future memristive applications.

As the field of frequency-adaptive devices emerges, the unique interaction between
MnO and ZnO:Zn oxides has great potential for the development of new applications and
technologies to transition from traditional to sustainable electronics. This study illustrates
the potential of leveraging simple heterostructures as an option to create new and innova-
tive design schematics with reduced components and complexity, paving the way for the
next generation memristive devices.
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Appendix A. Hall Effect Measurement

An electrical characterisation of each layer was made by Hall effect employing the Van
der Pauw method using a magnetic field of 0.55 Tesla.

The information from the Hall measurements allows to know the carrier density,
mobility, and resistivity of each film. In the ZnO:Zn sample, the Zn incorporation decreases
the resistivity and can be measured in comparison to a ZnO film at the same conditions of
synthesis [46]. Table A1 indicates the values obtained.

Table A1. Parameters obtained from Hall measurements for MnGl and ZnGl samples.

Sample Type Carrier Density (cm−3) Mobility
(cm2/V-s) Resistivity (Ω-cm)

MnGl p 3.40 × 1021 0.00762 0.2385

ZnGl n 3.00 × 1016 9.2182 24.6547

The difference in semiconductor types for each film can be seen from the results of
Table A1. The structure can take advantage of the p-n heterojunction type for a reconfig-
urable device. For the MnO layer, the main carriers will be the holes (h+) acting as acceptors
and for the ZnO:Zn layer, the carriers will be the electrons (e−) acting as donors.

Appendix B. Simulation of Equivalent Circuit

The comparison between the measured MnO/ZnO:Zn structure and the simulated
equivalent circuit with the simulation program with integrated circuit emphasis (SPICE)
is shown in Figure A1. The V–t and I–V curves are similar, and the main change is the
intensity of the signals as the simulated signals show a minor attenuation in voltage and
current. This circuit analogy allows us to observe what the behaviour of the interface
between MnO and ZnO:Zn may be like with passive and active elements.
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Appendix C

The power consumption can be calculated as dynamic power consumption (Equation (A1))
given the frequency change at different states:

P = CV2 f (A1)

As we have the capacitor (C) value from the equivalent circuit as 100 pF, the frequency
is our variable and Table A2 shows the power consumption at each frequency.

Table A2. Dynamic power consumption of MnO/ZnO:Zn structure at different frequencies.

Frequency Dynamic Power Consumption

100 Hz 160 nW

100 kHz 160 µW

300 kHz 480 µW

500 kHz 800 µW

800 kHz 1.28 mW

1 MHz 1.6 mW

As the frequency rises, so does the power consumption. This is a direct relation of
Equation (A1) and can be explained as: the more signal that is supplied to a device at higher
frequencies, the input signal is faster and repeated more times than at a lesser frequency,
increasing the consumption of energy.
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