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Abstract: A transparent fluoroborosilicate glass ceramic was designed for the controllable
precipitation of fluoride nanocrystals and to greatly enhance the photoluminescence of
active ions. Through the introduction of B2O3 into fluorosilicate glass, the melting tem-
perature was decreased from 1400 to 1050 ◦C, and the abnormal crystallization in the
fabrication process of fluorosilicate glass was avoided. More importantly, the controlled
crystallizations of KZnF3 and KYb3F10 in fluoroborosilicate glass ceramics enhanced the
emission of Mn2+ and Mn2+–Yb3+ dimers by 6.7 and 54 times, respectively. Moreover, the
upconversion emission color of glass ceramic could be modulated from yellow to white and
blue by adjusting the Yb3+ concentration. The well-designed glass ceramic is a novel and
significant compound to simultaneously provide efficiently coordinated sites for transition
metal and rare earth ions. More importantly, the design strategy opens a new way for
engineering high-quality oxy-fluoride glass ceramics with properties of excellent stability,
controllable nano-crystallization and high-efficiency photoluminescence.

Keywords: glass ceramic; nano-crystallization; upconversion luminescence

1. Introduction
Oxy-fluoride glass is a desired luminescent material that possesses an excellent stability

of oxide network structures and a high luminescence efficiency of fluoride environments. In
the past decades, extensive research has been conducted on various oxy-fluoride glasses for
applications in lighting, solar cells and lasers [1–4]. Among these, fluorosilicate (FS) glasses
have drawn the most attention due to their stable structures of [SiO4] frameworks [5–11].
More importantly, fluoride nanocrystals (NaYF4, LaF3, YF3, SrF2, etc.) have been success-
fully precipitated from the FS glasses via heat treatments to fabricate nano-crystallized glass
ceramics (NGCs) due to the thermally metastable states of the glass [12–26]. These fluoride
nanocrystals provide low-phonon-energy environments for active rare earth (RE) ions and
dramatically enhance the luminescent efficiencies of glasses. However, the fabrication of
high-quality FS NGCs, in particular, of bulk NGC samples, remains a grand challenge. On
one hand, high-silica FS glass exhibits high melting temperature (>1400 ◦C), which leads to
the drastic volatilization of fluorides and the severe erosion to the crucible. Though the
melting temperature is decreased by increasing the content of fluorides in the FS glass,
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the crystallization of the NGC in low-silica glass is usually uncontrollable. Crystals are
already precipitated in precursor glasses (PGs) with large sizes due to the low viscosity in
networks in low-silica glass. As a result, the optical transmittance of FS–NGC decreases
heavily, caused by the scattering of large crystal particles. This has prevented the practical
application of FS–NGCs in optical devices. To tackle these questions, it is crucial to design
and manufacture novel NGCs characterized by an efficient photoluminescence (PL), a low
melting temperature and a controllable precipitation of fluoride nanocrystals.

In this study, a novel fluoroborosilicate (FBS) glass was synthesized by the introduction
of B2O3 into FS glass for controllable crystallizations. The melting temperature of the FBS
glass decreased from 1400 to 1050 ◦C by adding B2O3, avoiding the severe volatilization
of fluorides in glass and reducing the erosion to crucible. The crystalline phases and
microstructures of the FBS samples were investigated carefully to compare them with
those of the FS samples. Through the heat treatments, KZnF3 and KYb3F10 nanocrystals
were controllably precipitated in the FBS NGCs, which provided excellent fluoride crystal
environments for enhancing the luminescence efficiency of transition metal (TM) ions and
rare earth (RE) ions. To validate this concept, the luminescent characteristics of Mn2+- and
Yb3+-doped NGCs were investigated. The well-designed glass exhibits large potential in
the application of multi-color lighting, 3D information storage and tunable lasers.

2. Experimental
2.1. Materials and Preparations

In this work, the host PGs were selected with a nominal composition of (in mol%)
xSiO2–(50–x) B2O3–25ZnF2–25KF (x = 40 and 50). The sample was called FBS–PG and
FS–PG, respectively. For TM and RE ion doping, MnO and YbF3 were selected as doping
sources. All materials were produced by Xinzhen New Material Co., Ltd. (Ganzhou, China).
All glasses were fabricated via the melt-quenching technique [27]. The stoichiometric
mixture of 30 g reagent grade SiO2 (99.99%), B2O3 (99.99%), ZnF2 (99.99%), KF (99.99%),
YbF3 (99.99%) and MnO (99.99%) were fully mixed and melted in quartz crucible for 30 min
(the melting temperatures of FBS–PG and FS–PG were 1050 and 1400 ◦C, respectively).
Moreover, the FS–PG sample was also melted in a platinum rhodium crucible. The molten
glass was cast into a precooled brass mold, and another copper plate was used to press the
glass sample to obtain PG samples. Subsequently, these PG samples were heated at 500 ◦C
and 520 ◦C for 5 h to prepare NGCs based on the differential scanning calorimetry (DSC)
results shown in Figure 1.
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2.2. Characterization

The thermal stability of the glass was assessed via the DSC curve obtained using the
STA449C Jupiter instrument (Netzsch, Selb, Germany) at a heating rate of 5K min−1 in
an argon atmosphere. High-resolution transmission electron microscope (HR-TEM), high-
angle annular dark field TEM (HAADF-TEM) and element mapping were measured with a
Tecnai G2 instrument (FEI, Hillsboro, OR, USA). The working voltage was 200 kV, and the
current on the sample was ~50 pA. TEM samples, approximately 40 nm in thickness, were
obtained using conventional mechanical polishing followed by ion beam milling techniques
(PIPS II, GATAN, Pleasanton, CA, USA). The amorphous and crystal states within the
glass samples were characterized by X-ray diffraction (XRD) using a D8 advance X-ray
diffractometer (Bruker, Fällanden, Switzerland) with Cu/Ka (λ = 0.1541 nm) radiation. The
emission spectrum was characterized by an Edinburgh FLS980 fluorescence spectrometer
(Edinburgh Instruments, Livingston, UK), utilizing a 450 W xenon lamp as the excitation
source. The upconversion (UC) spectra and lifetime curves of the glass were obtained using
the same spectrometer. A 980 nm semiconductor laser diode (LD) served as the excitation
source for the UC spectra. All properties of samples were measured at room temperature.

3. Results and Discussion
The DSC curves presented in Figure 1a,b both contained a crystallization peak tem-

perature (Tp) and a glass transition temperature (Tg). For the controllable precipitation of
nanocrystals in FBS–NGCs, the heat treatment temperatures were set between Tg (403 ◦C)
and Tp (532 ◦C). Thus, the heat treatment temperature of the FBS–PG was set to 500 and
520 ◦C to prepare NGCs embedded with fluoride nanocrystals. The difference value (∆T)
between Tg and Tp was used to evaluate the controllability of crystallization in glass. The ∆T
of FS and FBS–PG was about 90 and 129 ◦C, respectively, suggesting that the crystallization
in FBS–PG was more controllable compared to that in FS–PG. In the compositions of FBS
glass, 10 mol% SiO2 was substituted by 10 mol% B2O3, which actually provided 20 mol%
[BO4] units and thus strengthened the framework of glass. Hence, the introduction of B2O3

afforded remarkable prospects for the controllable nano-crystallization of fluoride crystals
in FBS–NGCs.

In the past investigations, the FS–PG (50SiO2-25ZnF2-25KF) was proved to be a host
for the crystallization of KZnF3 crystals to greatly enhance the PL emission of TM ions [28].
However, the PG melted by a platinum rhodium crucible possessed large tendency of
crystallization during the glass fabrication process because superabundant fluorides were
introduced into the glass. As shown in the inset of Figure 2a, the FS–PG was completely
opaque and looked like a ceramic sample. As shown in Figure 2a, the transmittance of
FS–PG was sharply reduced to 0% below 600 nm, and the visible light was hardly able to
penetrate the sample due to the severe scattering by crystal particles in the PG sample. In
fact, a substantial quantity of KZnF3 crystals have already precipitated in the PG during
the glass fabrication process as proved by the bottom XRD pattern in Figure 2b. Generally,
the controllable nano-crystallization in NGC should be achieved by the subsequent heat
treatment of PG at a low temperature (a little higher than Tg). The crystallization during
glass fabrication process is commonly uncontrollable. Moreover, the average size and the
crystalline volume fraction of the KZnF3 crystals in the FS–PG was as large as 37.94 nm
and 19%, respectively, as calculated from the XRD pattern. This severe and uncontrollable
crystallization in the FS–PG makes it difficult to apply in practical optical devices. Moreover,
the XRD pattern of the FS–NGC melted by a quartz crucible is also shown in Figure 2b.
No peaks corresponding to KZnF3 crystals were detected; however, the sharp peaks in the
XRD pattern were consistent with the diffraction peaks of K2SiF6 crystals (No: 85–1382),
indicating that the crystalline phase in the NGC changed to K2SiF6. According to the works
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by Lin et al. [29], KZnF3 crystals tend to precipitate in low-silicon glasses, whereas K2SiF6

crystals are usually crystallized in the FS glasses containing high concentrations of SiO2.
The precipitation of K2SiF6 crystals in the FS–NGC indicates that SiO2 from the quartz
crucible was dissolved into the glass melt at the high temperature. These results indicate
that it is difficult to prepare high-quality NGC based on the FS–PG with the controllable
crystallization of KZnF3 nanocrystals.
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Figure 2. (a) Transmission spectra of 1.0Mn2+-doped FS–PG, FBS–PG and NGC (treated at 500 ◦C
for 5 h) samples; inset: digital photo of FBS–PG, FBS–NGC and FS–PG samples. (b) XRD patterns of
FS–PGs melted in different crucibles.

Though the introduction of 10 mol% B2O3 into the glass to substitute SiO2, the total
content of fluorides maintained in 50 mol%, and the melting temperature of glass decreased
from 1400 to 1050 ◦C, which reduced the volatilization of fluorides and avoided the severe
erosion of the crucible. The FBS–PG exhibited transparent as presented in the inset of
Figure 2a. The FBS–PG possessed high transmittance (~76.5% at 600 nm) (Figure 2a) with a
thickness of 2 mm. Thus, the uncontrollable crystallization during the fabrication process
of glass could be avoided in the FBS–PG.

More importantly, the crystallization in the FBS–NGC was controllable by the subse-
quent heat treatments at 500 ◦C. As shown in Figure 3a, a broad band was found in the
XRD pattern of PG ascribed to the amorphous phase of glass, suggesting the absence of
crystal precipitation during the glass fabrication process. On the contrary, the sharp peaks
corresponding to the diffraction peaks of the KZnF3 crystals (No: 89–4110) were found in
the XRD pattern of NGC. The mainly intense peaks at 2θ = 21.9◦, 31.2◦, 44.7◦, 55.5◦ and
65.0◦ were attributed to the diffraction of the (100), (110), (200), (211) and (220) crystal facets
for cubic KZnF3 crystals, respectively. Moreover, no other diffraction peak was observed in
the XRD pattern, proving that only KZnF3 crystals were precipitated in the FBS–NGC. The
average size of KZnF3 nanocrystals was approximately 18.3 nm calculated by Scherrer’s
equation, based on the XRD diffraction peak at around 44.6◦.
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images for Yb, F and Mn corresponding to region in (b) with relative concentrations indicated by
color intensity.

Moreover, the FBS–NGC still possessed high transmittance after the precipitation
of KZnF3 crystals as shown in Figure 2a. The FBS–NGC exhibited a high transmittance
to 71.5% at 600 nm. As the heating temperature rose from 500 to 520 ◦C, the intensities
of all diffraction peaks enhanced, and more KZnF3 crystals were precipitated from the
glass matrix. These findings verify that the FBS–PG served as an outstanding host for the
crystallization of KZnF3 and the crystals were controllably precipitated in the FBS–NGC
through the heat treatments.

The HAADF-TEM image in Figure 3b illustrates the in situ precipitation of nanocrys-
tals within the glass matrix, with particle sizes ranging from 5 to 30 nm. The TEM elemental
mapping patterns (Figure 3d,e) indicate that the distribution of the F and Mn elements
correlated closely with that of the nanocrystal particles (Figure 2b). Conversely, the distri-
bution profile of the Si elements was contrary to that of the nanocrystal particles (Figure 3c).
These findings unambiguously demonstrate that Mn2+ ions were successfully incorporated
into the KZnF3 nanocrystals, while the K2SiF6 crystal failed to precipitate in the NGCs.
The KZnF3 crystal was attributed to a typical cubic perovskite structure with a Pm-3m
space group, consisting of a 3D network of angle-sharing ZnF6 octahedra, where Zn2+

ions were situated at the centers of the octahedra [30]. Mn2+ exhibited a high octahedral
preference energy and possessed the same valence state and comparable ionic radius as
Zn2+ (R: Zn2+ = 0.074 nm, R: Mn2+ = 0.067 nm). It was likely to incorporate into the KZnF3
nanocrystal by the substitution for Zn2+. Thus, with the precipitation of KZnF3 nanocrystals
in the FBS–NGCs, Mn2+ ions could be confined within fluoride crystal structures, thereby
offering excellent environments for high-efficiency luminescence.

The excitation spectra of FBS–PG and FBS–NGC are presented in Figure 4a. In the
excitation spectrum of the PG sample, two prominent bands were observed at approx-
imately 352 and 414 nm, corresponding to the electronic transitions of Mn2+ from 6A1g

(S) to the 4T2g (D) and 4T2g (G) energy levels, respectively. In the PLE spectrum of the
GC sample, aside from the broad excitation bands around 352 and 414 nm, two sharp
excitation peaks at 330 and 397 nm were also observable. These peaks were attributed
to the transitions of Mn2+: 6A1g (S) → 4Eg (D) and 4Eg (G). The PL spectra and emission
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decay curves of FBS–PG and NGCs doped with 1.0Mn2+ are shown in Figure 4b,c. Under
414 nm excitation, the PG exhibited a broadband emission ranging from 500 to 800 nm, as
presented in Figure 4a. The emission peak was centered at 640 nm with a full width at half
maximum (FWHM) of 127 nm. This emission was attributed to the electronic transition of
Mn2+ from the 4T1g (G) to 6A1g (S) energy levels [31]. In the NGC samples, the emission
peaks shifted to 588 nm, and the FWHMs narrowed to approximately 66 nm. Given the
sensitivity of Mn2+ d-d electronic transitions to coordinated environments, the differences
in PL emission spectra between PG and NGCs suggest that the coordinated environments
of Mn2+ ions have been altered during the heat treatments. Compared with the glass matrix,
the fluoride crystal exhibited lower phonon energy, which decreased the probability of
non-radiative transitions, thereby enhancing the efficiency of Mn2+ luminescence. From
Figure 4a, it can be further observed that the emission intensity of Mn2+ in NGC increased
3.3 and 6.7 times relative to PG after the heat treatments at 500 and 520 ◦C, respectively.
Additionally, the lifetime of Mn2+ emission extended from 7.9 to 20.8 ms after the heat
treatments. These findings conclusively demonstrate the incorporation of Mn2+ ions into
the fluoride nanocrystals within the NGCs.
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at 588 nm). (b) PL spectra of 1.0Mn2+-doped FBS–PG and NGCs (incubated at 500 and 520 ◦C for
5 h). (c) Emission decay curves of 1.0Mn2+-doped FBS–PG (at 640 nm emission) and NGCs (at
588 nm emission).

Furthermore, the crystalline phase of Mn2+–Yb3+ co-doped FBS–PG and NGCs were
also investigated and are shown in Figure 5. KZnF3 nanocrystals were also precipitated in
the Mn2+–Yb3+ co-doped NGCs as depicted in Figure 5a. Furthermore, the XRD patterns
exhibited diffraction peaks at 27◦ and 53◦ corresponding to KYb3F10 crystals. Additionally,
the intensities of these diffraction peaks for KYb3F10 crystals all increased monotonically
when the doping concentration of Yb3+ rose from 0 to 1.0 mol%. Generally, Yb3+ works as a
center for crystallization due to its big ionic radius and large potential [32]. Thus, the doping
of Yb3+ induced the controllable precipitation of KYb3F10 nanocrystals in the FBS–NGCs.
More interestingly, the TEM mapping patterns, depicted in Figure 5b–e, demonstrate that
the distributions of Mn and Yb in the co-doped NGC nearly coincided and correlated well
with those of F and the crystal particles. It can be assumed that the crystallization of KZnF3

in the co-doped NGC was around Yb3+, which has been commonly used as a nucleating
agent and a crystallization center in NGCs in past investigations [33]. These elemental
distributions in the NGC resulted in extremely short distances between RE and TM ions,
which was conducive to the formation of Mn2+–Yb3+ dimers, and F promoted the energy
transfer between Yb3+ and Mn2+.
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Figure 6a shows the PL emission spectra of 0.6Mn2+–0.2Yb3+ co-doped FBS–PG and
NGCs under the excitation of a 980 nm LD. Broadband emission around 600 nm was
observed in the amorphous PG sample, while the centers of the emission bands in the NGC
samples both blue-shifted to 588 nm, which were all ascribed to the UC luminescence of
the Mn2+–Yb3+ dimers [34,35]. In NGC samples, KZnF3 and KYb3F10 crystals offered a
low-phonon-energy crystal environment for Mn2+ and Yb3+, respectively. This not only
decreased non-radiative transition probabilities but also shortened the distance between
Mn2+ and Yb3+, facilitating the formation of Mn2+–Yb3+ dimers. Consequently, as illus-
trated in Figure 6a, when the samples were heated at 500 and 520 ◦C for 5 h, respectively,
the UC emission of the Mn2+–Yb3+ dimers in NGC enhanced 45 and 54 times compared
to PG. Furthermore, the emission lifetime of the Mn2+–Yb3+ dimers extended from 1.1 to
8.4 ms following the heat treatments, as presented in Figure 6b. To further investigate the
luminescence mechanism of Mn2+–Yb3+, the dependence of UC emission on the excitation
power of a 980 nm laser was examined. The double-logarithmic plots depicting the excita-
tion power dependence on the 588 nm emission intensities, presented in Figure 6c, indicate
that the broadband emission around 588 nm in the NGC arose from a two-photon process
associated with the UC luminescence of Mn2+–Yb3+ dimers. Additionally, the UC emission
spectra of 1.0Yb3+-doped PG and GCs, excited by a 980 nm LD, revealed intense emission
peaks around 480 nm in the GCs’ spectra, shown in Figure 6d, which were attributed to the
UC emission of Yb3+–Yb3+ pairs [36,37]. Owing to the KYb3F10 nanocrystals’ precipitation
in NGCs, Yb3+ ions were confined in fluoride crystals with short ionic distances, which
promoted the Yb3+–Yb3+ pairs formation. The UC emission intensities of Yb3+ in the NGCs
were both higher as compared to the PG, as shown in Figure 6d. Because more KYb3F10

crystals were precipitated in the NGC heated at 520 ◦C, the ionic distances between Yb3+

were shorter. The UC emission intensity of Yb3+ in the NGC heated at 520 ◦C was lower
than that at 500 ◦C due to the concentration-quenching effect. Therefore, enhanced UC emis-
sions of Mn2+–Yb3+ dimers and Yb3+–Yb3+ pairs could both be achieved in the FBS–NGCs
because of the controllable nano-crystallization of KZnF3 and KYb3F10 crystals.
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Figure 6. (a) Emission spectra of 0.6Mn2+–0.2Yb3+ co-doped FBS–PG and NGCs excited by a 980 nm
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the excitation power dependency on the 588 nm emission intensity of 0.6Mn2+–0.2Yb3+ co-doped
FBS–NGC. (d) Emission spectra of 1.0Yb3+-doped PG and GCs.

As mentioned above, GCs exhibited both yellow UC emission around 588 nm and
blue UC emission near 480 nm. According to the blue-yellow two-primary-color principle,
white emission can be obtained by the combination of the blue and yellow emissions [38].
As shown in Figure 7a, in the spectrum of 1.0Yb3+ single-doped NGC, an intense blue
emission at 480 nm was detected, which was ascribed to the UC emission of the Yb3+–Yb3+

pairs. Yellow emissions of the Mn2+–Yb3+ dimers around 588 nm appeared in the spectra
when Mn2+ was co-doped in the NGCs. The yellow emission intensity enhanced with the
increasing Mn2+ doping concentration. When the Mn2+ concentration was increased to
0.6 mol% and the Yb3+ concentration was reduced to 0.2 mol%, the spectrum predominantly
featured the yellow emission of Mn2+–Yb3+ dimers. The chromaticity coordinate diagram
corresponding to the emission spectra in Figure 7a is depicted in Figure 7b. Upon excitation
with a 980 nm LD, the Yb3+ single-doped NGC emitted pure blue light. White emissions
could be observed in the 0.1Mn2+–1.0Yb3+ and 0.05Mn2+–1.0Yb3+ NGCs. When the Mn2+

content was further increased and the Yb3+ concentration was low, the NGC emitted
pure yellow light. Hence, the emission color of the NGC could be nearly continuously
modulated from blue to white and yellow via adjusting the doping concentrations of Mn2+

and Yb3+. The FBS–NGCs provide significant compounds for the promising applications in
white/multi-color lighting and tunable fiber lasers.
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4. Conclusions
In summary, to achieve efficient and tunable luminescence, a high-quality FBS–NGC

was designed and fabricated. The introduction of B2O3 into the glass resulted in a reduction
of the melting temperature from 1400 to 1050 ◦C. The designed FBS–NGCs were more
stable and possessed higher transmittance than the FS–PG. Meanwhile, KZnF3 nanocrystals
were controllably precipitated within the Mn2+-doped FBS–NGCs, resulting in a 6.7-fold
enhancement of Mn2+ luminescence. Moreover, KZnF3 and KYb3F10 nanocrystals were
simultaneously precipitated in the co-doped NGCs, which confined Mn2+ and Yb3+ in
fluoride crystals, respectively. In the NGCs, the UC emission intensity of Mn2+–Yb3+

dimers was enhanced 54-fold compared to that in the PG, and the UC emission color was
modulated from blue to white and yellow via adjusting the doping concentrations. The
well-designed NGCs provide significant optical gain materials for applications in white
LEDs, 3D information storages, solar cells and tunable fiber lasers. More importantly,
the material design strategy developed herein offers a novel pathway for exploiting a
diverse array of high-quality oxy-fluoride NGCs, characterized by high transmittance,
highly efficient PL emission and controllable nano-crystallization.
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