Advances in Nano-Electrochemical Materials and Devices
Funding
Conflicts of Interest
List of Contributions
- Li, B.; Xiang, T.; Shao, Y.; Lv, F.; Cheng, C.; Zhang, J.; Zhu, Q.; Zhang, Y.; Yang, J. Secondary-Heteroatom-Doping-Derived Synthesis of N, S Co-Doped Graphene Nanoribbons for Enhanced Oxygen Reduction Activity. Nanomaterials 2022, 12, 3306. https://doi.org/10.3390/nano12193306
- Yu, X.; Pan, Z.; Zhao, Z.; Zhou, Y.; Pei, C.; Ma, Y.; Park, H.S.; Wang, M. Boosting the Oxygen Evolution Reaction by Controllably Constructing FeNi3/C Nanorods. Nanomaterials 2022, 12, 2525. https://doi.org/10.3390/nano12152525
- Mezza, A.; Bartoli, M.; Chiodoni, A.; Zeng, J.; Pirri, C.F.; Sacco, A. Optimizing the Performance of Low-Loaded Electrodes for CO2-to-CO Conversion Directly from Capture Medium: A Comprehensive Parameter Analysis. Nanomaterials 2023, 13, 2314. https://doi.org/10.3390/nano13162314.
- Liang, X.; Ning, Y.; Lan, L.; Yang, G.; Li, M.; Tang, S.; Huang, J. Electrochemical Performance of a PVDF-HFP-LiClO4-Li6.4La3.0Zr1.4Ta0.6O12 Composite Solid Electrolyte at Different Temperatures. Nanomaterials 2022, 12, 3390. https://doi.org/10.3390/nano12193390
- Liang, X.; Jiang, X.; Lan, L.; Zeng, S.; Huang, M.; Huang, D. Preparation and Study of a Simple Three-Matrix Solid Electrolyte Membrane in Air. Nanomaterials 2022, 12, 3069. https://doi.org/10.3390/nano12173069
- Liang, X.; Zhang, Y.; Ning, Y.; Huang, D.; Lan, L.; Li, S. Quasi-Solid-State Lithium-Sulfur Batteries Assembled by Composite Polymer Electrolyte and Nitrogen Doped Porous Carbon Fiber Composite Cathode. Nanomaterials 2022, 12, 2614. https://doi.org/10.3390/nano12152614
- Gu, J.; Zhang, J.; Su, Y.; Yu, X. Aramid Fibers Modulated Polyethylene Separator as Efficient Polysulfide Barrier for High-Performance Lithium-Sulfur Batteries. Nanomaterials 2022, 12, 2513. https://doi.org/10.3390/nano12152513
- Mao, D.; He, Z.; Lu, W.; Zhu, Q. Carbon Tube-Based Cathode for Li-CO2 Batteries: A Review. Nanomaterials 2022, 12, 2063. https://doi.org/10.3390/nano12122063
- Yang, Z.; Zhou, S.; Feng, X.; Wang, N.; Ola, O.; Zhu, Y. Recent Progress in Multifunctional Graphene-Based Nanocomposites for Photocatalysis and Electrocatalysis Application. Nanomaterials 2023, 13, 2028. https://doi.org/10.3390/nano13132028
- Zhang, W.; Yin, H.; Yu, Z.; Jia, X.; Liang, J.; Li, G.; Li, Y.; Wang, K. Facile Synthesis of 4,4′-biphenyl Dicarboxylic Acid-Based Nickel Metal Organic Frameworks with a Tunable Pore Size towards High-Performance Supercapacitors. Nanomaterials 2022, 12, 2062. https://doi.org/10.3390/nano12122062
- Ma, Y.; Han, J.; Tong, Z.; Qin, J.; Wang, M.; Suhr, J.; Nam, J.; Xiao, L.; Jia, S.; Chen, X. Porous Carbon Boosted Non-Enzymatic Glutamate Detection with Ultra-High Sensitivity in Broad Range Using Cu Ions. Nanomaterials 2022, 12, 1987. https://doi.org/10.3390/nano12121987
- Zhang, X.; Tan, X.; Wang, P.; Qin, J. Application of Polypyrrole-Based Electrochemical Biosensor for the Early Diagnosis of Colorectal Cancer. Nanomaterials 2023, 13, 674. https://doi.org/10.3390/nano13040674
References
- Nanotechnology for Electrochemical Energy Storage. Nat. Nanotechnol. 2023, 18, 1117. [CrossRef] [PubMed]
- Gao, Y.; Zao, L. Review on Recent Advances in Nanostructured Transition-Metal-Sulfide-Based Electrode Materials for Cathode Materials of Asymmetric Supercapacitors. Chem. Eng. J. 2022, 430, 132745. [Google Scholar] [CrossRef]
- Yan, J.; Li, S.H.; Lan, B.B.; Wu, Y.C.; Lee, P.S. Rational Design of Nanostructured Electrode Materials toward Multifunctional Supercapacitors. Adv. Funct. Mater. 2020, 30, 1902564. [Google Scholar] [CrossRef]
- Mahato, K.; Wang, J. Electrochemical Sensors: From the Bench to the Skin. Sens. Actuat. B Chem. 2021, 344, 130178. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Perspectives for Electrochemical Capacitors and Related Devices. Nat. Mater. 2020, 19, 1151–1163. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Ren, X.; Xu, C.; Chen, H. Recent advances on the manganese cobalt oxides as electrode materials for supercapacitor applications: A comprehensive review. J. Energy Storage 2023, 68, 107672. [Google Scholar] [CrossRef]
- Li, J.; Xie, F.; Pang, W.; Yang, X.; Zhang, L. Regulate Transportation of Ions and Polysulfides in All-Solid-State Li-S Batteries using Ordered-MOF Composite Solid Electrolyte. Sci. Adv. 2024, 10, eadl3925. [Google Scholar] [CrossRef]
- Ross, M.B.; De Luna, P.; Li, Y.; Dinh, C.-T.; Kim, D.; Yang, P.; Sargent, E.H. Designing Materials for Electrochemical Carbon Dioxide Recycling. Nat. Catal. 2019, 2, 648–658. [Google Scholar] [CrossRef]
- Wu, H.B.; Lou, X.W. Metal-Organic Frameworks and Their Derived Materials for Electrochemical Energy Storage and Conversion: Promises and Challenges. Sci. Adv. 2017, 3, eaap9252. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Chen, X.; Aryal, N. Advances in Nano-Electrochemical Materials and Devices. Nanomaterials 2024, 14, 712. https://doi.org/10.3390/nano14080712
Wang M, Chen X, Aryal N. Advances in Nano-Electrochemical Materials and Devices. Nanomaterials. 2024; 14(8):712. https://doi.org/10.3390/nano14080712
Chicago/Turabian StyleWang, Mei, Xuyuan Chen, and Nabin Aryal. 2024. "Advances in Nano-Electrochemical Materials and Devices" Nanomaterials 14, no. 8: 712. https://doi.org/10.3390/nano14080712
APA StyleWang, M., Chen, X., & Aryal, N. (2024). Advances in Nano-Electrochemical Materials and Devices. Nanomaterials, 14(8), 712. https://doi.org/10.3390/nano14080712