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Abstract: The SnO2@Bi2O3 core-shell heterojunction structure was designed and synthe-
sized via a hydrothermal method, and the structure and morphology of the synthesized
samples were characterized using X-ray diffraction (XRD), scanning electron microscopy
(SEM), and X-ray photoelectron spectroscopy (XPS). Based on the conclusions from XRD
and SEM, it can be observed that as the hydrothermal temperature increases, the content
of Bi2O3 coated on the surface of SnO2 spheres gradually increases, and the diameter of
Bi2O3 nanoparticles also increases. At a hydrothermal temperature of 160 ◦C, the SnO2

spheres are fully coated with Bi2O3 nanoparticles. This paper investigated the gas-sensitive
performance of the SnO2@Bi2O3 sensor towards ethanol gas. Gas sensitivity tests at the
optimal operating temperature of 300 ◦C showed that the composite prepared at 160 ◦C
achieved a response value of 19.7 for 100 ppm ethanol. Additionally, the composite exhib-
ited excellent response to 100 ppm ethanol, with a response time of only 4 s, as well as good
repeatability. The excellent gas-sensitive performance of the SnO2@Bi2O3 core-shell hetero-
junction towards ethanol gas is attributed to its p-n heterojunction material properties. Its
successful preparation contributes to the realization of high-performance heterostructure
ethanol gas sensors.

Keywords: SnO2@Bi2O3 heterojunctions; hydrothermal method; gas sensors; ethanol

1. Introduction
With the rapid development of industry, environmental pollution has become increas-

ingly severe. Large quantities of untreated gasses containing harmful substances are being
released into the atmosphere, posing significant threats to human health [1]. As a result,
gas detection has become a key area of focus. Gas sensors, which play a vital role in envi-
ronmental monitoring and air quality detection, have attracted growing research interest.
Among them, metal oxide semiconductors (MOS) have garnered significant attention as
gas-sensitive materials due to their simple structure, ease of fabrication, and real-time
monitoring capabilities [2,3].

Tin dioxide (SnO2) is a common MOS material and is widely used in gas sensing
materials due to its excellent electrical conductivity, wide bandgap (Eg = 3.6 eV), tun-
able resistivity, and sensitivity and selectivity to various gasses [4–6]. However, pure
SnO2 suffers from low response and poor selectivity, and its gas sensing performance
has not yet reached the expected targets. Many researchers have employed composite
structures to enhance the performance of gas sensors. The formation of heterostructures,
composed of two or more semiconductor materials, has been explicitly proven to im-
prove gas sensor performance [7–11]. For instance, SnO2@SnS2 heterojunctions exhibited
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excellent performance in NO2 detection [12]. Researchers synthesized NiO/SnO2 hollow
spheres and constructed p-n heterojunctions, significantly enhancing the sensitivity to
triethylamine [13]. J.H. Kim et al. demonstrated that Co3O4/SnO2 composite nanofibers
exhibited significantly enhanced response to acetone gas at 350 ◦C compared to pure
SnO2 [14]. Zhang et al. developed a novel gas sensor based on ZnO/SnO2, which showed
a response to 2000 ppm ethanol vapor that was 7 times higher than that of the original ZnO
sensor [15]. Furthermore, Chen et al. reported that the SnO2/TiO2 heterojunction sensor
achieved a response value of 9.58 to 100 ppm ethanol, which was 1.88 times that of SnO2

nanoparticles [16]. This improvement is attributed to the synergistic effect of band structure
modulation and the formation of heterojunctions between the two semiconductors, which
increases the electron depletion layer and improves charge carrier separation.

Bismuth oxide (Bi2O3) is another common MOS material with a bandgap of 2.79 eV.
Due to its high refractive index and high dielectric constant, it has promising applica-
tion prospects [17]. It is often combined with other metal oxides for constructing gas
sensors [18–21]. For example, A. Montenegro et al. synthesized SnO2-Bi2O3 composites via
the polymer precursor method, demonstrating that the introduction of bismuth significantly
enhanced the sensor’s response to oxygen [22]. Jae Hoon Bang et al. proposed a highly
sensitive and selective NO2 sensor based on Bi2O3 -modified branched SnO2 nanowires
(NWs) [23]. Additionally, Yang et al. incorporated Bi2O3 particles as external additives onto
the surface of SnO2 nanoparticles (NPs) for the efficient detection of oxygenated volatile
organic compounds (VOCs) [24]. Therefore, SnO2@Bi2O3 composite materials exhibit
potential for achieving reliable gas sensors, warranting further investigation in this field.

In this paper, SnO2@Bi2O3 core-shell heterojunctions were prepared at different tem-
peratures using a hydrothermal method. The crystal structure, microstructure, and chemical
states of the materials were characterized. The gas-sensing performance was tested to de-
termine the optimal operating temperature of the sensor. The response and recovery times
of the sensor were calculated, and the transient current curves of the sensors exposed to
5–100 ppm ethanol were analyzed. The effect of sensor repeatability was explored. This
paper focuses on analyzing the gas-sensing mechanism of the sensors and reveals that the
improvement in ethanol gas-sensing performance of SnO2@Bi2O3 composites primarily
originates from the p-n heterojunction.

2. Experimental Section
2.1. Synthesis of SnO2

First, 8.098 g of SnCl4·5H2O (Beijing Tianyun Chemical Reagent Co., Ltd., Beijing,
China) and 0.2 g of PVP (polyvinylpyrrolidone) (Sinopharm Chemical Reagent Co., Ltd.,
Shanghai, China) were dissolved in 35 mL of deionized water and stirred for 30 min until
fully mixed. Subsequently, 6.02 g of NaOH(Sichuan Xilong Science Co., Ltd., Chengdu,
China) was dissolved in 35 mL of deionized water and stirred at room temperature for
30 min to form a colorless and transparent NaOH solution. The NaOH solution was added
dropwise to the SnCl4·5H2O solution, and the mixture was stirred for 30 min to form a
transparent and uniform precursor solution. The precursor solution was transferred into
a polytetrafluoroethylene reactor and reacted at 180 ◦C for 10 h. After natural cooling to
room temperature, the sample was collected and washed five times with deionized water
and anhydrous ethanol until neutral. Finally, the sample was dried at 60 ◦C for 12 h to
obtain the final SnO2 sample.

2.2. Synthesis of SnO2@Bi2O3

First, 0.679 g of Bi(NO3)3·5H2O (Sinopharm Chemical Reagent Co., Ltd., Shanghai,
China) and 0.168 g of NaOH were dissolved separately in 35 mL of deionized water and
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stirred for 30 min to form uniform solutions. The NaOH solution was added dropwise
to the Bi(NO3)3·5H2O solution, forming a stable solution. Subsequently, 0.8 g of SnO2

prepared in the first step was added, and the mixture was stirred for another 30 min. The
resulting solution was transferred into a polytetrafluoroethylene reactor and reacted at
different temperatures (100 ◦C, 120 ◦C, 140 ◦C, and 160 ◦C) for 4 h. After natural cooling
to room temperature, the samples were collected and washed five times with deionized
water and anhydrous ethanol until neutral. Finally, the sample was dried at 70 ◦C for 12 h
to obtain the final samples.

2.3. Material Characterization

The crystal structure of the samples was measured using an X-ray diffractometer
(XRD, Bruker D8 Advance, Bruker Corporation, Karlsruhe, Germany). The microscopic
morphology and element content of the prepared samples were analyzed using a scan-
ning electron microscope (SEM, GeminiSEM 360, Carl Zeiss AG, Oberkochen, Germany)
with energy-dispersive X-ray spectrum (EDS). X-ray photoelectron spectroscopy (XPS,
Thermo Scientific-ESCALAB Xi+, Thermo Fisher Scientific, Waltham, MA, USA) was used
to determine the surface composition and chemical states of the elements.

2.4. Sensor Fabrication and Gas Sensing

The fabrication process of the gas sensor is as follows: the prepared sample was mixed
with an appropriate amount of deionized water and grinded to form a slurry. The slurry
was then coated onto a clean ceramic tube equipped with a pair of gold electrodes to serve
as the testing electrode. The ceramic tube was sintered in air at 300 ◦C for 3 h to enhance
the material’s stability. Finally, a nickel–chromium heating wire was inserted and welded
onto the hexagonal base of the ceramic tube, forming an indirectly heated gas sensor.

The sensor response was defined as Ig/Ia , where Ia represents the sensor current in
air and Ig represents the current in the target gas.

3. Results and Discussion
3.1. Characterization of the SnO2@Bi2O3

The crystal structures of SnO2, SnO2@Bi2O3 (100 ◦C), SnO2@Bi2O3 (120 ◦C), SnO2@Bi2O3

(140 ◦C), and SnO2@Bi2O3 (160 ◦C) samples were analyzed by XRD, and the results are
presented in Figure 1. As shown in the figure, the XRD peaks of the synthesized SnO2

powder were observed at 2θ = 26.709◦, 34.294◦, 37.911◦, and 52.03◦, corresponding to the
(110), (101), (200), and (211) planes of the tetragonal phase SnO2 (JCPDS No. 41-1445). This
indicates that the SnO2 synthesized by the hydrothermal method possesses high purity and
good crystallinity. For the SnO2@Bi2O3 composite material, the diffraction peaks not only
include those of tetragonal SnO2 but also exhibit additional peaks at 2θ = 27.526◦, 33.419◦,
and 46.474◦, which correspond to the (120), (200), and (122) planes of Bi2O3 (JCPDS No.
41-1449). This confirms that the prepared material is indeed SnO2@Bi2O3. Moreover, the
intensity of the Bi2O3 diffraction peaks increased with the reaction temperature, indicating
improved crystallinity or higher Bi2O3 content in the SnO2@Bi2O3 composite.

The morphology and microstructure of the SnO2@Bi2O3 composite materials were
further investigated using SEM. As shown in Figure 2a, pure SnO2 exhibits a typical
spherical structure with a rough surface and an average diameter of approximately 4 µm.
Figure 2b shows the SnO2@Bi2O3 composite synthesized at 100 ◦C, where a small amount
of Bi2O3 is sparsely distributed on the SnO2 surface. This could be attributed to the fact
that at low temperatures, the Bi2O3 grains are relatively small and not fully crystallized,
existing predominantly in an amorphous or poorly crystallized state. As the temperature
increased to 120 ◦C, Bi2O3 gradually formed sheet-like and flocculent structures, partially
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covering the SnO2 surface (Figure 2c). The increase in temperature promotes further crys-
tallization of Bi2O3 and may lead to the formation of two-dimensional structures, such as
sheet-like shapes, through self-assembly. The formation of these sheet-like structures can
be attributed to the differences in crystal surface energy and growth rates, causing Bi2O3

to preferentially grow along specific crystal planes, resulting in sheet-like or flocculent
morphologies. When the temperature was further elevated to 140 ◦C (Figure 2d), the
morphology of Bi2O3 underwent a significant change, with the sheet-like and flocculent
structures disappearing and being replaced by well-defined polyhedral structures. The
SnO2surface was almost completely covered by Bi2O3, with the coverage becoming more
uniform, though some residual sheet-like structures remained. At 160 ◦C (Figure 2e), the
sheet-like Bi2O3 structures completely disappeared, and the surface morphology trans-
formed into uniform polyhedron, resulting in a fully encapsulated structure, consistent
with the XRD results. This transformation may be related to the rearrangement of crystals,
crystal plane growth, and self-assembly mechanisms at high temperatures. At elevated
temperatures, the solubility and diffusion rate of Bi2O3 increase, facilitating the crystal
growth and optimized arrangement of Bi2O3 grains, driving the transition from sheet-
like structures to polyhedral morphologies. The interfacial interaction between the SnO2

surface and Bi2O3 also promotes the uniform coating of Bi2O3, thereby forming stable
polyhedral nanoparticles.
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Figure 1. XRD spectra of SnO2, SnO2@Bi2O3 (100 ◦C), SnO2@Bi2O3 (120 ◦C), SnO2@Bi2O3 (140 ◦C),
and SnO2@Bi2O3 (160 ◦C).

EDS mapping of the SnO2@Bi2O3 sample prepared at 160 ◦C was performed to
determine the distribution and content of elements on the sample surface. As shown
in Figure 3b–d, oxygen (O, yellow), tin (Sn, red), and bismuth (Bi, green) are uniformly
distributed across the sample surface. Further quantitative analysis of the elemental com-
position (Figure 3e and Table 1) revealed that the sample contains 79.3% O, 14.6% Bi, and
6.1% Sn. Additionally, no other elements were detected, indicating that the prepared sam-
ple is composed of SnO2@Bi2O3 composite material, which is consistent with the results of
XRD and SEM analyses.
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Table 1. Elemental composition of the SnO2@Bi2O3 (160 ◦C) sample.

Element Atomic %

O 79.3
Sn 6.1
Bi 14.6

Total 100



Nanomaterials 2025, 15, 129 6 of 13

The structure and specific surface area of materials are key factors affecting their
gas sensitivity performance. Increasing the contact area between gas-sensitive materials
and gasses can enhance the oxygen adsorption capacity on the material surface. In this
study, both the SnO2@Bi2O3 (160 ◦C) composite material and pure SnO2 were tested using
BET and BJH methods. As shown in Figure 4a, the adsorption–desorption isotherms of
the SnO2@Bi2O3 (160 ◦C) composite material can be classified as Type IV, while those
of SnO2 can be classified as Type II. Figure 4b shows the pore size distribution curves
for both SnO2@Bi2O3 (160 ◦C) and pure SnO2, with the main peaks occurring at 2–4 nm.
Table 2 presents the BET data for both SnO2@Bi2O3 (160 ◦C) and SnO2, where the specific
surface area of SnO2@Bi2O3 (160 ◦C) is 31.2148 m2/g, approximately 5 times that of the
pure SnO2 nanospheres (6.7419 m2/g). This indicates that the SnO2@Bi2O3 composite
material prepared in this study has a larger specific surface area, enhancing the rate of
electron exchange between ethanol gas and the semiconductor material, thus creating
favorable conditions for the adsorption, diffusion, and reaction of the test gas. The average
pore diameter of SnO2@Bi2O3 (160 ◦C) is about 2.9790 nm, slightly larger than that of SnO2

at 2.8669 nm. The pore volume of SnO2@Bi2O3 (160 ◦C) is 0.020202 cm3/g, significantly
greater than that of SnO2 at 0.004116 cm3/g, corresponding to its higher specific surface
area, suggesting that the material provides more pore space for gas adsorption.
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Figure 4. Nitrogen adsorption–desorption isotherms (a) and pore size distribution curves (b) for pure
SnO2 and SnO2@Bi2O3 (160 ◦C).

Table 2. The BET specific surface areas of different samples.

Samples SBET (m2/g) Average Pore Diameter (nm) Pore Volume (cm3/g)

SnO2 6.7419 2.8669 0.004116
SnO2@Bi2O3 (160 ◦C) 31.2148 2.9790 0.020202

The chemical states and surface composition of the SnO2@Bi2O3 composite prepared
at 160 ◦C were analyzed using XPS, as shown in Figure 5. The survey spectrum (Figure 5a)
reveals distinct peaks corresponding to Sn, O, and Bi elements, confirming their presence
in the sample. The signal from C is attributed to calibration, with the C 1s peak at 284.8 eV
used as the reference for calibration. Figure 5b shows the high-resolution Bi 4f spectrum,
with peaks at binding energies of 159.35 eV and 164.65 eV, corresponding to Bi 4f7/2 and
Bi 4f5/2, respectively, which are characteristic peaks of Bi3+ [25,26]. The high-resolution
Sn 3d spectrum (Figure 5c) exhibits peaks at 487.15 eV and 495.55 eV, corresponding to Sn
3d5/2 and Sn 3d3/2, indicating that Sn exists in the form of Sn4+ in the composite [27,28].
Figure 5d presents the high-resolution O 1s spectrum, which can be divided into three sub-
peaks with binding energies at 529.44 eV, 530.08 eV, and 531.45 eV, corresponding to oxygen
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in Bi2O3 (blue), oxygen in SnO2 (green), and adsorbed oxygen (purple), respectively [29,30].
The XPS results further confirm that the SnO2@Bi2O3 composite consists of SnO2 and Bi2O3.
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3.2. Gas-Sensing Performances

Metal oxide semiconductors require sufficient operating temperatures to activate the
surface adsorption of oxygen and promote chemical reactions. Thus, the optimum operating
temperature needs to be determined [31–33]. As shown in Figure 6a, the response of the
SnO2@Bi2O3 sensor prepared at 160 ◦C to 100 ppm ethanol was tested over a temperature
range of 50 ◦C to 300 ◦C. The response value increased with rising temperature and reached
a maximum of 19.7 at 300 ◦C. This indicates that the optimum operating temperature of
the SnO2@Bi2O3 (160 ◦C) sensor is 300 ◦C. High selectivity is a critical requirement for
gas sensors to avoid interference from other gasses during the detection process. Thus,
the selectivity of the SnO2@Bi2O3 (160 ◦C) sensor was tested at 300 ◦C against various
gasses (including NO2, NH3, toluene, H2, and CO) at a concentration of 100 ppm, as shown
in Figure 6b. The response values for NO2, CO, NH3, toluene, and H2 were 12.09, 12.9,
13.47, 16.63, and 11.08, respectively, which were all lower than the response value of 19.7
for ethanol. This demonstrates the excellent selectivity of the SnO2@Bi2O3 (160 ◦C) sensor.
At the optimal operating temperature of 300 ◦C, the responses of SnO2 and SnO2@Bi2O3

composites prepared at different temperatures to 100 ppm ethanol gas were compared,
as shown in Figure 6c. It can be observed that SnO2 exhibits the lowest response value,
while SnO2@Bi2O3 (160 ◦C) shows the highest response value. According to Table 3, it is
evident that the response value of SnO2 is approximately 9, whereas the response values
of SnO2@Bi2O3 (100 ◦C), SnO2@Bi2O3 (120 ◦C), and SnO2@Bi2O3 (140 ◦C) were 9, 10.5,
and 13.6, respectively. The highest response value of 19.7 was observed for SnO2@Bi2O3

(160 ◦C), significantly outperforming the other samples.
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(100 ◦C), SnO2@Bi2O3 (120 ◦C), SnO2@Bi2O3 (140 ◦C), and SnO2@Bi2O3 (160 ◦C) to 100 ppm ethanol
at 300 ◦C.

Table 3. Response of SnO2, SnO2@Bi2O3 prepared at different temperatures to 100 ppm ethanol at
300 ◦C.

Ethanol Gas (100 ppm) Sensor Response

SnO2 9
SnO2@Bi2O3 (100 ◦C) 9
SnO2@Bi2O3 (120 ◦C) 10.5
SnO2@Bi2O3 (140 ◦C) 13.6
SnO2@Bi2O3 (160 ◦C) 19.7

As shown in Figure 7a, the transient current curves of the SnO2@ Bi2O3 sensor pre-
pared at 160 ◦C to ethanol gas at 300 ◦C indicate gas concentrations ranging from 5 ppm to
100 ppm. It can be observed from the figure that as the ethanol gas concentration increases,
the current of the SnO2@Bi2O3 (160 ◦C) sensor shows a continuous upward trend, reaching
a maximum value of approximately 32 nA at 100 ppm ethanol gas. The response and
recovery characteristics of the SnO2@Bi2O3 (160 ◦C) sensor to 100 ppm ethanol at 300 ◦C
are shown in Figure 7b. The response and recovery times were 4 s and 11 s, respectively,
demonstrating the sensor’s fast response and recovery capabilities. Figure 7c presents the
transient current curves of the SnO2@Bi2O3 (160 ◦C) sensor over ten cycles for 100 ppm
ethanol at 300 ◦C. The analysis indicates that the current of the SnO2@Bi2O3 (160 ◦C) sensor
remained stable over time, with negligible fluctuations, consistently maintaining a value of
approximately 32 nA. This result demonstrates the excellent repeatability of the sensor.
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ethanol at 300 ◦C; (c) Transient current curves of the SnO2@Bi2O3 (160 ◦C) sensor over ten cycles for
100 ppm ethanol at 300 ◦C.
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Figure 8a shows the response of the SnO2@Bi2O3 (160 ◦C) sensor to the target gas
(ethanol) and interfering gasses (NO2, NH3, toluene, H2, and CO) at a concentration of
5 ppm. The decision to test these gasses at low concentrations is based on the fact that
ethanol is typically derived from chemical production, while other gasses (NO2, NH3,
toluene, H2, and CO) are often produced by industrial emissions. These gasses may
coexist in the environment, and ethanol leaks in the environment generally occur at low
concentrations. However, when mixed with other gasses, the accuracy of detection could be
affected. Therefore, the sensor’s response to these gasses was tested at a low concentration
of 5 ppm.
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At 300 ◦C, the SnO2@Bi2O3 (160 ◦C) sensor showed a response value of 13.6 to 5 ppm
ethanol gas, while its response values to other interfering gasses (NO2, NH3, toluene,
H2, and CO) at the same concentration were 6.91, 6.75, 1.5, 1.1, and 1.23, respectively.
It can be observed that the sensor’s response to the target gas ethanol is significantly
higher than its response to the interfering gasses. This indicates that even under low
concentration conditions, the SnO2@Bi2O3 (160 ◦C) sensor can effectively detect ethanol
gas. Figure 8b shows the test results of the SnO2@Bi2O3 (160 ◦C) sensor within the ethanol
concentration range of 1–5 ppm. It can be observed that the sensor has no response
below 1 ppm, but begins to respond at 1 ppm, with a response value of 1.21, indicating
a detection limit of 1 ppm. According to Table 4, the response values remain stable at
approximately 1.21 in the range of 1 ppm to 1.4 ppm but increase significantly to 1.562 at
1.5 ppm, demonstrating a resolution of 0.5 ppm for the SnO2@Bi2O3 (160 ◦C) sensor.

Table 4. Response of SnO2@Bi2O3 (160 ◦C) sensor to different concentrations of ethanol gas.

Concentration of Ethanol (ppm) Sensor Response

1 1.21
1.1 1.21
1.2 1.21
1.3 1.21
1.4 1.21
1.5 1.562

3.3. Gas Sensing Mechanism

SnO2 is a typical n-type semiconductor metal oxide that follows the gas sensing mech-
anism of n-type semiconductors. The adsorption and desorption of target gas molecules on
the surface of SnO2 cause changes in its resistance [34]. When the SnO2 sensor is exposed
to air at its optimal operating temperature, a large amount of oxygen is adsorbed onto the
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material’s surface. At this point, some conduction band electrons transfer to the adsorbed
oxygen, existing in the form of O−, forming a thick depletion layer [35–38]. As a result, the
potential barrier is higher, the resistance increases, and the current decreases. The specific
reaction process is as follows:

O2(gas) → O2(ads) (1)

O2(ads) + e− → O−
2(ads), T < 100 ◦ C (2)

O−
2(ads) + e− → 2O−, 100◦C ≤ T ≤ 300 ◦ C (3)

When the SnO2 sensor comes into contact with ethanol (C2H5OH) gas, the adsorbed
oxygen on the surface reacts with C2H5OH to produce CO2 and H2O, as shown in Figure 9a.
In this process, electrons return to the conduction band of the sensing material, thinning
the depletion layer, thereby reducing the sensor’s resistance and increasing the current.
The reaction equation is as follows:

C2H5OH + 6O− → 2CO2 + 3H2O + 6e− (4)
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Figure 9. (a) Schematic diagram of the sensing mechanism of the SnO2@Bi2O3 core-shell heterojunc-
tion when exposed to air and ethanol; (b) Band diagrams of SnO2 and Bi2O3 before and after contact;
(c) Band diagram of the SnO2@Bi2O3 core-shell heterojunction in air and ethanol gas.

When the sensor is returned to normal air from the tested gas, oxygen re-adsorbs
onto the surface of SnO2, and the conduction band electrons exist again in the form of O−,
causing the resistance to increase and the current to decrease.

The enhanced sensitivity of the SnO2@Bi2O3 composite material to ethanol gas may be
attributed to the heterojunction effect [39–41]. Based on the grain boundary potential barrier
model, Figure 9b shows that SnO2 and Bi2O3 materials have different Fermi energy levels.
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When SnO2 is combined with Bi2O3 to form an n-p heterojunction, electrons flow from the
Fermi level of SnO2 (which is higher) to the Fermi level of Bi2O3 (which is lower) until a
dynamic equilibrium is reached. At this point, the energy bands of SnO2 and Bi2O3 bend in
the space charge region of the n-p junction, forming a potential barrier. Figure 9c illustrates
that when the SnO2@Bi2O3 heterostructure is exposed to reducing ethanol gas, ethanol
reacts with the oxygen adsorbed (O−) on the surface of SnO2, releasing a large number
of electrons. These electrons are injected into the conduction band of SnO2, lowering its
resistance. Simultaneously, some electrons diffuse to the p-type Bi2O3 interface, causing
electron–hole recombination and reducing the hole concentration in Bi2O3, which further
decreases the thickness of the depletion layer and the height of the interface potential
barrier. Moreover, ethanol gas may also directly react with the holes on the surface of Bi2O3,
releasing more electrons. These electrons are transferred to the conduction band of SnO2,
further reducing the overall resistance of the composite material and increasing the current.
Ultimately, the synergistic effects of these processes significantly enhance the sensitivity of
the SnO2@Bi2O3 heterojunction material to ethanol gas [42–45].

4. Conclusions
In summary, this study successfully prepared SnO2@Bi2O3 heterostructures via a sim-

ple hydrothermal method and evaluated their gas-sensing performance. As the hydrother-
mal temperature increases, the content of Bi2O3 coated on the surface of SnO2 spheres
gradually increases, and the diameter of the Bi2O3 nanoparticles also increases. When the
hydrothermal temperature reaches 160 ◦C, the SnO2 spheres are completely coated with
Bi2O3 nanoparticles. The test results demonstrated that the SnO2@Bi2O3 heterostructure
exhibited excellent sensitivity to ethanol gas. At 300 ◦C, the response value of SnO2@Bi2O3

(160 ◦C) to 100 ppm ethanol reached 19.7, with response and recovery times of 4 s and
11 s, respectively. The composite material also showed excellent repeatability. Based on the
characterization results, the performance enhancement was attributed to the presence of
p-n heterojunctions on the material surface. Therefore, the SnO2@Bi2O3 heterostructure
provides a promising strategy for ethanol gas detection and sensor development.
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