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Abstract: The exploitation of high-performance third-order nonlinear optical (NLO) ma-
terials that have a favorable optical limit (OL) threshold is essential due to a rise in the
application of ultra-intense lasers. In this study, a Cu-based MOF (denoted as Cu-bpy)
was synthesized, and its third-order NLO and OL properties were investigated using the
Z-scan technique with the nanosecond laser pulse excitation set at 532 nm. The Cu-bpy
exhibits a typical rate of reverse saturable absorption (RSA) with a third-order nonlinear
absorption coefficient of 100 cm GW−1 and a favorable OL threshold of 0.75 J cm−2 (at
a concentration of 1.6 mg mL−1), which is lower than that of most NLO materials that
have been reported on so far. In addition, a DFT calculation was performed and was in
agreement with our experimental results. Furthermore, the mechanism of the third-order
NLO properties was illustrated as one-photon absorption (1PA). These results investigate
the relationship between the structure and the nonlinear optical properties of Cu-bpy, and
provide an experimental and theoretical basis for its use in optical limiting applications.

Keywords: coordination polymer; nonlinear optics; optical limiting; Z-scan

1. Introduction
NLO materials have received considerable attention due to an increase in their ap-

plications in a range of contexts, including optical data storage, optical communications,
optical switching, and image-processing [1,2]. Optical limit (OL) devices based on nonlinear
optical materials can effectively attenuate the intensity of laser transmissions, bringing
them to a safer level while still transmitting low ambient light. They therefore have great
application potential in protecting human eyes and optical devices from laser damage [3].
A variety of materials, such as fullerene (C60), semiconductor nanoparticles, quantum dots,
porphyrins, and metalphthalocyanine, have been found to exhibit outstanding nonlinear
optical properties [4]. Among them, Metal-Organic Frameworks (MOFs)—a class of porous
materials with periodic network structures in one, two, or three dimensions formed by
metal ions or metal clusters and organic ligands connected by ligand bonds according to a
certain ratio and spatial structure [5–7]—have great application prospects in fields such as
catalysis, sensing, nonlinear optics, and drug delivery [8–11].

The coordination between metal ions and organic ligands and the reduction of non-
radiative transitions for MOFs due to the conformational limitations of organic units all
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lead to an improvement in the photophysical behavior [12,13]. Therefore, MOFs are con-
sidered to be the most promising materials for the development of OLs and frequency
conversion applications. The NLO properties of MOF materials are closely related to their
coordination metal ions, organic ligands, and topological structures [14]. On the one hand,
the introduction of metal ions enhances the excited state absorption of organic molecules,
thereby reducing the light-limiting threshold and improving their OL ability [15]. On the
other hand, the ligands and metal ions in MOFs interact with their surroundings through
a large number of strong and weak forces (ligand bonding, π-stacking, and hydrogen
bonding), and this complex molecular environment will affect the electron density and
polarizability of the system, which directly affects the third-order nonlinear properties [16].
Among the various MOF materials, Cu-based MOFs are one of the most studied types.
The stability of copper ions in aqueous solutions and their high affinity for organic ligands
make the synthesis of Cu-based MOFs relatively easy. In addition, copper ions introduce
unique optical and electronic properties into MOFs, such as photoluminescence and pho-
toelectrochemical activity. Chen et al. [17] studied the influence of the metal ion on NLO
properties. The intramolecular delocalization of π electrons and charge transfer due to the
conjugated system formed by the d-π interaction greatly enhance the nonlinear optical
properties [18–21], resulting in a nonlinear optical coefficient of 5.2 × 10−10 m W−1. Liang
et al. [22] found that, with the picosecond laser excitation, the increase of coordination
amounts can realize the transformation from saturable absorption (SA) to reverse saturable
absorption (RSA).

As a rigid bridging ligand, the N atoms at both ends of the 4,4′-bipyridine (bpy)
compound can simultaneously bridge different metal atoms due to their good coordina-
tion properties. The 4,4′-bipyridine compound gives its bridged complexes a variety of
configurations due to the arbitrary rotation of the C-C single bond between the pyridine
rings. In addition, the rigid planar conjugated structure can self-assemble into larger-scale
supramolecular complexes through π-π stacking and hydrogen bonding [23]. However,
there have been few reports on the nonlinear optical properties of polymers formed by the
coordination of Cu-MOF with 4,4′-bipyridine.

In this study, we synthesized a Cu-based MOF (denoted as Cu-bpy) with 4,4′-
bipyridine (bpy) as the ligand and copper ions as the coordination metal by a hydrothermal
method and investigated the third-order NLO properties using the Z-scan technique. Cu-
bpy in ethanol suspension (1.6 mg mL−1) showed the largest β values (100 cm GW−1) and
the lowest OL threshold of 0.75 J cm−2, which is more competitive than has been demon-
strated in previous reports. The mechanism behind the NLO properties of Cu-bpy was
studied using first-principle calculations. Density Functional Theory (DFT) calculations
were also performed to study the fundamental structure of Cu-bpy. Furthermore, Cu-bpy
showed strong third-harmonic generation (THG).

2. Materials and Methods
The materials and chemical reagents used in this study are all provided in the S1

Section (see the Supplementary Materials section).

2.1. The Synthesis of Cu-Bpy

The Cu-based MOF was synthesized according a previous publication [23] but with
modifications [24]: 186 mg Cu(ClO4)2·6H2O (0.5 mmol) and 192 mg 4,4′-bipyridine (1 mmol)
were mixed in 18.0 mL of deionized water. After ultrasonication for 20 min, the system
was transferred to a 25 mL Teflon reactor sealed with steel and heated to 180 ◦C for 72 h,
then cooled to 30 ◦C at a rate of 2 ◦C h−1. After being washed three times with water, the
resulting orange crystals were dried in a vacuum at 80 ◦C (denoted as Cu-bpy). (Caution:
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care should be taken after adding Cu(ClO4)2·6H2O, as an explosion may occur in the Teflon
reactor during heating.)

2.2. The Z-Scan Technique

The NLO property of Cu-bpy was carried out using the Z-scan technology at room
temperature. To do this, Cu-bpy was ground into powder and dispersed in ethanol at
concentrations of 0.2 mg mL−1, 0.4 mg mL−1, 0.8 mg mL−1, and 1.6 mg mL−1. After
standing for 30 min, the supernatant was collected for the Z-scan experiments. A Nd:YAG
nanosecond laser (pulse 4 ns, repetition rate 10 Hz) with a wavelength of 532 nm was
used as the excitation light source. As shown in Figure S3, the sample (Cu-bpy in a
quartz cuvette) was placed onto a computer-controlled translation platform and moved
symmetrically along the Z-axis (centered at zero). The nanosecond laser was split into two
beams. One of the beams was reflected into detector 1 as the reference light, the other beam
entered the sample through the focusing lens and was transmitted to detector 2.

3. Results
3.1. The Morphology and Structure of Cu-Bpy

The FTIR spectra of Cu-bpy and 4,4′-bipyridine (for comparison) are shown in
Figure 1a. For Cu-bpy, the absorption peak located at 3040 cm−1 is related to the stretching
vibration of the C-H bond on the aromatic ring. The characteristic peak at 1330 cm−1 is
assigned to the bending vibration of the C-N bond on the aromatic ring, while 1089 cm−1 is
attributed to the C-O bond. The absorption peak at 803 cm−1 is related to the out-of-plane
bending vibration of the aromatic hydrogen, and the peak at 610 cm−1 belongs to the
in-plane deformation vibration of the pyridine ring. Cu-bpy shows diffraction peaks at
2θ = 10◦, 2θ = 20◦, and 2θ = 25◦ (Figure 1b) [24]. Thermal Gravimetric Analyzer (TGA)
curves observed indicate that Cu-bpy has good thermal stability with an initial degradation
temperature of 250 ◦C (Figure 1c). An analysis of single crystal structures (Figure S3 and
Table S1) shows that Cu-bpy belongs to the monoclinic crystal system and the C2/c space
group, consisting of a Cu2+ coordination with four pyridine rings. The perchlorate ion is
also fixed in a repeating unit structure (Figure 1d), which is consistent with results found
in previous reports [23].

The morphology of Cu-bpy was investigated via scanning using an electron micro-
scope (SEM) and a high-resolution transmission electron microscope (HR-TEM). The SEM
images obtained show that Cu-bpy forms micrometer-sized rod-like crystals with widths
ranging from 100 to 500 nm. The HR-TEM images (Figure 2b) showed that the grinded
Cu-bpy took the form of a rectangular structure with a range of 100 to 200 nm after ultrason-
ication. EDX mapping (Figure 2c) showed that the elements C, N, and Cu were uniformly
distributed in Cu-bpy.

The chemical composition and surface chemical states of Cu-bpy were analyzed by
XPS and the data were corrected with the binding energy of adsorbed carbon (284.8 eV).
The XPS survey spectra (Figure 3a) showed that Cu-bpy exhibits characteristic peaks with
binding energies (BEs) at 285 eV, 399 eV, 531 eV, and 931 eV, corresponding to C 1s, N 1s,
O 1s, and Cu 2p signals, respectively [25]. The high-resolution spectrum of C 1s shows
two experimental peaks around 284.8 eV and 286 eV, and has been divided into four
characteristic peaks after fitting using Advantage software (Figure 3b), with BEs of 284.6 eV,
285.2 eV, 287.1 eV, and 288.8 eV belonging to C=C, C-C, C-N, and C=N, respectively [26]. For
the N 1s spectra (Figure 3c), the peaks at BEs of 399.5 eV and 403.3 eV correspond to the C-N
and metal-ligand nitrogen on the pyridine group, respectively [27]. The high-resolution
of Cu 2p (Figure 3d) contains four characteristic peaks with BEs of 954.5 eV, 951.4 eV, and
935.8 eV, and 931.4 eV, corresponding to Cu 2p1/2 and Cu 2p3/2, respectively [28]. Since
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the rigid planar conjugated structure of 4,4′-bipyridine facilitates electron delocalization,
CuI species can be generated via a single electron transfer from the ligand 4,4′-bipyridine
on the MOF to the CuII center in the MOF cavity, or from the Cu0 center to the ligand
4,4′-bipyridine [29,30].
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and (d) Cu 2p.

3.2. The Third Nonlinear Optical Properties of Cu-Bpy

The nonlinear optical properties of Cu-bpy were investigated using the Z-scan tech-
nique with the 532 nm nanosecond laser [31]. Figure 4a shows the open-aperture (OA)
Z-scan experimental results of Cu-bpy with different concentrations of ethanol. Before
performing Cu-bpy, ethanol was first tested using Z-scan; the normalized transmittance
did not change with the Z-axis position, indicating no nonlinear optical effects. However,
Cu-bpy showed different curves from ethanol; the normalized transmittance varied with
the movement of Cu-bpy. Take Cu-bpy with a concentration of 0.2 mg mL−1 (red line)
as an example; when Cu-bpy moved from the initial position (Z = 40 mm) to the focal
point (Z = 0), the transmittance gradually increased according to the incident light intensity.
The normalized transmittance was kept constant (around 1.0), indicating the linear optical
characteristic was at a low laser intensity. As Cu-bpy moved from Z = −10 mm towards
the focal, the normalized transmittance gradually decreased with increasing laser intensity,
indicating that the nonlinear effect had been activated. Moving further to Z = 40 mm, the
normalized transmittance increased with Cu-bpy/focus distance. Therefore, the Z-scan
curve of Cu-bpy showed a single-valley curve symmetry of focus, corresponding to the
reverse saturation absorption (RSA) behavior.
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with laser energy of 25 µJ; (b) variation of β values obtained by fitting Z-scan curves as a function of
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Cu-bpy solution tested at random location of Cu-bpy solution (0.4 mg mL−1, 20 µJ); and (f) β values
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Figure 4a shows the OA Z-scan curve of Cu-bpy at different concentrations under the
constant input intensity (25 µJ). The normalized transmittance decreased with increasing
Cu-bpy concentration from 0.65 (0.2 mg mL−1) to 0.22 (1.6 mg mL−1), indicating the
uniform dispersion of the grinded Cu-bpy in ethanol.

To obtain the third-order nonlinear absorption coefficients (β), a theoretical fitting of
the OA Z-scan data was performed [32]. The equation used was the following:

T(z) =
1√

πq(z)

∫ +∞

−∞
ln
[
1 + q(z)exp(−τ2)

]
dτ (1)

where q0 =
βI(0)Le f f

1+(z/z0)
2 , I(0) is the peak of the laser (532 nm) intensity at the focal, T is the

normalized transmittance, z is the Rayleigh diffraction length of the laser beam calculated
using z = πω2

0/λ, where λ is the laser wavelength (532 nm) and ω0 is the waist radius. In
addition, Le f f =

1−e−αL

α is the effective thickness of Cu-bpy, where α is the linear absorption
coefficient and L is the thickness. The fitting results are shown by the solid lines in Figure 4a.

The third-order nonlinear absorption coefficient β values of Cu-bpy at different con-
centrations were extracted from Figure 4a and plotted as a function of Cu-bpy concentration
(Figure 4b). As the Cu-bpy concentration increased, the β value increased accordingly. The
β = 100 cm GW−1 was obtained for Cu-bpy. For example, the β value was two orders and
two times larger than that of CH3NH3PbBr3 (Table 1).

Cu-bpy exhibits the RSA effect and hence can therefore be used for the development
of OL devices. Figure 4c,d show the OL curves obtained by processing the OA Z-scan data.
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To do this, the energy density for each location was calculated according to Equations (2)
and (3) below. The OL curve can then be obtained using the relationship of the incident
energy density F as a function of the normalized nonlinear transmittance. That is:

ω(z) = ω0

√
(1 + (

λz
πω2

0
)2) (2)

F =
E

πω2
z

(3)

The OL curves of Cu-bpy at 0.2 mg mL−1, 0.4 mg mL−1, 0.8 mg mL−1, and
1.6 mg mL−1 are shown in Figure 4c and Figure 4d, respectively. For Cu-bpy with concen-
trations of 0.2 mg mL−1, 0.4 mg mL−1, and 0.8 mg mL−1 (see the red, blue, and green plots
in Figure 4d), the output light intensity increased with the input laser intensity, but also
deviated from linearity, indicating a weak OL effect at high intensity. The Cu-bpy with a
concentration of 1.6 mg mL−1 showed a prominent OL effect. When the input laser intensity
was weak, the output laser intensity increased linearly with the input intensity. When the
input light intensity increased to about 0.7 J cm−2, the output laser intensity reached a
threshold. With further increases to the input laser intensity, the OL effect was activated,
restricting the output intensity to a certain level—i.e., at 0.04 J cm−2 in this work. This may
be due to the fact that, at a low concentration (0.2 mg mL−1), Cu-bpy was independently
dispersed in the ethanol. The RSA behavior was caused by the electron transfer between
Cu(I) and 4,4′-bipyridine. When the concentration increased to 1.6 mg mL−1, Cu-bpy could
increase, and a charge transfer occurred between Cu(I) and 4,4′-bipyridine in Cu-bpy or be-
tween Cu-bpy—i.e., the abundance of the π-penetrating framework interactions increased
the electron delocalization/transfer, thus improving the OL performance [33]. The OL
threshold (Fth), i.e., the energy density at which the transmittance is reduced to 50% of the
linear transmittance, was calculated to be 0.75 J cm−2 for Cu-bpy (1.6 mg mL−1).

Compared to other published materials (Table 1), Cu-bpy shows a higher nonlinear
absorption coefficient β and a lower OL threshold. This may be due to the following: (1) the
arbitrary rotation of the C-C single bond between the pyridine rings, as 4,4′-bipyridine
exhibits various configurations; (2) the π-π interaction can be formed by the pyridine ring
in the Cu-bpy framework, or the adjacent pyridine between two independent Cu-bpy
frameworks. Both of these can increase electron delocalization and transfer, thus improving
the nonlinear optical response and achieving a high OL performance [33].

Table 1. Comparison of β values and OL threshold among different materials.

Materials Timescale Repetition Rate
(Hz)

β
(cm GW−1)

Fth
(J cm−2) Ref.

CDGO nanosecond 10 70 - [34]
Mn(dnpi)2 nanosecond 10 2.3 [35]
ZnCu-MOF nanosecond 10 44.7 - [36]
CH3NH3PbBr3 nanosecond 400 8.6 - [37]
MoS2-CuMOF nanosecond 10 60 [38]
ZnTPyP(Cu) nanosecond 5 5.7 × 105 7.8 [39]
Zn2(TPyP)(AC)2 nanosecond 5 3.61 × 106 0.32 [33]
Cu-bpy nanosecond 10 100 0.75 a This work

[a] The optical limiting threshold for 1.6 mg mL−1 of Cu-bpy is 0.75 J cm−2.

The repeatability of the third-order nonlinear optical properties was tested using the
Z-scan technique at random positions of the Cu-bpy ethanol suspension under the same
experiment conditions (0.4 mg mL−1, 20 µJ). Similar RSA behavior with a normalized
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transmittance of 0.3~0.4 was observed (Figure 4f), and third-order nonlinear absorption
coefficients of 33~37 cm/GW were obtained (Figure 4f).

The third harmonic generation (THG) of Cu-bpy was investigated using the harmonic
measurement technique. A femtosecond laser with a wavelength of 1550 nm and a detection
range of 300~900 nm was used. Figure 5a shows the THG signal intensity spectra of
Cu-bpy; a prominent peak appears at 517 nm corresponding to 1/3 wavelength of the
incident light of 1550 nm, manifesting the THG characteristics of Cu-bpy. The THG signal
intensity of Cu-bpy is 24 times higher than that of SiO2. Figure 5b shows the THG intensity
mapping of Cu-bpy. The harmonic intensity of Cu-bpy shows a strong signal throughout
the crystal structure, which is expected to be applied in laser frequency conversion and in
in vivo imaging.
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3.3. The Mechanism of the NLO Properties of Cu-Bpy

To investigate the RSA behavior of Cu-bpy, the excited-state absorption cross sec-
tion (σex) [40] of Cu-bpy was calculated as 6.45 × 10−14 cm2 by fitting the OA Z-scan
curve. The ground-state absorption cross section (σg) can be calculated by [41] using the
following equation:

α = αgNAC (4)

where C is the molar concentration of Cu-bpy and NA is Avogadro’s number. The calculated
σg is 2.01 × 10−15 cm2. σex is larger than σg, indicating that the main NLO procedure for
Cu-bpy is RSA. Cu-bpy suspensions with concentrations of 0.2 mg mL−1, 0.4 mg mL−1,
0.8 mg mL−1, and 1.6 mg mL−1 were performed for OA Z-scan experiments with different
pulse laser energy values, respectively (Figure 6a and Figure S4). The normalized trans-
mittance curved with increases in laser energy. This is because more Cu-bpy MOFs were
involved in the NLO response as the laser intensity increased [39]. The same tendency
was found in other concentrations. The relationship between the changes of normalized
transmittance (∆T0) and the laser pulse energy (E) was plotted (Figure 6b). A good linear
relationship can be observed for ∆T0 and E in the log-log scale. The linear fit of the ∆T0~E
plot shows a slope of 0.2~0.5 for Cu-bpy with a concentration range of 0.2 mg mL−1 to
1.6 mg mL−1. The effective number of photons absorbed will be n + 1 [42,43], therefore the
RSA behavior of Cu-bpy is probably one-photon absorption (1PA).
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To determine the absorption edge for Cu-bpy, a UV-visible absorption experiment
was carried out. As shown in Figure 7a, Cu-bpy showed an adsorption peak of 260 nm,
which could be due to the d-d electronic shifts of CuI cations, π-π* stacking of bpy ligands,
or coordinated Cu centers acting on the excited state of bpy ligands. The band gap of
Cu-bpy was estimated using the Davis-Mott formula, with the band relationship diagram
of Cu-bpy shown in Figure 7b. The band gap of Cu-bpy was inferred to be 2.28 eV.

Nanomaterials 2025, 15, x FOR PEER REVIEW 11 of 15 
 

 

 

To determine the absorption edge for Cu-bpy, a UV-visible absorption experiment 
was carried out. As shown in Figure 7a, Cu-bpy showed an adsorption peak of 260 nm, 
which could be due to the d-d electronic shifts of CuI cations, π-π* stacking of bpy ligands, 
or coordinated Cu centers acting on the excited state of bpy ligands. The band gap of Cu-
bpy was estimated using the Davis-Mott formula, with the band relationship diagram of 
Cu-bpy shown in Figure 7b. The band gap of Cu-bpy was inferred to be 2.28 eV. 

 

Figure 7. (a) Ultraviolet absorption diagram, and (b) band gap diagram of Cu-bpy. 

  

Figure 7. (a) Ultraviolet absorption diagram, and (b) band gap diagram of Cu-bpy.

In addition, the fundamental electronic structure of Cu-bpy was calculated by first-
principles density-functional theory (DFT) calculations (details of these are given in Section
S6 of the ESM). Cu-bpy exhibits semiconducting behavior with a band gap of 2.39 eV
(Figure S5), which is close to the experimental value of 2.28 eV.

To demonstrate the principle of the RSA and OL properties of Cu-bpy, the schematic
energy band diagram for Cu-bpy is shown in Figure 8. The photon energy of the excited
laser at 532 nm was calculated to be 2.33 eV, which is larger than the calculated energy
gap (Eg) of Cu-bpy (~2.28 eV); therefore, the absorption process was considered to be 1PA,
which corresponds to the results derived from the slopes of ∆T0 and E in the log-log scale
(Figure 6). When excited by the nanosecond laser at 532 nm, the ground state electrons of
the Cu-bpy valence band (S0) absorbed one photon and jumped to the conduction band (S1)
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through an inter-band transition, resulting in the excited electron. The excited electron can
then either return to the ground state (S0), or further in-band transition to Sn by absorbing
another photon, resulting in 1PA induced excited state absorption (ESA). Due to the short
decay time between Sn and S0 (picoseconds), the ESA on the nanosecond time scale does
not deplete electrons at the S1 level [34], so more absorption can take place at the excited
state, resulting in the RSA behavior of Cu-bpy.
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4. Conclusions
In conclusion, a Cu-based MOF material Cu-bpy was synthesized. Cu-bpy belongs to

monoclinic crystal structure with a C2/c space group. The third-order nonlinear optical
properties of Cu-bpy were investigated using the Z-scan technique, and the RSA behavior
was observed in Cu-bpy ethanol suspension solutions. The third-order nonlinear absorption
coefficient was extracted as 100 cm GW−1, and the OL threshold was found to be 0.75 J cm−2

(1.6 mg mL−1), which is competitive compared with other Cu-based MOFs. Furthermore,
Cu-bapy exhibits strong THG signal. These findings show that Cu-bpy is a potential NLO
material for use in ultrafast photonic devices, optical limiting, and biosensing.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano15020145/s1, Figure S1: The synthesis scheme of Cu-bpy;
Table S1: Single crystal diffraction data of Cu-bpy material; Figure S2:Crystal structure diagram of
Cu-bpy; Figure S3:The schematic of Z-scan measurement; Figure S4: Z-scan curve of Cu-bpy with
concentraion of 0.2 mg mL−1, 0.4 mg mL−1, 1.6 mg mL−1 in ethanol. Figure S5:View of (a) HOMO
and (b) LUMO for the profiles based on the DFT calculations of Cu–bpy.
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