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Abstract: Nanoporous gold (np-Au) has found its use in applications ranging from catalysis to
biosensing, where pore morphology plays a critical role in performance. While the morphology
evolution of bulk np-Au has been widely studied, knowledge about its thin-film form is limited.
This work hypothesizes that the mechanical compliance of the thin film substrate can play a critical
role in the morphology evolution. Via experimental and finite-element-analysis approaches, we
investigate the morphological variation in np-Au thin films deposited on compliant silicone (PDMS)
substrates of a range of thicknesses anchored on rigid glass supports and compare those to the
morphology of np-Au deposited on glass. More macroscopic (10 s to 100 s of microns) cracks and
discrete islands form in the np-Au films on PDMS compared to on glass. Conversely, uniformly
distributed microscopic (100 s of nanometers) cracks form in greater numbers in the np-Au films on
glass than those on PDMS, with the cracks located within the discrete islands. The np-Au films on
glass also show larger ligament and pore sizes, possibly due to higher residual stresses compared
to the np-Au/PDMS films. The effective elastic modulus of the substrate layers decreases with
increasing PDMS thickness, resulting in secondary np-Au morphology effects, including a reduction
in macroscopic crack-to-crack distance, an increase in microscopic crack coverage, and a widening of
the microscopic cracks. However, changes in the ligament/pore widths with PDMS thickness are
negligible, allowing for independent optimization for cracking. We expect these results to inform the
integration of functional np-Au films on compliant substrates into emerging applications, including
flexible electronics.
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1. Introduction

Nanoporous metals are a subclass of functional nanostructured materials that have
drawn significant attention from the research community for a combination of unique
characteristics, including a large surface area-to-volume ratio, a high electrical and thermal
conductivity, and a network structure of interconnected pores with feature sizes that can be
tuned from the nanometer to micrometer range [1–5]. These materials are commonly ob-
tained by a corrosion process called dealloying, which involves the preferential dissolution
of one, or more, noble elements from an originally homogeneous alloy [6,7]. Nanoporous
gold (np-Au) is frequently considered to be the prototypical nanoporous metal and is
fabricated by the dealloying of AuAg alloys containing 60–80 atomic% Ag, where Ag atoms
selectively dissolve while Au atoms diffuse at the surface/electrolyte interface to form
a bicontinuous ligament and pore structure consisting mostly of Au atoms [7–11]. The
intriguing optical [12], electrical [13–15], and mechanical [16–18] properties of np-Au have
created opportunities for applications in a wide range of fields, including sensors [19–22],
actuators [23–25], catalysis [26], energy storage [27], and biomedical devices [28,29].
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The thin film forms of nanoporous metals supported by substrates enable their integra-
tion into devices as functional coatings (e.g., sensors) via conventional photolithographic
techniques [30]. However, thin films supported by an underlying substrate often exhibit
residual stresses. These stresses may arise from several sources such as the intrinsic stresses
caused by the accumulation of crystallographic defects during film deposition and the ther-
mal stresses from the deposition-induced thermal expansion mismatch between the film
and substrate, both of which affect the microstructure and performance of the films [31,32].
Mechanical mismatches, such as compliance differences, between the thin film and the sub-
strate play an important role in residual stress accumulation and relaxation, and ultimately
the resulting topographies at scales ranging from nanometers to millimeters. Such mis-
matches often result in variation in the residual stress-induced channel cracking behavior
of the films [33]. For example, if the substrate is much stiffer than the film, the cracks may
extend only partially through the film [34], but when the substrate is more compliant than
the film, the cracks may extend through the film to the substrate and delaminate along
the film/substrate interface [35]. While there are several studies on the deformation and
cracking behavior of as-deposited metallic thin films on compliant substrates [36–38], there
is limited knowledge on the influence of the substrate compliance on the microstructure
of nanoporous metals obtained by dealloying. It was previously demonstrated that the
residual stresses in np-Au thin films vary depending on the mechanical constraints imposed
on the film (e.g., approximately two-times higher residual stress in a substrate-supported
blanket film than a microfabricated freestanding film), which leads to different cracking and
pore morphologies [39]. Therefore, it is logical to further study the morphology evolution
in np-Au thin films in response to variations in substrate compliance and the accompanying
residual stress changes. This is particularly important for applications where nanoporous
metals could be patterned on compliant substrates, such as wearable sensors and flexible
electronics [40,41].

In this work, we focus on the crack and ligament-pore morphology evolution in np-
Au thin films deposited on compliant silicone substrates of varying thicknesses that are
anchored to an additional rigid substrate. This system modulates the “effective elastic
modulus” of the substrate experienced by the np-Au thin film as a function of the silicone-
layer thickness. In addition, we provide a comparison of the morphologies of the np-Au
films on the compliant substrates to those of the films on the rigid substrate, which has a
much higher elastic modulus.

2. Experimental
2.1. Chemicals/Materials

Thermo Scientific glass slides (75 × 25 × 1 mm) were used to anchor the polydimethyl
siloxane (PDMS) “silicone” substrates. 15 mm-long and 8 mm-wide PDMS substrates of
thicknesses 0.25, 0.50, 1.59, and 3.18 mm (as per the manufacturer datasheet) were prepared
from BISCO HT-6240 silicone sheets obtained from the Rogers Corporation (Chandler,
Arizona, USA). Silver (Ag), gold (Au), and chromium (Cr) sputtering targets of 99.95%
purity were procured from Kurt J. Lesker (St. Leonards-on-Sea, UK). Nitric acid (70%) was
purchased from Sigma Aldrich (St. Louis, MO, USA).

2.2. Sample Preparation

The glass slides were cleaned with isopropanol, followed by drying with a nitrogen
gun before attaching the PDMS substrates. The glass and PDMS surfaces forming the
glass/PDMS interface were exposed to air plasma for 1 min at 30 W in a PDC-32G plasma
cleaner from Harrick Plasma (Ithaca, NY, USA). This treatment facilitated the covalent
bonding between exposed surfaces of the PDMS and the glass. A Lesker LAB Line sputter
system was used to deposit the AuAg-alloy film (precursor to the np-Au thin film), which
consisted of a sequential deposition of a Cr adhesion layer (~160 nm thick), a planar Au
intermediate layer (~80 nm thick), and finally a Au0.24Ag0.76 (atomic%)-alloy layer (~600 nm
thick). Prior to deposition, the substrate surface was treated in air plasma at 30 W for 2 min
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to improve the adhesion of the thin film to the substrate. The AuAg thin film samples were
dealloyed for 15 min by immersing them in 70% nitric acid heated to 55 ◦C on a hotplate
followed by rinsing in deionized water and drying them under nitrogen flow.

2.3. Post-Dealloying Characterization

To characterize the morphology of the np-Au thin films at micro- and nanometer
length scales, top-view scanning electron microscope (SEM) images were obtained using a
Nova NanoSEM430 microscope from FEI (Hillsboro, OR, USA) at magnifications ranging
from 150× to 150,000×. The atomic percentages of Au and Ag in the thin film before and
after dealloying were determined using an X-Max50 Energy Dispersive X-ray Spectroscopy
(EDS) detector from Oxford Instruments (Abingdon, UK) in conjunction with an FEI Scios
Dualbeam FIB/SEM system. The SEM images were processed and analyzed using a
combination of ImageJ (version 1.54f) [42], GIMP (version 2.10), and MATLAB (version
R2020b) to quantify the morphological features. Overlay masks in ImageJ were used on
segmented images to obtain pseudo-colored visualizations of the individual islands bound
by macroscopic cracks. The thicknesses of the thin films were measured using an XE7
atomic force microscope (AFM) from Park Systems (Suwon, Republic of Korea) over a
step of the thin film by masking part of the glass substrate with a Kapton tape during
deposition. The AFM was also used to characterize the topographies of the np-Au-film
surfaces by scanning 50 × 50 µm areas of the film in the tapping mode. The AFM images
were processed and analyzed using Gwyddion (version 2.62) to extract a “waviness”
parameter. Briefly, a total of nine line scans along the x-axis on the AFM topographic
images of three different np-Au islands (three lines separated by 10–15 µm per island) were
analyzed for each np-Au/substrate combination. The analysis line locations were adjusted
to avoid adsorbed particulates that could cause artifacts in the scan profile. The waviness
profiles along those lines were extracted using a cut-off wavelength of 4 µm to filter out
the roughness. The average waviness for each line scan (i.e., the average heights of the
waviness profile along each line scan) were then computed.

2.4. Simulations

To corroborate the results of the experiments, finite element analysis (FEA) simulations
were performed using COMSOL Multiphysics software (version 6.0). These involved
simulating np-Au thin films on a PDMS substrate with the PDMS fixed at the bottom to
mimic the rigid glass substrate. The first set of simulations was performed to calculate
the “effective elastic modulus” of the anchored-PDMS substrates wherein the PDMS layer
was 5 mm in both length and width, with the thickness varying from 0.01 mm to 5 mm. A
tetrahedral mesh with an element size range of 0.501 µm to 2.5 µm was used for this set of
simulations.

The second set of simulations was performed to estimate the elastic strain energy in
the thin film/substrate system, and the horizontal and vertical edge displacements at the
metal film/substrate interface before and after dealloying. We refer to the Cr and Au layers
as the adhesion layers for the rest of the paper. The PDMS layer was 2.5 mm in both length
and width for these simulations, with the thickness varying from 0.05 mm to 5 mm. The
thicknesses of the AuAg (post-deposition) and np-Au (post-dealloying) films were 600 nm
and 500 nm, respectively, and the Cr and Au adhesion layers had thicknesses of 160 nm
and 80 nm, respectively. A free quadrilateral mesh with an element size range of 0.079 µm
to 318 µm was used. A swept mesh was applied for all the layers (Figure S12), with the
number of elements through the thicknesses of AuAg and np-Au films, adhesion layers,
and PDMS being 8, 10, and 5, respectively.

2.5. Statistical Analysis

A minimum of two different samples with a minimum of three different images
per sample per length scale was used for statistical comparisons. A Student’s t-test was
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performed to compare two different sample groups, with p-values below 0.05 deemed
statistically significant. The statistical tests were performed with OriginPro (version 10.0).

3. Results

Figure 1 shows the morphologies of the precursor AuAg films on glass and PDMS
substrates at two different magnifications. At a low magnification (Figure 1a), it is apparent
that cracks have initiated in the films on the PDMS substrates but not on the glass substrate.
However, no cracks are visible in any of the films at the length scale of grains (Figure 1b).
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Figure 1. Top-view SEM images of as-deposited AuAg precursor thin films on glass and PDMS layers
of varying thicknesses at (a) low (150×) and (b) high (50,000×) magnifications.

Figure 2 shows the three different types of morphological features in the np-Au thin
films at different length scales: macroscopic cracks, microscopic cracks, and ligaments and
pores. The features are differentiated by their emergence at different magnifications and
by the corresponding populations displaying similar morphological characteristics (i.e.,
islands, hairline cracks, and pores/ligaments).
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Here, we investigate the variation in these features across np-Au films deposited on
compliant PDMS substrates (np-Au/PDMS) of thicknesses 0.25, 0.50, 1.59, and 3.18 mm that
are covalently bonded onto glass slides of 1 mm thickness. In addition, the morphology
of the np-Au film on “infinitely” rigid glass (np-Au/glass) is compared to that of np-
Au/PDMS. As is evident in Figure 1, the precursors to macroscopic cracks in the np-
Au/PDMS films are present following the deposition step, but the microscopic cracks
appear after dealloying (Figure 2). The films on glass are instead free from macroscopic
or microscopic cracks prior to dealloying, but show profuse microscopic cracking after
dealloying.

3.1. Macroscopic Cracks

As seen in Figure 2a, the macroscopic cracks are present throughout the film and are
visible at low-magnification (150×) SEM images. On the PDMS substrates, individual
islands are separated from each other by macroscopic cracks. However, the cracks in the
film on glass, although ubiquitous at this length scale (shown segmented in Figure S4),
are smaller than those in the films on PDMS and do not form enclosed regions as on
PDMS. Therefore, the macroscopic cracks in np-Au on glass are not discernable in Figure 2a
compared to those in np-Au. Figure 3 shows how the macroscopic crack-to-crack distances
vary among different np-Au film/substrate combinations. The crack-to-crack distances for
np-Au/PDMS were taken to be the island widths and were quantified by first segmenting
the SEM images and then measuring the major and minor axes of the elliptical outlines
of the segmented regions (details in Section S1.1 of the Supplementary Materials). Since
the cracks on np-Au/glass do not form enclosed regions, the elliptical-outline method is
not suitable for measuring the inter-crack distance. We instead used a custom MATLAB
code [14] to scan horizontally and vertically along the segmented image and find inter-crack
distances along these directions. The values computed with this approach were scaled up
by 1.53 to match the results provided by the elliptical-outline method (rationale described
in Section S1.4 of the Supplementary Materials). As the areas of individual islands in the np-
Au/PDMS films get smaller, the number of islands increases, and the distance between the
cracks decreases with increasing PDMS thickness. The increase in crack density (number of
cracks per unit area) with PDMS thickness is clearly visible from the segmented images
in the insets of Figure 3, and is further evidenced by the average crack-to-crack distance
decreasing from 260 ± 7 µm to 167 ± 3 µm (the errors are the standard error of the mean)
for PDMS thicknesses from 0.25 mm to 3.18 mm. In addition, the distribution in the distance
values becomes narrower for thicker PDMS substrates (1.59, 3.18 mm) than those for the
lower thickness (0.25, 0.50 mm). The average crack-to-crack distance for the np-Au/glass
is 117 ± 0.53 µm and is substantially smaller than that of even the np-Au/PDMS film on
3.18 mm thick PDMS.

3.2. Microscopic Cracks

Higher-magnification SEM (35,000×) reveals the presence of “microscopic” cracks
in the thin films, as shown in Figure 2b. To quantify the microscopic cracking, the SEM
images were segmented to distinguish the cracks as black pixels against a white background
(Section S1.2 of the Supplementary Materials). Microscopic cracks are more prevalent in
np-Au/glass films compared to np-Au/PDMS films; the percentage of crack coverage
(Figure 4) for np-Au/glass is 7.6%, which is more than twice the maximum crack coverage
observed for np-Au/PDMS films. The inset of Figure 4 confirms that np-Au/glass films
have a significantly larger population of microscopic cracks than the average population in
the np-Au films on any thicknesses of PDMS.
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Figure 4. Variation in the percentage of the crack coverage in np-Au/glass and np-Au/PDMS
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between np-Au/glass and the average for np-Au/PDMS films, where a p-value less than 0.05 denote
a statistically significant difference. The error bars represent the standard error of the mean.



Nanomaterials 2024, 14, 758 7 of 18

Interestingly, np-Au/PDMS films on the 0.25 mm and 0.50 mm-thick PDMS substrates
display negligible microscopic cracking, whereas cracks appear in np-Au films on thicker
PDMS substrates, gradually increasing to a percentage crack coverage of 3.5% on 3.18 mm
thick PDMS. That is, the maximum percentage crack coverage on thicker PDMS is ~25-times
higher than the maximum coverage on thinner PDMS.

3.3. Ligaments and Pores

At the smallest length scale, we investigated the ligaments and pores at a 150,000×
magnification in the np-Au thin films, as shown Figure 2c. The ligament and pore widths
were measured by segmenting the SEM images and applying a custom MATLAB script
to analyze the segmented images (details in Section S1.3 of the Supplementary Materials).
The width distributions of the ligaments and pores are presented as violin plots to capture
the distribution of the ligament/pore sizes (Figure 5).
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Figure 5. (a) Ligament-width distribution and (b) pore-width distribution in np-Au/glass (0 mm
PDMS thickness) and np-Au/PDMS of varying substrate thickness, shown by violin plots. The boxes
inside the violins range from the first to the third quartiles, the whisker lengths show 1.5 times the
interquartile range, and the white squares denote the median values. The median ligament and
pore widths on glass are larger than those on PDMS, but they do not display a marked variation
with varying PDMS thickness. The red trendlines through the medians are visual guides only.
(c) Comparison of the average ligament and pore widths of np-Au/glass to those of np-Au/PDMS
averaged over all the PDMS thicknesses. A p-value less than 0.05 indicates a statistically significant
difference. The p values, being very small numbers in this case, have been approximated as zero. The
blue lines correspond to the median values, and the error bars denote the standard error of the mean
(negligible due to very small values).
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The median ligament and pore widths in np-Au/glass are 48 nm and 25 nm, respec-
tively, which are larger than the maximum median values of 35 nm and 20 nm for the
ligament and pore widths for np-Au on 1.59 mm-thick PDMS. That is, the ligament width
has greater absolute and relative changes than the pore width when comparing a stiff to a
compliant substrate. The widths of the ligaments on glass also show a wider distribution
(Figure 5). However, neither the ligament nor the pore width in np-Au/PDMS films show
a marked variation with substrate thickness, with the median ligament widths ranging
from 31 to 35 nm and the median pore widths from 17 to 20 nm. As shown in Figure 5c, the
average ligament and pore widths for np-Au/glass are significantly larger than those for
np-Au/PDMS averaged over all the PDMS thicknesses.

3.4. Finite Element Simulations

To simulate the effective elastic moduli of anchored PDMS of different thicknesses hP,
a two-dimensional PDMS mesh consisting of tetrahedral elements with a minimum size of
0.501 µm was generated (details in Section S2.4 of the Supplementary Materials). A force
of f = 0.0001 N along the x direction was applied to two points that were w0 = 200 µm
apart on top of the PDMS, and the resulting distance w between the points was recorded
(Figure 6a). The effective elastic modulus was defined by equating the average strain
energy density in the PDMS with that of a homogeneously strained linear elastic isotropic
solid in the following way. The work per depth of the material is f (w − w0), and the PDMS
volume per depth of the material between the points of contact is hPw0, giving a strain
energy density of f ε/hP where ε = (w − w0)/w0 is the linear strain on the PDMS surface.
Equating this with the elastic strain energy EPε2/2 in an isotropic linear elastic solid and
solving for the Young’s modulus EP as a function of PDMS thickness hP gives

EP =
2 f
hPε

(1)
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Figure 6. (a) Schematic showing the simulation setup to compute the effective elastic modulus of
PDMS at the surface. (b) Effective elastic modulus of the PDMS substrate at the free surface as a
function of the PDMS thickness. The black dashed line is a visual guide only.

Figure 6b shows the variation in the effective elastic modulus of the anchored-PDMS
substrates for nine different thicknesses (0.001 mm to 5 mm), as defined by Equation (1),
and the modulus decreases monotonically with increasing PDMS thickness. Note that the
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modulus at the lowest PDMS thickness (0.01 mm) far exceeds the physical modulus of glass
(~70 GPa [43]) by virtue of Equation (1) since the simulations and the equation modeled
the PDMS as being anchored to an infinitely rigid material. Experimentally, the maximum
effective modulus of PDMS should not exceed 70 GPa and should only reach this value
when the PDMS thickness approaches zero.

Figure 7 shows the elastic strain energies in the top metal layers and the anchored-PDMS
substrates of ten different thicknesses (0.05 mm to 5 mm) before and after dealloying, as obtained
from the simulation setup described in Section S2.4 of the Supplementary Materials. Figure 7a
also includes the strain energies in AuAg and np-Au on glass. A thermal strain corresponding
to a stress of 100 MPa was applied to the metal layers to calculate the post-deposition strain
energies. This strain was then used as a pre-strain in the metal layers for the dealloying
simulations. AuAg on glass has the highest strain energy of 6.3 × 10−7 J, with this dropping
to 1.5 × 10−7 J in np-Au after dealloying (Figure 7a). The strain energy in the AuAg film on
0.05 mm-thick PDMS drops from 2.9 × 10−8 J to 1.6 × 10−8 J in the np-Au film after dealloying,
with both of these values decreasing with increasing PDMS thickness (Figure 7a,b). The strain
energy for the PDMS in the post-deposition state similarly decreases with PDMS thickness from
a maximum of 2.3 × 10−8 J for the 0.05 mm thick PDMS to 2.1 × 10−9 J for the 5 mm thick
PDMS (Figure 7b). The strain energy of the total film/PDMS system consistently drops by a
factor of ~1.3 after dealloying, as shown in Figure 7b.
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Figure 7. Post-deposition and post-dealloying variation in the elastic strain energy in (a) the AuAg and
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The horizontal and vertical deformation at the film/substrate interface obtained using
the simulation is illustrated in Figure 8. As shown in Figure 8a, the post-dealloying
deformation at the np-Au/glass interface is very small, as expected. Conversely, the
deformation at the np-Au/PDMS interface is significantly larger, with in-plane (horizontal)
compressive deformation and out-of-plane (vertical) deformation. The post-deposition
average horizontal edge displacement at the np-Au/PDMS interface increases from 1.07 µm
for 0.05 mm thick PDMS to 1.12 µm to 5 mm thick PDMS (Figure 8b), and the average
vertical edge displacement increases from 0.69 µm for 0.05 mm thick PDMS to 0.94 µm
for 3.18 mm thick PDMS (Figure 8c). In addition, the post-deposition average horizontal
and vertical displacements at the AuAg/PDMS interface are slightly larger than the post-
dealloying displacements at all PDMS thicknesses (Figure 8b,c).
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4. Discussion

The most prominent differences in the np-Au-film morphologies occur between the
np-Au/glass and np-Au/PDMS/glass systems and constitute the main experimental
observation. This is attributed to the difference in the surface stiffness experienced by
the metal thin film deposited on rigid glass versus compliant PDMS with elastic moduli
of ~70 GPa [43] and ~1 MPa [44] respectively. Secondarily, since the PDMS substrate is
anchored onto a glass slide, the thickness of the PDMS also affects the effective elastic
modulus of the substrate, as shown in Figure 6. Here, we will separate the discussions
into the main effects (a comparison of morphological features between glass and PDMS)
and the secondary effects (a comparison of morphological features within different PDMS
thicknesses).
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4.1. Main Effects
4.1.1. More Macroscopic Cracking in np-Au/PDMS Compared to np-Au/Glass

As seen in Figure 1, macroscopic cracks start forming in the films on PDMS after
sputter deposition and cracking becomes more significant after dealloying, whereas post-
deposition cracks are absent in the films on glass. Tensile residual stresses up to 110 MPa
were reported in 40 nm-thick sputter-deposited Ag films [45]. As the tensile strengths of
Au and Ag are 100 MPa and 140 MPa, respectively [46], the tensile strength of the alloy
film containing 24 at% Au and 76 at% Ag is estimated to be ~130 MPa with the rule of
mixtures [47]. The residual stress in the as-deposited films possibly exceeds this value, as
evidenced by the formation of cracks in the films on PDMS to partially relieve the residual
stress. Intergranular cracking in 100 nm-thick freestanding Au thin films under tensile stress
was previously reported, where the cracks extend along multiple grain boundaries (GBs)
through GB sliding and shearing [48]. The mechanism of crack formation and extension
in the as-deposited AuAg films on PDMS are likely similar where the residual tensile
stress drives the cracks along the GBs. However, this process is aided by the deformation
of the compliant PDMS substrate at the PDMS/metal interface, ultimately resulting in
discrete islands bound by the cracks. Others have observed that cracks in metal thin films
can propagate into the compliant PDMS substrate when the metal/PDMS system (not
anchored to a rigid support) is placed under uniaxial tension [49,50]. We expect that such
a mechanism would play a less significant role in relieving strain energy in the system
studied here, since it is anchored to a rigid glass substrate and no external tension is applied.
On the other hand, the absence of cracks in the as-deposited films on glass can be explained
by the high elastic modulus of glass (~70 GPa), effectively leading to a zero-displacement
boundary condition where there is residual tensile stress in the metal film without cracking.
The residual stress in the as-deposited AuAg films on stiff silicon wafers were measured
to be ~100 MPa in a previous study [51]. Our AuAg thin film deposited using the same
procedure should result in a comparable residual stress for AuAg.

Considerable volume contraction in the np-Au film during dealloying [52] results in
tensile stresses which are partially relieved by the formation of cracks [39,53]. A drastic
drop in the residual stress from ~100 MPa in the as-deposited AuAg film to only ~20 MPa
in the dealloyed np-Au film has been reported [51]. The dealloying-induced stresses
together with the post-deposition stress result in crack formation in the np-Au/glass films
at different length scales. However, the macroscopic cracks in np-Au/glass occur at a
smaller length scale than those on np-Au/PDMS, and the crack patterns are different. In
the np-Au/PDMS films, the pre-existing macroscopic cracks in the precursor film widen
and additional macroscopic cracks appear due to dealloying stresses, resulting in the
formation of discrete islands, which are not observed in np-Au/glass films.

4.1.2. More Microscopic Cracks in np-Au/Glass Compared to np-Au/PDMS

In contrast to the substrate-dependent trend of macroscopic cracks described in the
previous section, np-Au/glass films exhibit a higher crack surface coverage compared
to the np-Au/PDMS films (Figure 4). The microscopic cracks in the np-Au/glass are
distributed uniformly throughout the film, whereas the cracks in np-Au/PDMS films
show a hierarchical pattern, with the microscopic cracks forming inside the discrete islands,
predominantly on the thicker PDMS substrates (discussed further under Secondary Effects).

The mechanisms for microcrack formation in the np-Au films differ for glass and
PDMS substrates. Initially the thin films in the stack (AuAg, Au, and Cr) have similar
effective elastic moduli after deposition. After dealloying, the elastic modulus of the top
film layer (np-Au) is reduced by approximately four times. The eigenstrain that develops in
the np-Au film during dealloying increases the tensile stress in the film overall, despite the
increased compliance of the np-Au, while the compatibility condition at the substrate
interface subjects the substrate to compressive stress, as evidenced by the increasing
deformations in PDMS as a function of its thickness (Figure 8). However, the high elastic
modulus of the glass means that the glass substrate does not significantly deform to
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accommodate the eigenstrains in the np-Au film, causing the residual stress in the np-
Au/glass films to surpass the film’s tensile strength and leading to crack formation to
release the strain energy (Figure 2b). Conversely, the much lower effective elastic modulus
of PDMS (Figure 6b) allows for the compression of PDMS in the plane of film, leading
to out-of-plane buckling due to the substantial Poisson effect (observed as large vertical
deformations in the simulation; results in Figure 8c). It is important to note that the
simulations do not directly capture the buckling observed in experiments due to the
idealized defect-free substrate and metal-stack structures. For the actual experimental
conditions, imperfections in the layers initiate buckling. The buckling can be a lower-
energy deformation mode than crack formation, which mitigates the microscopic cracks
at lower PDMS thicknesses (Figure 2b). However, the increasing out-of-plane buckling
magnitude with PDMS thickness plausibly results in high bending stresses at the convex
regions (buckling maxima), leading to the emergence of microscopic cracks in np-Au on
thicker PDMS substrates (discussed further in Section 4.2).

4.1.3. Larger Ligament and Pore Sizes in np-Au/Glass Compared to np-Au/PDMS

As shown in Figure 5, the ligament widths in np-Au/glass are significantly larger than
those in np-Au/PDMS. It was previously observed that np-AuPd films obtained using
dealloying precursor alloys (AuPdAg) deposited on curved polyimide substrates displayed
coarser ligaments and less residual silver at convex regions of the substrate [54]. This was
attributed to higher local stresses at the convex regions, causing silver to dissolve faster
during dealloying, which exposes the Au and Pd atoms to nitric acid for longer durations.
The increased diffusivity of surface atoms (Au and Pd) coarsens the ligaments [54]. As a
corollary to this observation, we hypothesize that the higher tensile stress in thin films on
rigid glass compared to compliant PDMS should have a similar effect. We measured the
residual silver (at%) in np-Au on glass and on PDMS (0.50 mm and 1.59 mm-thick PDMS)
using EDS. In agreement with our hypothesis, the residual Ag in np-Au was ~4% lower for
glass compared to PDMS (Figure 9a) and there was no statistically significant difference
between the two extreme PDMS thicknesses (Figure 9b). This suggests that the higher
tensile stress in np-Au on glass compared to the PDMS may be playing a role in the larger
ligament thickness for np-Au on the glass substrate.
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Figure 9. Comparison of the average residual silver content after dealloying between (a) np-Au/glass and
np-Au/PDMS, and (b) np-Au/0.50 mm thick PDMS and np-Au/1.59 mm thick PDMS. A p-value of less
than 0.05 corresponds to statistically distinct groups. The error bars show the standard deviations.

4.2. Secondary Effects

As discussed in the previous section, there were significant differences in thin film
morphology between glass and PDMS substrates, where the latter had an effective elastic
modulus at least two orders of magnitude lower. Although not as prominent, there were
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also morphological differences in np-Au films on PDMS substrates as a function of the
substrate thickness, and these are referred to as secondary effects. With increasing PDMS
thickness, these effects include a marginal decrease in the island widths, indicating a higher
density of macroscopic cracks (Figures 2a and 3), an increasing number of microscopic
cracks (Figures 2b and 4), and increasing microscopic-crack widths (Figure S10). In general,
these morphological changes are attributed to the decreasing effective elastic modulus
of the PDMS substrate with increasing substrate thickness (Figure 6b). We will focus the
discussion on the emergence of microscopic cracks in np-Au, since the largest morphological
changes are observed at this length scale.

As mentioned in Section 4.1.2, we attribute the emergence of microcracks in np-Au
films on thicker PDMS substrates to increasing buckling due to their decreasing effective
moduli (Figure 6b). We hypothesize that np-Au film topography should exhibit larger
out-of-plane features as a function of increasing PDMS thickness, reminiscent of the larger
buckling amplitudes in precursor AuAg films. We used AFM to characterize topographies
of the np-Au films on glass and on PDMS of different thicknesses (Figure 10a). As expected,
the rigid glass surface does not exhibit any buckling features. In contrast, the compliant
PDMS surfaces display buckling-related features with higher out-of-plane magnitudes
with increasing PDMS thickness. For the thinner PDMS substrates (0.25 mm, 0.50 mm), the
buckling amplitude is smaller, and the waveform is smoother (quasi-sinusoidal with less
abrupt changes). The out-of-plane magnitudes were reported as a “waviness” parameter,
which quantifies the longer spatial wavelength component of the surface topography and
is obtained by filtering out the shorter wavelength component (roughness) using a cut-off
wavelength of 4 µm [55,56]. The lack of buckling on np-Au/glass is evident by the very
low average waviness (Figure 10b). The transition from glass to PDMS results in a sharp
rise in the average waviness, which increases with increasing PDMS thickness because of
the transition from the smoother to sharper waveforms, but approaches a plateau for the
thicker PDMS, as shown in Figure 10b. These topographical features are attributed to the
initial PDMS buckling following deposition-related residual stresses. Upon dealloying,
the collective elastic modulus of the metal stack decreases (since np-Au’s elastic modulus
is around four-times lower than that of precursor AuAg). While this relieves the strain
energy in the system (Figure 7) and reduces the compressive deformation (Figure 8), the
brittle nature of np-Au at the macro-scale [57] results in microcracks, likely at buckle peaks
due to tensile bending stresses (Figures 2 and 4). The pre-/post-dealloying buckling in
the substrate-supported thin films here has similarities to doubly-clamped freestanding
AuAg beams with various buckling amplitudes and the resulting np-Au beams with
corresponding residual stresses, reported previously [58]. In that study, the prescribed
buckling of AuAg beams (hence compressive pre-strain due to buckling) compensates
tensile stress accumulation during dealloying, observed as a reduced occurrence of the
tensile fracture of np-Au beams. Similarly, PDMS-surface buckling is expected to result in
reduced cracking in np-Au films on PDMS, compared to those on glass (Figures 2b and 4)
for thinner PDMS substrates with smaller buckling amplitudes, resulting in lower localized
tensile stresses than the fracture strength of np-Au. For thicker PDMS substrates with larger
edge deformations (hence larger expected buckling amplitudes), the localized tensile stress
at the buckle peaks should be responsible for the microcracks. Finally, the residual buckling
in np-Au on 0.50 mm-thick PDMS (Figure 10a) suggests that the compressive strain in
PDMS (and the resulting buckling) is partially relieved by the reduction in the np-Au
elastic modulus upon dealloying (also observed as reduced strain energy in simulations,
Figure 7b).
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Figure 10. (a) AFM topographies of the np-Au film surface on glass and PDMS of different thicknesses,
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(b) Average waviness values of the surface topography of np-Au films as a function of PDMS thickness
(zero thickness denotes the glass substrate) obtained by multiple line scans of different np-Au islands.

As the PDMS thickness (hence the effective surface compliance) increases further, the
buckling amplitude is expected to increase and possibly exhibit higher-order buckling
modes, both of which would result in higher local stresses in convex regions. When the
buckling amplitude exceeds a critical value, the tensile stress in the np-Au causes the film
to rupture at the peaks of the buckles, as shown by others [38]. These ruptures would
appear as the large, abrupt, and non-periodic topographical features in np-Au films on
thicker PDMS substrates (Figure 10a). Taken together, larger buckling amplitudes result in
larger crack widths as a function of increasing PDMS thickness (Figure S10).

It is important to note that with decreasing PDMS thickness, the film-cracking behavior
should gradually approach that of glass. This likely occurs around a thickness of 0.01 mm,
at which the effective elastic modulus passes above the modulus of np-Au (shown by the
dashed red line in at 20 GPa in Figure 6), resulting in the behavior of a thin film on a stiff
substrate. The np-Au films on the thinnest (0.25 mm, 0.50 mm) PDMS substrates in our
experiments do not show the crack pattern seen in np-Au/glass films since the PDMS for
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these thicknesses is still two orders of magnitude more compliant compared to glass and
hence should not be expected to display np-Au/glass behavior. Figure 11 qualitatively
summarizes the proposed mechanisms of cracking and topographical features among the
film/substrate combinations used in this study.
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Figure 11. A schematic showing the proposed mechanisms of crack formation in np-Au on rigid
glass and compliant PDMS substrates. On glass (Case 1), there is no buckling at the glass surface due
to the high elastic modulus of glass, leading to wedge-shaped anchored cracks with smaller openings.
On PDMS (Case 2 and 3), the crack widths in np-Au are larger due to the lower effective modulus of
PDMS. For the thinner PDMS (Case 2), the buckling amplitudes are smaller in the post-deposition and
post-dealloyed films and are not sufficient to lead to large enough tensile stresses at the buckle peaks
to cause ruptures and microscopic cracks. For the thicker PDMS (Case 3), the buckling amplitudes in
the np-Au remains large enough to cause cracking at the peaks of the buckles, leading to microscopic
cracks inside the islands surrounded by the macroscopic cracks.

Finally, the negligible changes in the np-Au ligament and pore widths with the varia-
tion in PDMS thickness suggests that there is not a large difference in tensile stress (at least
not large enough to influence silver dissolution or gold surface diffusion) in np-Au films
on varying PDMS thicknesses.

5. Conclusions

The morphology and topography evolution in np-Au thin films at different length
scales on rigid glass substrates was compared to that on compliant PDMS substrates
anchored to glass supports. In addition, the variation in the film morphology with the
change in PDMS thickness (0.25 mm–3.18 mm) was investigated. There was no crack
formation in the as-deposited films on glass, but cracking occurred at all length scales after
dealloying np-Au on glass. The density of the larger macroscopic cracks for np-Au/glass
was on par with that of the films on the thickest PDMS, though they occurred at a slightly
smaller length scale due to different underlying mechanisms. The average crack area and
crack-coverage percentage of the microscopic cracks for np-Au/glass films, however, were
more than two-fold higher than the maximum values for any np-Au/PDMS film. The
median ligament and median pore widths in np-Au/glass were also markedly higher
compared to those in np-Au/PDMS, possibly due to a higher tensile stress experienced by
the films on the stiffer glass substrate.

The cracking pattern evolved from rigid glass to compliant PDMS, with the extent of
cracking changing with the variation in PDMS thickness. Unlike the macroscopic cracks
in np-Au/glass, those in np-Au/PDMS formed discrete islands with the island widths
decreasing with increasing PDMS thickness, indicating an increase in crack density. The
microscopic cracks in np-Au/PDMS showed a similar trend as the macroscopic cracks,
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with the extent of cracking increasing with PDMS thickness. The microscopic cracks were
absent in the films on thinner PDMS substrates, but on thicker PDMS substrates the average
crack area and crack-coverage percentage increased by several-fold. However, the median
ligament and median pore widths did not exhibit any significant variation with the change
in PDMS thickness.

In summary, by changing the thickness of a compliant substrate and hence modulating
its effective elastic modulus at the substrate/thin film interface, the crack architecture
across different length scales could be engineered for np-Au thin films. It would likely be
possible to fabricate nearly crack-free np-Au films on PDMS by changing the deposition
conditions (e.g., using cryogenic sputtering or pre-straining the PDMS before sputtering) to
suppress the post-deposition macroscopic cracking in AuAg and by choosing the optimum
thickness of PDMS (~0.50 mm) to eliminate the microscopic cracks. Thus, the findings here
are expected to inform the design of np-Au functional coatings on compliant substrates for
a variety of applications, including wearable sensors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano14090758/s1, Figure S1: The process of obtaining elliptical
outlines of the discrete islands bound by macroscopic cracks; Figure S2: Binary image obtained
from a raw image of the microscopic cracks through Weka segmentation; Figure S3: Binary image of
ligaments and pores showing the ligaments in white and the pores in black obtained by thresholding
and median filtering the raw image; Figure S4: Binary image showing the segmentation of the
macroscopic cracks in np-Au/glass at 150× magnification; Figure S5: Macroscopic crack-to-crack
distance comparison across images at different locations of (a) sample 1, and (b) sample 2; Figure S6:
Total microscopic crack area and crack coverage percentage across images at different locations for
(a) sample 1, and (b) sample 2; Figure S7: Ligament and pore widths distribution across images
at different locations for (a) sample 1, and (b) sample 2; Figure S8: (a) Macroscopic crack-to-crack
distance, (b) Total crack area and crack coverage percentage, and (c) ligament and pore width
comparison between sample 1 and 2; Figure S9: Distribution histograms for (a) ligament widths and
(b) pore widths for glass substrate and PDMS substrates with different thicknesses; Figure S10: (a)
SEM images of the microscopic cracks in np-Au/glass and np-Au/PDMS thin films, and (b) plots
depicting the width distribution of the microscopic cracks.; Figure S11: SEM of microscopic cracks
tilted at 45◦ in (a) np-Au/glass film, and (b) np-Au/1.59 mm PDMS film showing the differences
in crack opening in both cases; Figure S12: Finite element mesh for the post-deposition and post-
dealloying film/substrate stack.
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