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Abstract: The sensing of stress under harsh environmental conditions with high resolution has critical
importance for a range of applications including earth’s subsurface scanning, geological CO2 storage
monitoring, and mineral and resource recovery. Using a first-principles density functional theory
(DFT) approach combined with the theoretical modelling of the low-energy Hamiltonian, here, we
investigate a novel approach to detect unprecedented levels of pressure by taking advantage of the
solid-state electronic spin of nitrogen-vacancy (NV) centers in diamond. We computationally explore
the effect of strain on the defect band edges and band gaps by varying the lattice parameters of a
diamond supercell hosting a single NV center. A low-energy Hamiltonian is developed that includes
the effect of stress on the energy level of a ±1 spin manifold at the ground state. By quantifying the
energy level shift and split, we predict pressure sensing of up to 0.3 MPa/

√
Hz using the experimen-

tally measured spin dephasing time. We show the superiority of the quantum sensing approach over
traditional optical sensing techniques by discussing our results from DFT and theoretical modelling
for the frequency shift per unit pressure. Importantly, we propose a quantum manometer that could
be useful to measure earth’s subsurface vibrations as well as for pressure detection and monitoring in
high-temperature superconductivity studies and in material sciences. Our results open avenues for
the development of a sensing technology with high sensitivity and resolution under extreme pressure
limits that potentially has a wider applicability than the existing pressure sensing technologies.

Keywords: quantum sensing; stress sensor; nitrogen-vacancy center in nanodiamond; density
functional theory; quantum manometer

1. Introduction

Color centers in solid-state physics have attracted significant attention due to the
possibility of using them for emerging quantum technologies. These color centers in cer-
tain solid materials show promise for applications ranging from magnetic field sensing
with unprecedented sensitivity levels using magnetometry to cellular biomarker-based
biology investigations, to quantum communication and quantum computing using opti-
cally addressable solid-state qubits [1–4]. Moreover, emerging applications in the energy
sector such as the expansion of smart grids/meters, driverless vehicles, and nuclear re-
actors and the discovery of new oil and gas deposits are creating new opportunities for
quantum sensing [5,6]. The continued maturation of quantum sensing technologies offers
exciting opportunities for quantum-enhanced measurements that may provide significant
improvements in sensitivity beyond the classical limits. Variables such as temperature,
pH, electromagnetic fields, and pressure must be measured with high precision, often
in harsh conditions (e.g., highly corrosive environments due to high temperature, pres-
sure, humidity, and radioactivity). These sensors are deployed in infrastructures such as
transformers [7], pipelines [8–10], mines [8], nuclear power plants [11,12] and in other
areas [13,14] to ensure safe operating conditions and uninterrupted, optimized service.
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Nitrogen-vacancy (NV) centers in diamond are among the most promising color cen-
ters in the solid state that hold rich physics and exhibit potential for sensing [2,6,15–21]
and communication [22,23] applications. In addition, the negatively charged NV centers
persistently maintain their desirable electronic features at room temperature, unlike many
other solid-state systems for which elevated temperatures greatly reduce the signal-to-
noise ratio [24–26]. Sensors based on NV centers are also proven to surpass the stress
sensing limits that are achievable by classical sensing devices [27–33]. The NV center
primarily appears in the negative (NV−) and neutral (NV◦) charge states within the di-
amond lattice. Due to the tunability of the qubits defined within the NV centers, these
defects are promising candidates for the sensing of chemical analytes. Encapsulation of NV
center-containing nanodiamonds with materials such as metal–organic frameworks (MOFs)
can provide additional control over the dispersion of the particles and may selectively
bring the target analytes to the nanoparticle surfaces for enhanced performance in sensing
applications [24,34,35].

A NV center is a six-electron system. Within the NV center, three electrons of the
neighboring C atom are linked with the N atom forming covalent bonds, while the re-
maining two electrons are provided from a lone pair. The sixth electron that results in the
formation of a negative charge state is assumed to have been accepted from a nearby donor.
Overall there are four sp3 orbitals, which are labeled a =

{
a′1, a1

}
and e =

{
ex, ey

}
[36].

The NV centers’ defect bands that appear within the diamond band gap are composed of
a triplet (S = 1) ground state where the ms = ±1 states are degenerate and are separated
from the ms = 0 state by a zero-field splitting energy parameter (D). The spin–spin inter-
action splits the ground state spin sublevels by 2.88 GHz into a spin singlet Sz, where z
corresponds to the NV center symmetry axis, and a spin doublet Sx, Sy [33]. The excited
state 3E is also a spin triplet and orbital doublet, which are associated with broadband pho-
toluminescence emission with a zero-phonon line (ZPL) centered around 637 nm. However,
the 3E level has more complex structures than the ground level 3A. At elevated tempera-
tures, the six-level 3E fine structure is observed via high-resolution optical spectroscopy.
While conducting optically detected magnetic resonance (ODMR) at temperatures above
150 K, the population transfer in the 3E orbitals is extremely fast. The ODMR for this level,
therefore, resembles that of 3A.

Under 532 nm excitation, carriers are pumped to the excited states where spin is
conserved due to the conservation of the total angular momentum. The excited carriers
relax to the ground state either directly by emitting photons of 637 nm, originating from the
ZPL, or by nonradiative intersystem crossings (ISCs) through long-lived metastable states.
The probability of carrier relaxation from the metastable state to the |A, 0 ⟩ state is higher
compared to that of the decay to the |A,±1 ⟩ ground state, as shown in Figure 1. Under
continuous optical excitation, these spin-conserving transitions yield higher populations in
the |A, 0 ⟩ state and initialize a spin-polarized ground state. This allows for spin-dependent
fluorescence measurements using the ODMR technique [19,33,37,38]. The dark ISCs are
not yet fully understood; however, it is believed these are the result of cumulative effects
from the spin–orbit interaction of the lowest triplet (3A, 3E) and singlet (1A, 1E) levels as
well as of electron–phonon interactions [33,39,40].

Diamonds that host NV− centers have a high Young’s modulus. This provides excel-
lent mechanical strength under applied stress and hence results in a high stress amplitude
relative to that achievable with other widely used materials such as steel, silicon, and
ceramics in pressurized environments. In environments where high pressure is essential,
NV centers in diamond can be implemented to probe temperature, pressure, and even
the strength of an electromagnetic field. In 2014, Doherty et. al. revealed for the first
time the possibility of implementing the NV− center for high-pressure measurements up
to 60 GPa by probing optical and spin resonances [41]. The zero-field splitting between
the ms = 0 and ms = ±1 spin sublevels with a value of D ∼ 2.88 GHz mainly arise due
to the first-order spin–spin interaction, whereas the second-order spin–spin interaction
provides a negligible contribution to the splitting parameter [22,42]. The spin quantization
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axis is determined by the spin density within the triagonal axes in the ground 3A level.
Depending on the direction of the applied strain to the NV center symmetry, the degeneracy
of the spin sublevel is lifted. The strain along the center symmetry axis results in shifts
in the A spin sublevels, and the strain along the traverse direction lifts the degeneracy of
the E spin sublevels. In previous studies [1,43–48], theoretical models of the NV centers
were able to describe experimental observations in nanoscale magnetic field, pressure,
and temperature sensing. Ivady et al. [1] used an ab initio method to study the pressure
dependence of the zero-field splitting due to the change in the distance between the spins
as the applied compression changed.
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Figure 1. A diamond structure with a NV center. Shown are (a) the unit cell and (b) a 3 × 3 × 3
supercell structure with dimensions of 1.07 nm. The DOS for NV− defective diamond. (c) The
impurity states can be seen around the Fermi level with some contributions from C. (d). The charge
distribution around the N impurity and C vacancy centered around the supercell with charge q = −1.
The color map in (d) indicates positive (yellow) and negative (blue) charge surfaces.

Multiple studies were experimentally [48–51] and theoretically [46,47,52] conducted
to capture the change in the zero-phonon line and spin levels. While a plethora of these
studies provide insights on the NV centers’ behavior under stressed and harsh environmen-
tal conditions, a combined analytical and computational modelling approach could directly
help in designing ultrasensitive quantum sensing devices useful in stressed environments,
considering the properties of the electronic spin sublevels. In addition, the strength and
sensitivity level of a quantum sensor compared to that of a classical sensor still needs to
be quantified. Here, we employed a density functional theory (DFT) approach to study
the effect of stress on the band edges and band gaps of the NV-defective diamond lattice.
Stress in a supercell of single-NV-defective bulk diamond was introduced by varying the
strain along the longitudinal (c) and the transverse (a and b) lattice directions for different
dimensions of the supercell. Band edge shifts up to several terahertz (THz) were obtained.
To capture the shift and splitting in the spin manifold due to stress, we introduced a
low-energy Hamiltonian and derived its effective form. Using the diamond’s low-energy
Hamiltonian for the NV center, level shift and splitting per unit stress were calculated,
and their applicability to stress sensitivity using a previously measured spin dephasing
time reported by our group is discussed. By combining the DFT and Hamiltonian mod-
elling results, we also discuss the superiority of quantum sensors for pressure monitoring
compared to traditional optical sensing devices based on band gap and band edge tuning.
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2. Computational Method

The first-principles density functional theory (DFT) approach is a widely used tech-
nique based on the single-particle Kohn–Sham (KS) equation [2], which employs the
plane-wave basis sets. This approach is particularly successful in determining the ground-
sate properties of solids. In KS DFT, the total energy E is a function of the electron charge
density n(r) of the interacting system. The charge density of an interacting system can
be expressed in terms of the KS orbital of a non-interacting system as n(r) = ∑i ci |φ i|

2,
where φi is the KS wave function, and ci is the occupation number of the KS orbital. φi is
the eigenfunction of the single-particle Hamiltonian hi(ri). The total effective Hamilto-
nian He f f is the sum of hi(ri) over the number of electrons, He f f = ∑Nel

i=1 hi(ri), and is
expressed by

He f f = ∑Nel
i=1

{
−1

2

1 
 

 2i + Ve f f (ri)

}
(1)

Due to a lack of accurate exchange–correlation potential, in most cases, the calculated
results for excited states using the KS DFT approach are in practice only a rough approx-
imation of the experimentally observed results. While simulating in three-dimensional
periodic systems, the KS orbitals are usually expanded in terms of plane-wave basis sets.
Numerically, the use of plane-wave basis sets allows for a fast convergence in the ground-
state energy. However, due to the requirement of extremely short wavelengths to account
for the core electronic orbital, such as 1s in C in our calculation, a large value of kinetic
energy (or a large number of basis sets) is necessary, which results in a high computational
cost in the numerical calculations. In the projector augmented wave method [53], Bloch
developed a soft potential that can be used to reconstruct an all-electron effect, i.e., the effect
of core electrons plus valence electrons [54]. Exchange–correlation potentials in the DFT
approach are approximated at different theoretical levels. In the local-density approxima-
tion (LDA), the exchange–correlation potential is derived for homogenous gas systems [55].
An extension of the LDA is a generalized gradient approximation [56], which considers
the variation in the electronic potential by implementing its gradient. In the generalized
gradient approximation (GGA), the Perdew–Burke–Ernzerhof (PBE) functional is one of
the widely accepted functionals for calculations while considering a tradeoff between the
accuracy and the computational time [57]. A major drawback of these methods is that
they all suffer from a self-interaction error that usually results in an underestimation of the
electronic band gap of solids.

A cubic structure of diamond with a unit cell experimental lattice parameter
a = 0.356 nm was considered [58]. In our calculation, the first-principles DFT approach
was implemented in the Vienna ab initio simulation package (VASP) [59,60]. The pro-
jector augmented wave [53] pseudo-potentials and the Perdew–Burke–Ernzerhof (PBE)
exchange–correlation functional were chosen in order to calculate the electronic density
of states and bandstructures [54,57]. Plane-wave basis sets with a cutoff energy of 520 eV
were used. A pure diamond unit cell was optimized with a Monkhorst–Pack grid of
9 × 9 × 9, and energy convergence of 10−6 eV per unit cell was achieved. To calculate the
bulk electronic density of states (DOS) and bandstructures for NV-defective diamond, a
3 × 3 × 3 supercell was used along with a Monkhorst–Pack grid of 1 × 1 × 1. Varying
uniaxial and isotropic stresses were applied, and the corresponding bandstructures were
computationally monitored. A q = −1 charge was introduced to ensure a negative charge
state of the NV center to resemble the experimental conditions; this step produced the
required defect bands. Bader charge analysis was performed, and the distribution of charge
around the NV centers was calculated. In solid and molecular systems, the charge density
between atoms has a minimum value due to a vanishing overlap in their wavefunctions
near a neutral region that separates the two atoms. The charge density distribution was
calculated using ∆ρ = ρ

(
NV−)− ρ(NVnetral), where ρ

(
NV−) is the charged density for a

supercell with an NV− center, and ρ(NVnetral) is the charge density for a neutral supercell.
A varying stress was introduced by changing the lattice parameters along the longitudinal
and transverse directions of a supercell.
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3. Results and Discussions
3.1. Density of States and Bandstructures of NV-Defective Diamond

The NV center in the diamond unit cell had C3v symmetry. Under zero applied stress,
the triagonal axis of the NV center in C3v symmetry was aligned to the [111] direction, as
shown in Figure 1a. Here, we denote the NV− center as the NV center for convenience.
The Jahn–Teller effect reduces the neutral NV center (NV◦) into the C1h symmetry relaxed
state [61,62]. Depending upon the direction of the applied stress, the C3v symmetry either
remains intact or is broken. Under applied isotropic stress σxyz, the C3v symmetry was
preserved. The NV center oriented along the [111] direction preserved the C3v symmetry
when the stress was applied along the [111] direction, whereas the C3v symmetry was
broken for other orientations, namely,

[
111

]
,
[
111

]
, and

[
111

]
, of the NV center.

With one NV center in our supercell, the total density of the defects was 8.163× 1020/cm3.
When a N and C vacancies were introduced with an additional total charge q = −1 (usually
captured from the lattice site in the sample) and spin S = 1, this additional charge was
aligned along the NV axis, providing the dipole direction. In that case, the net charge density
was equal to the density of the NV centers, which was 8.163× 1020/cm3. The charge was
distributed around the vacancy, forming dangling bonds with the C atoms surrounding
the NV center. In this alignment, the dipole was directed to the N atom, with about 80%
of the additional −1 charge localized around the surrounding C atoms. This caused the N
states in the NV center to be further shifted toward the valence band by about 0.1 eV. N
impurity sp states arose near the valence band, whereas some C states provided significant
contribution to the states that appeared near the Fermi level, as shown in Figure 1. A N
impurity in pure diamond usually provides an additional charge and therefore acts as an
electron donor. These N impurity states appear near the conduction band edge of bulk
diamond. When a C vacancy was introduced adjacent to the N impurity, the degenerate
excited triplet 3E bands in the NV− were found to be 60 meV above and the degenerate ground
triplet 3A 1.48 eV below the Fermi level at the Γ point. The contribution of the impurity to
the total DOS near the Fermi level was small, as seen in Figure 1, and the bands near the
Fermi level were partially occupied. These bands are essentially the color center’s energy
level that make green light excitation (~λ = 532 nm) possible during experiments [33,52]. The
underestimation of the band gap at the PAW-PBE level is inherent in the DFT calculation.

A systematic change in the lattice parameter along specific directions by allowing ions
to relax inside the supercell structures provides an estimate of the independent components
of the stress tensor σij. To gain insights into the splitting of the bands due to the exertion
of tensile strain, here, we changed the lattice parameters along the longitudinal (c − axis)
and traverse (ab plane) directions. Figure 2 shows the bulk diamond bandstructures with
N, NV0 and NV−1 in a 3 × 3 × 3 supercell. We changed c up to ±2%. Due to the finite
size of the supercell, σij = −δE/δηji was needed to equilibrate the geometry considered
in the calculation. At the equilibrium 3 × 3 × 3 supercell structure, the magnitude of
the diagonal elements of σij (i, j = x, y, z) was 2.7 GPa, whereas that of the other three
independent off-diagonal elements σxy, σyx, and σzx was 0.3 GPa. The positive sign here
indicates compressive strain (and the negative sign represents tensile strain). The values of
the applied stress for nonequilibrium lattice parameters could be estimated by subtracting
the above components of the stress tensors.

A tensile strain with +2% change in c exerted a stress of σzz = −15.194 GPa, while the
magnitude of the other elements was less than +1 GPa. Under compressive strain with
−2% change in c, we found σzz = 19.85 GPa. while the magnitude of the other elements
was less than −1 GPa. We also changed the traverse lattice parameters up to ±2%. In
this case, σxx and σyy were found to be −16.49 GPa, and σzz was −13.37 GPa. When the
supercell structure experienced tensile strain under −2% changes in the transverse lattice
parameters, σxx and σyy were found to be 26.61 GPa, and σzz was 5.65 GPa. All other
components were less than 2 GPa.
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Figure 2. Diamond bandstructures calculated using the PAW-PBE potential (a) with a N impurity,
(b) NV0, and (c) with NV− centers in a 3 × 3 × 3 supercell for a NV center oriented along the
[111] direction. As a NV center was introduced, additional defect bands arose with a band gap of
nearly 1.5 eV in this calculation, allowing for strong electron-hole polarizations under green laser
illumination in both neutral and negative NV defects. Dark blue denotes the C states, whereas red
and light blue indicate impurity states (zero energy is placed at the Fermi level).

Figure 3 shows the splitting of bands due to the stress that was applied by changing
the transverse lattice parameters (a, b). The stress was found to split the excited 3E level
(∆Eex), whereas the degenerate 3A level was unaltered. ∆Eex was found to be 40 meV
under the compressive and tensile strain introduced by a 2% change in the transverse
lattice parameters. ∆Eex was found to be 60 meV under tensile strain and 30 meV under
compressive strain with a 2% change in the c parameter. Figure 4 shows the splitting ∆Eex of
the excited 3E level as a function of change in the longitudinal and transverse lattice
parameters. The slight asymmetric nature of the splitting shows that the NV center’s
response was different under compressive and tensile strain. It is to be noted that stress
in the lattice acted with respect to the crystallographic coordinate system. The NV center
dipole was not aligned to the direction of stress and therefore affected the polarization
of the dipole. Table 1 summarizes the splitting ∆Eex and changes in the band gap under
variations in the lattice parameters.

Nanomaterials 2024, 14, x FOR PEER REVIEW 7 of 17 
 

 

 
Figure 3. NV-center diamond band structures for changes in the transverse laĴice parameter ratio 
ᇲ


=

ᇲ


   by (a) 1.0074, (b) 1.014, (c) 0.988 and (d) 0.9813. The blue curves represent the C bands. 

whereas the red curves represent the impurity band. 

 
Figure 4. Energy spliĴing of the excited 3E level under a variation in the ratios of the longitudinal 
(a) and transverse (b) laĴice parameters. The transverse laĴice parameters a and b were changed 
simultaneously in (b) up to 2%. Only the change in 𝑎ᇱ/𝑎 is shown, due to the cubic symmetry of 
the supercell. 

  

Figure 3. Cont.



Nanomaterials 2024, 14, 675 7 of 16

Nanomaterials 2024, 14, x FOR PEER REVIEW 7 of 17 
 

 

 
Figure 3. NV-center diamond band structures for changes in the transverse laĴice parameter ratio 
ᇲ


=

ᇲ


   by (a) 1.0074, (b) 1.014, (c) 0.988 and (d) 0.9813. The blue curves represent the C bands. 

whereas the red curves represent the impurity band. 

 
Figure 4. Energy spliĴing of the excited 3E level under a variation in the ratios of the longitudinal 
(a) and transverse (b) laĴice parameters. The transverse laĴice parameters a and b were changed 
simultaneously in (b) up to 2%. Only the change in 𝑎ᇱ/𝑎 is shown, due to the cubic symmetry of 
the supercell. 

  

Figure 3. NV-center diamond band structures for changes in the transverse lattice parameter ra-
tio a′

a = b′
b by (a) 1.0074, (b) 1.014, (c) 0.988 and (d) 0.9813. The blue curves represent the C bands.

whereas the red curves represent the impurity band.

Nanomaterials 2024, 14, x FOR PEER REVIEW 7 of 17 
 

 

 
Figure 3. NV-center diamond band structures for changes in the transverse laĴice parameter ratio 
ᇲ


=

ᇲ


   by (a) 1.0074, (b) 1.014, (c) 0.988 and (d) 0.9813. The blue curves represent the C bands. 

whereas the red curves represent the impurity band. 

 
Figure 4. Energy spliĴing of the excited 3E level under a variation in the ratios of the longitudinal 
(a) and transverse (b) laĴice parameters. The transverse laĴice parameters a and b were changed 
simultaneously in (b) up to 2%. Only the change in 𝑎ᇱ/𝑎 is shown, due to the cubic symmetry of 
the supercell. 

  

Figure 4. Energy splitting of the excited 3E level under a variation in the ratios of the longitudinal
(a) and transverse (b) lattice parameters. The transverse lattice parameters a and b were changed
simultaneously in (b) up to 2%. Only the change in a′/a is shown, due to the cubic symmetry of
the supercell.

Table 1. Splitting and changes in the band gap magnitude under variation in c (Figure 4a)
and a and b (Figure 4b) in a 3 × 3 × 3 supercell.

Change in Lat-
tice Parameter c (Å)

Splitting of
Excited State ∆Eex (meV)

Band Gap
Changes (meV)

Change in Lattice
Parameters a and b (Å)

Splitting of
Excited State ∆Eex (meV)

Band Gap
Changes (meV)

10.87 30 50 10.87 35 55

10.79 10 30 10.79 20 40

10.71 0 0.0 10.71 0 0.0

10.67 10 30 10.67 3 15

10.59 31 25 10.59 22 25

10.51 60 30 10.51 40 35

3.2. Theoretical Model of the NV Center under Stress

The DFT approach was useful to gain insights on the bandstructures and energy level
splitting under compressive and tensile strain. However, a detailed picture of the splitting
of the spin manifold at the ground level required an additional analytical approach based
on a complete Hamiltonian that would capture zero-field splitting as well as perturba-
tions in the spin states. In the literature, the spin–strain and spin–stress interaction are
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described in reference to the crystal axes (XYZ) or the NV center’s local symmetry axes
(xyz) [27,46,49]. In order to formulate a theoretical model, we followed the coordinate
system and description provided by Udvarhelyi et al. [46].

Consider a cubic frame of reference for a NV center in nanodiamond with a N
atom at the origin and a vacancy at (a/4, a/4, a/4), where a = 3.567 is the unit cell
parameter. The axis systems are shown in Figure 5. Here, {x, y, z} indicates the NV
center’s threefold rotation symmetry axes, and {X, Y, Z} the crystal’s cubic frame of ref-
erence. In the {x, y, z} frame, three orthonormal vectors are defined as ez = (1, 1, 1)/

√
3,

ey = (1,−1, 0)/
√

2, and ex = (−1,−1, 2)/
√

6. In this frame of representation, the C3 sym-
metry of the NV center lies on the xz plane. It is to be noted that the chosen orien-
tation is one of the four possible NV axis orientations. The transformation between
crystal symmetry and NV symmetry defined by the above three orthonormal vectors
could be obtained by using the transformation vector TNV = R[001](−3π/4)R[110](−αNV),

where Rn(θ) is a rotation matrix, and αNV = arccos (1/
√

3) [27]. Defining the rotation
vector Kez for ez ∈

{
111, 111, 111, 111

}
, one can generate a transformation among four

unique orientations of the NVs via operating Kk by TNV . For example, the transforma-
tion between two NVs with their dipoles oriented along [111] and

[
111

]
can be made by

implementing the operation TNVK(1 1 1). In this case, K(1 1 1) = R[001](π). The details of
this transformation were presented by Barfuss et al. [27]. Using the NV orientation along
the [111] direction, we developed the formalism for coupling the stress to the spins at the
NV center’s ground level. The change in stress per spin energy was deduced to quantify
the potential sensitivity.
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The negatively charged NV center had spin S = 1. The spin sublevels |0 ⟩, |−1 ⟩ and
|+1 ⟩ are eigenstates of the spin operator Sz along the z-axis. The spin sublevels |±1 ⟩ are de-
generate and are separated by the zero-field splitting parameter D0 = 2.87 GHz from |0 ⟩. The
symmetry-breaking magnetic field B =

(
Bx, By, Bz

)
induces a Zeeman shift, splitting

the |−1 ⟩ and |+1 ⟩ states by ±γeBz, where γe =2.8 MHz/G is the electron’s gyromag-
netic ratio. In the presence of a magnetic field, neglecting the zero-phonon line, the ground
state of the negative NV center is described by the Hamiltonian

Ho = D0S2
z + γeB·S (2)

where S =
(
Sx, Sy, Sz

)
is the spin matrix. Only the z component of the field splits the

ground state, whereas the transverse components of the field have a negligible effect due to
a weak coupling of the field with the Sx and Sy spin components.

In order to describe the spin-mechanical coupling, the electronic levels were per-
turbed by applying a uniaxial stress V = ∑i,j Aijσij, where Aij indicates electronic operators,
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and σij indicates second-rank symmetric stress tensors [49,64]. If uniaxial pressure P is
applied to the crystal along an arbitrary direction, the elements of the stress tensors be-
come σij = PCos(p, i) ∗ Cos (p, j), where p is the direction of the applied pressure. The
perturbation V can also be written in terms of a second-rank strain tensor V = ∑i,j Bklεkl ,
where Bkl indicates the electronic operators. Aij and Bkl are related by the elastic con-
stant cijkl , as Bkl = ∑i,j Aijcijkl . Due to the symmetry of the stress tensor, there are only
six Aij, and the elastic constants can be reduced to 6 × 6 tensors. For cubic crystals such as
diamond, there are only three independent components of elastic constants, which greatly
simplifies cijkl . The spin states |0 ⟩ and |±1 ⟩ at the ground 3 A2 level of the NV center
transform, respectively, as A and E irreducible representations in triagonal symmetry. The
theoretical description of tetragonal and triagonal symmetry is equivalent [64]. σij has
two components, {A 1, A′

1} that transforms as A and another two components, Ex and Ey,

that transform as E and also have two components each, {E x, E′
x} and {E y, E′

y

}
. To be

consistent with the notations in the literature, we define Mz = A1 + A′
1, My = Ey + E′

y,
and Mx = Ex + E′

x.
The effect of the applied stress at the NV center can be estimated by calculating the

distortion on the unpaired spin density that leads to a change in the spin–spin interaction.
The states |0 ⟩, |±1 ⟩ are the eigenfunctions of the spin operator S that also transform
as A and E. Following Reference [27], the most general spin–stress coupling Hamiltonian
under applied stress in terms of spin components can be written as Hσ = Hσ0 +Hσ1 +Hσ2,
where

Hσ0

h
= MzS2

z (3)

Hσ1

h
= Nx{Sx, Sz}+ Ny

{
Sy, Sz

}
(4)

Hσ2

h
= Mx

(
S2

y − S2
x

)
+ My

{
Sx, Sy

}
(5)

where
{

Si, Sj
}
=

(
SiSj + SjSi

)
is the anticommutator for the spin operators. Mi are the

spin–stress coupling parameters written in the NV frame of reference, as defined above.
The quantity Ni, not defined above, indicates the small perturbations that arise under the
symmetry-breaking field. In the absence of such a field, Ni provides a negligible contribu-
tion. The strength of the symmetry-breaking field, e.g., a magnetic field, is minimized to less
than 1 mT to reduce the induced-field contribution in Hσ [65]. In Reference [46], a detailed
description of the term Hσ1 that contains Ni was provided. The indices 0, 1, and 2 represent
changes in ms. Hσ1 has a nonzero dipole transition element between |0 ⟩ and |±1 ⟩ and
can couple to a homogeneous electric field. Hσ2 couples the spin sublevels |+1 ⟩ and |−1 ⟩.
It is to be noted that the term Hσ0 preserves the symmetry of the NV center and brings
a constant shift on the |±1 ⟩ level in reference to the |0 ⟩ level. The spin–stress coupling
parameters Mi and Ni in the NV frame of reference can be written in terms of stress tensors
expressed with respect to the crystal axes as

Mx = b(2σZZ − σXX − σYY) + c(2σXY − σYZ − σXZ) (6)

My =
√

3b(2σXX − σYY) +
√

3e(2σYZ − σXZ) (7)

Mz = a1(σXX + σYY + σZZ) + 2a2(σXY + σYZ + σXZ) (8)

Nx = d(2σZZ − σXX − σYY) + e(2σXY − σYZ − σXZ) (9)

Ny =
√

3d(2σZZ − σXX) +
√

3e(2σYZ − σXZ) (10)

The spin–stress interactions described by Equations (5) through (9) contain the stress
susceptibility parameters a1, a2, b, c, d, and e, whose amplitudes remain unaltered even
when the symmetry plane of the NV center changes. It is to be noted that Equations (5)
through (9) are completely analogous in terms of the strain tensor εij. We followed the
representations introduced by Barson et al. [49] and implemented them in the theoret-
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ical framework developed by Barfuss and Udvarhelyi et al. [27,46]. These parameters
can be expressed explicitly in term of six independent spin–stress coupling parameters,
i.e., g43, g41, g25, g26, g15, and g16, which are reported in Table 2.

Table 2. Stress susceptibility parameters.

a1 = (2g41 + g43)/3 a2 = (−g41 + g43)/3 b = (−g15 +
√

2g16)/3

c = (−2g15 −
√

2g16)/3 d = (−g25 +
√

2g26)/12 d = (−2g25 −
√

2g26)/12

The contribution of Ni is negligible compared to that of Mi if the perturbation due
to the applied or spin–stress-induced symmetry-breaking field is omitted. The contribu-
tion of Hσ1 is much smaller than that of the zero-field splitting parameter D0. The total
Hamiltonian under stress and magnetic field can be written as

H = D0S2
z + MzS2

z + Nx{Sx, Sz}+ Ny
{

Sy, Sz
}
+ Mx

(
S2

y − S2
x

)
+ My

{
Sx, Sy

}
+ γeB·S (11)

The operators
{

S = Sx, Sy, Sz
}

for a spin-one system are 3 × 3 matrices. On this basis,
the eigenvalues of Equation (11) should provide the level shifting and energy splitting
under an applied stress and magnetic field. We neglected the term

{
Nx, Ny, Nz

}
and solved

the eigenvalues of the Hamiltonian analytically. The first two eigenvalues provide the
frequencies per GPa

ω|±1⟩ = Do + Mz ±
√
(γeB)2 + Mx

2 + My
2 (12)

The second term in Equation (12), Mz (a shift in the level (δE)), arises due to the
stress interacting with the z-component of the spin. This stress clearly induces a constant
level shift on the zero-field splitting parameter Do. The third term is due to the distortion
in the trigonal symmetry and introduces further splitting on the level in the |±1 ⟩ spin
manifold. In fact, the effective Hamiltonian for Equation (11) has the same form as that for
the two-dimensional state of the stress tensor.

To understand the nature of the shift and the splitting, we considered a uniaxial stress
that was applied along the direction p. The stress tensor σI J , where I, J = {X, Y, Z} are the
directions representing the crystal axes, can be written as σIJ = cos(p, I)cos(p, J) for unit
stress. For the stress along the [100] direction, σXX = 1; the remaining diagonal elements
are σYY = σZZ = 0, and the off-diagonal elements are σXY = σYZ = σZX = 0. Similarly, for
stress along the [110] direction, we have σXX = σYY = σXY = 1/2 and σXZ = σYZ = σZZ = 0,
and for stress along the [111] direction, σXX = σYY = σZZ = σXY = σYZ = σZX = 1/3.
For more complex directions such as the [120] one, the components of the stress tensors
are σXX = 1/5, σYY = 4/5, σXY = 2/5, and σXZ = σYZ = σZZ = 0. Introducing these values
for

{
Mx, My, Mz

}
in Equations (5)–(7), we obtained the following eigenvalues (energy level

shift/split per GPa) for the [100], [110], and [111] directions:

∆ω
[100]
|±1⟩ = a1 ± 2b (13)

∆ω
[110]
|±1⟩ = a1 + a2 ± (b − c) (14)

∆ω
[111]
|±1⟩ = a1 + 2a2 (15)

Equations (13)–(15) completely characterize the stress–spin interactions at a zero ap-
plied magnetic field. For the p ∥ [100] and [110] directions, there was splitting, as indicated
by the signs in Equations (14) and (15). The values of this splitting were different for stress
along different directions. If p ∥ [111], the shift was a constant with a value of a1 + 2a2. In
the above derivation, the NV axis was assumed to be oriented along the ez = [111] direction,
and therefore only the z component of the spin vector S coupled to the applied stress. It was
found that for p ∥ [100], the shift was the same for each sub-ensemble of the NV centers that
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were oriented in all four directions. For p ∥ [110], NV centers with ez ∈
{

111, 111
}

had split-
ting a1 + a2 ± (b − c), and NV centers with ez ∈

{
111, 111

}
had splitting a1 − a2 ± (b − c),

whereas for p ∥ [111], the splitting was a1 + 2a2 and a1 − 2a2/3 ± 4c/3, respectively,
for ez ∈

{
111, 111

}
and ez ∈

{
111, 111

}
. The splitting in each case under applied uni-

axial stress is provided in Table 3. With the experimental observation provided for the
orientations by Doherty et al. [41], we summarize that the NV sub-ensemble orientations
with respect to p were θ

◦
= 0 for ez ∈

{
111, 111

}
and θ = 70

◦
for ez ∈

{
111, 111

}
with

p ∥ [111] and θ = 36
◦

for ez ∈
{

111, 111
}

and θ = 90
◦

for ez ∈
{

111, 111
}

with
p ∥ [110]. For the sub-ensembles with ez ∈

{
111, 111, 111, 111

}
, θ = 54

◦
with p ∥ [100]. The

angle of orientation affects the photon absorption rates depending on photon polarization.

Table 3. Energy splitting for four different NV center orientations under applied uniaxial pressure
along three different directions.

Applied-Stress Direction NV Sub-Ensemble Direction Shift/Splitting per Unit Pressure

p ∥ [100] ez ∈
{

111, 111, 111, 111
}

a1 ± 2b

p ∥ [110]
ez ∈

{
111, 111

}
a1 + a2 ± (b − c)

ez ∈
{

111, 111
}

a1 − a2 ± (b − c)

p ∥ [111]
ez ∈

{
111, 111

}
a1 + 2a2

ez ∈
{

111, 111
}

a1 − 2a2/3 ± 4c/3

In Reference [46], Udvarhelyi calculated the values of the stress susceptibility pa-
rameters d and e as −0.12 ± 0.01 and 0.66 ± 0.01 MHz/GPa, respectively, using DFT; no
experimentally observed values are available yet for these parameters. They also reported
the values of other parameters, i.e., a1 = −2.66 ± 0.07, a2 = 2.51 ± 0.06, b = 1.94 ± 0.02,
and c = −2.83 ± 0.03 MHz/GPa, which are consistent with the experimentally measured
values of 4.4 ± 0.2, −3.7 ± 0.2, −2.3 ± 0.3, and −3.5 ± 0.3 MHz/GPa, respectively [49].
The DFT calculation of these parameters was based on the method developed for the
zero-field splitting of spin–spin interactions by Bodrog and Gali [66] within the projected
augmented approximation [53] framework. The splitting depends on the orientation of
the photon polarization vector with respect to the direction of the applied uniaxial stress.
For the π polarization, where the NV axis is along the photon’s polarization vector, and
the NV dipole is oriented along the [111] direction, the energy shift and the splitting
{δE, ∆E} of the ±1 spin manifold can be calculated from Table 1 as {3, 0} MHz/GPa for
p ∥ [111], {0.7, ±5.8} MHz/GPa for p ∥ [110], and {4.4, ±4.6} MHz/GPa for p ∥ [100].
The parameters {δE, ∆E} for the NV sub-ensemble oriented along the [111] direction
are calculated as {6.86, ±4.66}, {0.7, ±5.8}, and {4.4, ±4.6} MHz/GPa, respectively,
for p ∥ [111], p ∥ [110], and p ∥ [100]. It is interesting to note that with p ∥ [111], there is no
splitting of the energy level for ez ∈

{
111, 111

}
NV orientations.

Figure 6 shows the shift and the splitting of the ±1 spin manifold for the NV sub-
ensemble oriented along the [111] direction with applied stress along the [100] direction.
Both the split and the shift increased linearly as a function of stress.
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4. Discussions

For the applied stress with p ∥ [111] to the NV centers’ orientation ez ∈ {111}, there
was no splitting, and only shifting was observed. If a magnetic field was present, there
was splitting with strength ±γeB. The magnitude of the magnetic field strength could
easily surpass the effect of stress. For example, a magnetic field strength of 10 mT pro-
vided a splitting of ~280 MHz, which is equivalent to applying a stress of ~60 GPa. To
minimize the effect of the magnetic field in stress-sensing experiments, we suggest ini-
tially benchmarking the splitting only due to the magnetic field along the z-axis to reduce
unwanted cross-sensitivity.

The sensitivity (ηgs) of a stress-sensing device due to the manipulation of the ground
state energy of a NV center is determined mainly by two factors: the split or shift of the spin
levels with respect to the applied stress and the spin relaxation time in the ground state spin

manifold [41]. The stress sensitivity is defined as ηgs =
(

2πC(dD/dP)
√

T*
2

)−1
, where C is

the photon collection efficiency, dD
dP is the change in zero-field splitting with respect to

the applied stress, and T*
2 is the sub-ensemble spin dephasing time [3,67]. The collection

efficiency could be significantly enhanced using spoof plasmonic waveguides [35,68,69]. A
typical value at room temperature for a low concentration of NV centers is C ∼ 0.05 but
could be enhanced up to C ∼ 0.5 by coupling the single spin rotation signal with the
resonances of the spoof plasmonic waveguide. Using Table 3, for the sub-ensemble
with ez ∈ 111 and with a direction of the applied stress p ∥ [111], a level shift was
obtained as dD/dP = 3 MHz/GPa. Using a spin relaxometry technique, in our ear-
lier work we measured T*

2 ≈ 10 µs for a NV center ensemble with nanodiamonds of
~70 nm average size distribution at room temperature [35]. Using these values, we esti-
mated the sensitivity ηgs ≈ 0.32 MPa/

√
Hz. This is comparable to the pressure sensitivity

of 0.6 Mpa/
√

Hz obtained in an experiment by Doherty et al. [41]. In that experiment, a
hydrostatic pressure of up to 60 GPa was applied in a diamond anvil cell (DAC) using
single-crystal chemical vapor deposition (CVD)-grown diamond with a nitrogen content
of <1 ppm. Experimentally, reduced ODMR contrast and count rate from a particular
NV center could significantly impact the sensitivity. In addition, the spin dephasing time
that was used in the current calculation was about 10 times longer than that in Doherty’s
experiment [43]. This factor alone enhanced the sensitivity by 1/

√
T∗

2 in our calculation.
To compare the quantum sensing capability in this work with sensitivities obtained

using traditional optical based sensors, the band edge shift is a reasonable metric to
consider under applied stress. The traditional optical sensing limit that relies on the
shift of the conduction or valence band edges could be estimated by taking our band
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edge shift reported in Table 1. For 26.61 GPa, the conduction band edge shift was nearly
60 meV. This is equivalent to a wavelength shift ∆λ = 32 nm and an energy shift per
unit pressure dE

dP = 5.88 × 105 MHz/GPa. The DFT results for band gap estimation are
very rough estimates due to inaccurately accounting for self-interaction. However, the
overall trend and energetics of the shifts calculated by DFT are expected to provide insights
on the nature of the shifts and to yield a close estimation of the sensitivity. The value
of dE

dP calculated for the band shift using DFT was about four orders of magnitude higher
than the energy shift per unit pressure in the spin manifold. This shows the superiority
of the stress sensitivity that could be achieved by manipulating the ground-state spin
levels in a quantum sensor compared to that of traditional optical sensors based on band
edge shifting.

Finally, based on our results, we propose the stress sensor “quantum manometer”
and discuss its usefulness to detect parameters such as subsurface seismic vibrations. Sub-
surface pressure evolution is a critical observable quantity in geological studies used for
understanding the subsurface structure, conducting oil and gas exploration, and identi-
fying seismic vibrations [70]. Hydraulic fracturing and gas injection may lead to seismic
vibrations and a series of aftershocks. Trapped high-pressure CO2 (pressure over 10 MPa)
in the deep subsurface region can lead to series of co-seismic pulses [71]. In Reference [72],
volumetric strain due to effective stress changes in the injected fluid (CO2) in crystalline
rock was sensed by changes in the seismic velocity under applied stress up to 13–14 MPa.
Using a NV center in diamond, this pressure limit can be manifested in a splitting of over
50 MHz. This is above the sensing limit of the proposed quantum manometer based on
NV centers in diamond, and therefore, such changes in stress under high pressure can be
easily detected. High pressure can be a controlled parameter that is tuned systematically
in order to drive the systems under investigation to a desired physical state in materials
science fields. One such example is metallic hydrogen, which is expected to be achievable
under ultra-high pressure [73]. Ultra-high pressure detection can be incredibly challenging
using normal pressure-sensing devices at the nanoscale. Surface plasmon resonances and
glass transitions are other examples where a systematic control of pressure in extreme
conditions must be conducted. A most striking example of this could be high-temperature
superconductivity with transition temperatures (Tc) between 250 and 260 K, where pressure
detection and monitoring are essential up to 200 GPa [63,74]. In all of the above exam-
ples, our proposed model device could find an application for sensing pressure under
extreme conditions.

5. Conclusions

NV centers in diamond are a promising quantum material due to their optical proper-
ties that allow for the achievement of sensitivity levels that are several orders of magnitude
lower than those of their classical counterparts. By combining the DFT results, we calcu-
lated the energy level shift and splitting of the spin states at the ground energy level. The
results of the density of states, bandstructures, and strain applications were presented and
showed up to a 60 meV conduction band edge shift over 25 GPa of pressure applied along
the longitudinal and transverse crystallographic directions. By engineering a low-energy
Hamiltonian for a ±1 spin manifold, we calculated the zero-energy shift per unit of applied
stress and obtained a sensitivity of 0.32 MPa/

√
Hz for a NV sub-ensemble aligning to

the [111] direction under pressure applied along the same direction. The energy shift
per unit pressure of the quantum sensor was found to surpass that of traditional optical
sensors (which operate based on band edge shifting) by several orders of magnitude. Our
results are expected to be useful for designing pressure sensors that can operate under
high-pressure environmental conditions.
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