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Abstract: The effect of metal nanoparticles on the anaerobic digestion of sludge and the
sludge bacterial community are still not well-understood, and both improvements and
inhibitions have been reported. This study investigated the impact of 2, 10, and 30 mg/g TS
silver and copper oxide nanoparticles (AgNPs and CuONPs) on the mesophilic anaerobic
digestion of sludge and the bacterial community structure. The reactors were monitored
for changes in tCOD, sCOD, TS, VS, biogas generation, and cell viability. Also, the relative
abundance and taxonomic distribution of the bacterial communities were analyzed at the
phylum and genus levels, including the genera involved in anaerobic digestion. Both
AgNPs and CuONPs exhibited some inhibition on anaerobic digestion of sludge and
biogas generation, and the inhibition was more evident at higher concentrations. CuONPs
had a stronger inhibitory effect compared to AgNPs. After the introduction of AgNPs
and CuONPs, cell viability initially decreased over the first two weeks but recovered
after that. At high concentrations, AgNPs and CuONPs decreased the overall bacterial
diversity, and inhibited the dominant bacterial species, allowing those in less abundance to
flourish. The relative abundance of the bacteria responsible for hydrolysis and acidogenesis
increased and the relative abundance of acetogenic bacteria decreased with higher AgNP
and CuONP concentrations. The majority of the parameters measured for monitoring the
anaerobic digestion performance and bacterial community were not statistically significant
at 2 mg/g TS of AgNPs and CuONPs, which represents naturally present concentrations in
wastewater sludge that are below the USEPA ceiling concentration limits.

Keywords: silver nanoparticles; copper oxide nanoparticles; sludge; anaerobic digestion;
biogas generation; 16S rRNA gene sequencing

1. Introduction
Anaerobic digestion is a widely used process for the treatment of wastewater sludge

and converts biodegradable organic matter into energy through a series of complex micro-
bial reactions. Successful anaerobic digestion depends on the types and critical functions of
microbial communities that develop during digestion and are also influenced by sludge
characteristics and the presence of contaminants such as metal nanoparticles.

AgNPs and CuONPs are known for their antimicrobial activity and have been widely
used as preservatives or disinfectants in consumer products [1–4]. Their toxicity against a
wide range of organisms and human cells has been documented [5–8]; potential mecha-
nisms of toxicity include membrane disruption, DNA damage, enzyme inactivation, and
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apoptosis [9]. Due to their broad use, AgNPs and CuONPs are present in domestic wastew-
ater in significant concentrations [10,11] and there are concerns that they can adversely
affect biological wastewater treatment processes [12–15].

Liang et al. [16] investigated the impact of AgNPs on a modified Ludzack-Ettinger
activated sludge system and observed a 46.5% decrease in denitrification when the system
was exposed to 0.75 mg/L of AgNPs for 12 h. Sun et al. [17] showed that the presence of
AgNPs at 1 mg/L for 24 h during the activated sludge process impacted some microbial
species but did not decrease the heterotrophic plate count (HPC) before settling. After
settling, the HPC decreased by one log with no observed changes in microbial diversity.
Another study by Qiu et al. [18] found no significant effect of AgNPs on organic matter
removal, nitrification, and denitrification during the sequencing batch reactor; however,
increased production of extracellular polymeric substances due to cell self-protection was
observed. Zhang et al. [19] studied the impact of CuONPs on a simulated waste-activated
sludge system, and reported that the presence of 1, 10, and 50 mg CuONPs/L decreased
the chemical oxygen demand (COD) removal from 78.7% to 77.0%, 52.1%, and 39.2%,
respectively, and increased the effluent ammonium concentrations from 14.9 to 18.0, 25.1,
and 30.8 mg/L, respectively.

Previous studies investigating the behavior and impact of AgNPs and CuONPs during
anaerobic digestion demonstrated a decrease in biological activity [20–22]. For example,
Rasool and Lee [22] observed decreases of 51.8 and 33.6% in sulfate and COD removal,
respectively, at 50 to 200 mg/L concentration of AgNPs, but found no impact on sulfate and
COD removal when using ≤10 mg/L AgNPs. Another study by Gonzalez-Estrella et al. [23]
examined the inhibitory impacts of several different nanoparticles on methanogenic ac-
tivity. They found that CuONPs inhibited acetoclastic methanogens (IC50 = 223 mg/L)
without significant impacts on hydrogen-utilizing methanogens, while AgNPs also had
no significant impact. Similar findings by Ünşar et al. [24] showed a 5.8 to 84% inhibition
of anaerobic digestion when using 5–1000 mg/g total solids (TS) of CuONPs. AgNPs did
not show a similar inhibition on anaerobic digestion but decreased methane production by
12.1% at the highest dose of 1000 mg/g TS.

Although several studies suggest nanoparticles lower the volume of methane col-
lected [20,24,25], there are other studies that have reported improvements to anaerobic
digestion and biogas production [9,26]. The reported improvements were mainly attributed
to direct interspecies electron transfer and mostly observed for FeNP, while mixed results
were reported for other NPs including AgNP, but no studies reported improvements with
CuONP [9]. These findings indicate that the effect of NPs on the anaerobic digestion process
itself and the microorganisms involved are still not well-understood.

This study investigated the impact of both low (2 mg/g TS of sludge) and high
(10 and 30 mg/g TS of sludge) concentrations of AgNPs and CuONPs on mesophilic
anaerobic digestion of sludge with a comprehensive evaluation of the changes that occur
in bacterial community structure using 16S rRNA gene sequencing. There are currently
no limits on Ag in treated sludge (biosolids) in the US (USEPA 40 CFR Part 503). The
ceiling concentration limit for Cu is 4300 mg/kg DS (TS), which is more than twice the
concentration (2 mg/g TS of sludge, equivalent to 2000 mg/kg TS) used in this study. In
addition to the environmentally relevant concentrations, high concentrations of AgNPs
and CuONPs were included in the study to better understand the extent and impact
of toxicity. The objectives of this study were to 1. Investigate the effect of AgNPs and
CuONPs on the anaerobic digestion of sludge and biogas generation, 2. Investigate the
effect of AgNPs and CuONPs on the bacterial community structure, diversity, abundance,
and functions, 3. Explore the effect of exposure to increasing concentrations of AgNP
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and CuONP, and 4. Determine whether there would be significant concerns to biological
treatment at concentrations naturally present in sludge.

2. Materials and Methods
2.1. Silver and Copper Oxide Nanoparticles

The stock suspension of pristine AgNPs in water with a purity of 99.9% was acquired
from nanoComposix Inc. (San Diego, CA, USA) and maintained at 4 ± 0.2 ◦C. The stock
solution of CuONPs with 99.95% purity was purchased from the U.S. Research Nanomate-
rials Inc., Houston, TX, USA, and maintained at 4 ± 0.2 ◦C. Both nanoparticles’ suspensions
were stable and insoluble in nanopure water, and their particle size distributions were
confirmed by transmission electron microscopy (TEM)(FEI Tecnai G2 F20, FEI, Eindhoven,
The Netherlands) at our Nano Imaging facility at Carleton University, Ottawa, Canada.
The properties of both nanoparticles are shown in Table 1.

Table 1. AgNPs and CuONPs characteristics.

Characteristics AgNPs CuONPs

Diameter (TEM) 23.1 ± 6.9 nm 25–55 nm
pH of the solution 6.3 7–9
Morphology Nearly spherical Nearly spherical
Solvent Milli-Q water (Merck, Darmstadt, Germany) Milli-Q water
Particle surface coating Polyvinylpyrrolidone (PVP) None

2.2. Wastewater Sludge Samples

Three types of wastewater sludge were collected from a conventional activated sludge
treatment plant in Ontario, Canada. Primary sludge was obtained from the primary
clarifiers, thickened waste activated sludge (tWAS) was collected after centrifuge thickening,
and anaerobically digested sludge was collected from the mesophilic (35 ◦C) anaerobic
digesters. The anaerobically digested sludge was used as an inoculum for the anaerobic
digestion of the mixed primary and tWAS. All wastewater sludge samples were collected
in autoclaved containers and were used either on the day of collection or within 4 days
after storing at 4 ◦C. The characteristics of the primary, tWAS, and anaerobically digested
sludge are provided in Table 2.

Table 2. Characteristics of primary, tWAS, and anaerobically digested sludge.

Parameters

Primary Sludge Thickened Waste Activated Sludge
(tWAS)

Anaerobically
Digested Sludge

pH 7.6 ± 0.1 7.0 ± 0.1 7.3 ± 0.02
Total solids (TS) (g/kg) 42.7 ± 7.2 52.7 ± 1.6 19.0 ± 0.2
VS (g/kg) 28.7 ± 3.5 38.6 ± 1.5 15.6 ± 0.1
Total chemical oxygen demand
(tCOD) (g/kg) 52.0 ± 8.3 73.9 ± 2.1 19.8 ± 1.1

Soluble chemical oxygen
demand (sCOD) (g/kg) 2.0 ± 1.1 8.2 ± 0.1 8.4 ± 0.2

Values show the mean of three replicate measurements ± standard deviation.

2.3. Experimental Design

Anaerobic digestion was carried out using batch BMP tests conducted in 125 mL Er-
lenmeyer flasks sealed with rubber stoppers. There were seven BMP reactors, of which one
reactor was the control with no nanoparticles, three reactors had increasing concentrations
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of AgNPs (2, 10, and 30 mg AgNPs/g TS), and three reactors had increasing concentrations
of CuONPs (2, 10, and 30 mg CuONPs/g TS). All tests were performed in triplicate. A total
of 2 mg NPs/g TS was chosen to represent the higher end of the reported nanoparticle
concentrations in wastewater sludge [27–30], and 10 and 30 mg NPs/g TS were selected
to observe the impact of higher NP concentrations [21]. Table 3 shows the concentration
and experimental conditions of the reactors. Each Erlenmeyer flask reactor contained
15 mL of anaerobically digested sludge (inoculum), 35 mL of primary sludge and 35 mL of
tWAS, with a final sludge volume of 85 mL. In addition, equal amounts of NaHCO3 and
KHCO3 were added to achieve an alkalinity of 4000–5000 mg/L (as CaCO3). In order to
achieve a substrate to inoculum ratio (S/I) of 1.5, the anaerobically digested sludge was first
thickened with centrifugation at 1800 rpm for 10 min to increase its volatile solids. Then,
the three concentrations of AgNPs or CuONPs were added to the BMP reactors (except the
control) as described in Table 3. During these steps, BMP reactors were mixed continuously
with nitrogen sparging to prevent exposure to oxygen in ambient air and provide mixing.
The reactors were kept in the dark, at 34 ± 1 ◦C, and mixed on a rotating shaker at 100 rpm
in a temperature-controlled incubator for 37 days. Reactors were sampled periodically for
sludge characterization and microbiological tests including biogas volume, TS, VS, COD,
live/dead bacterial viability staining, and DNA extractions for population sequencing.

Table 3. Experimental conditions for the BMP reactors.

Reactors
NP Concentration
(mg NPs/g TS of
Sludge)

Sludge Feed Reactor
Volume (mL)

Reactor
Temperature
(◦C)

Duration of
Experiments (days)

Control Zero Thickened waste
activated sludge
(40%) + primary
sludge (40%) +
thickened
anaerobically
digested sludge
(20%)

85 34 ± 1 37

Reactor A (AgNPs) 2
Reactor B (AgNPs) 10
Reactor C (AgNPs) 30
Reactor D
(CuONPs) 2

Reactor E (CuONPs) 10
Reactor F (CuONPs) 30

2.4. Chemical Analyses

Chemical analyses of sludge from each reactor were carried out in triplicate on days 0,
4, 9, 13, 17, 26, and 37 following Standard Methods [31], and means and standard deviations
were calculated. COD was measured at a wavelength of 620 nm with a HACH DR2800
spectrophotometer using the HACH Method 8000 [31]. Soluble COD measurements were
performed on the filtrate of the sludge samples after centrifugation at 1800 rpm for 20 min,
followed by filtration of the supernatant through a 0.45 µm syringe filter (Glassco Labora-
tory Equipment, Ambala Cantt, India). TS and VS were determined based on the Standard
Methods, Part 2540 [31]. The pH was monitored using an Orion Star TM A326 pH/DO
portable meter (ThermoFisher Scientific, Waltham, MA, USA).

2.5. Biological Analyses

There were six time point measurements for each reactor over the duration of the
experiments (days 0, 4, 9, 17, 26, and 37).

2.5.1. Live/Dead Bacterial Viability Staining Assay

Live/dead bacterial viability staining assay was used to distinguish viable and non-
viable cells in the microbial population. Sludge samples were stained as per instructions
described in the BacLight® Live/Dead viability assay kit (Molecular Probes, Eugene, OR,
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USA), and viewed using a Nikon Eclipse Ti (Nikon, Montreal, QC, Canada) inverted
fluorescence microscope. Three tests were performed for each sludge sample, and three
random fields of view (FOV) were chosen on the slide. Three images were taken at each
FOV using three UV filters (GFP-1, Cy-3 and GFPHQ) to capture live, dead, and a combina-
tion of live and dead cells, respectively. The three sets of images were assessed, and the
most representative was chosen to report. The images were captured with the Q-Imaging
Retina Exi Fast 1394 camera (Nikon, QC, Canada) and the image analysis was performed
with NIS-Elements AR software version 5.42.01 (Nikon, QC, Canada).

2.5.2. DNA Extraction and Quantification

Genomic DNA was extracted from the reactor samples using a DNeasy PowerSoil
DNA Isolation Kit (QIAGEN Inc., Hilden, Germany). To help reduce qPCR inhibitors and
remove extracellular DNA, all sludge samples were prewashed according to Kibbee and
Örmeci [32] before the extraction. Three replicate DNA extractions were performed for
each sludge sample according to the manufacturers’ instructions, with the exception of
the cell lysis and inhibition removal steps where the incubation times were doubled from
five to ten minutes. The concentration of extracted DNA was measured using the Qubit®

dsDNA HS Assay Kit with a Qubit 3.0 Fluorometer from Molecular Probes (Life Technology,
Eugene, OR, USA). The DNA purity was assessed by measuring the absorbance ratios at
260/280 and 260/230 nm using NanoDrop 1000 Spectrophotometer (Thermo Scientific,
Wilmington, NC, USA). The genomic DNA was also assessed using gel electrophoresis
to ensure fragment sizes were between 3 and 10 Kbps, as required for optimal MinION
sequencing. Genomic DNA extracts were run on a 0.8% agarose gel at 7 V/cm2; a TAE
buffer was used to prepare the agarose gel. 6X gel loading dye and GeneRuler 1 Kb ready-
to-use DNA Ladder (Thermo Fisher) were used to visualize the genomic DNA fragment
size range. The DNA samples were stored at −20 ◦C until use.

2.5.3. High-Throughput Sequencing/Bacterial Community Analyses

Bacterial diversity and population profiles of the sludge samples were analyzed using
the 16S rRNA BLAST results generated from the MinION sequencing runs and EPI2ME
workflows. Seven genomic DNA libraries, prepared according to the MinION 1D 16S
Barcoding Kit (SQK-RAB204) protocol, were used to generate 16S bacterial community
profiles. Each library consisted of 6 uniquely barcoded time points run separately in a
MIN 107 MinION flowcell. The base-called data from each run was then used in the
EPI2ME Fastq 16S workflow. This workflow generated BLAST data, which was used
directly for bacterial diversity and community analyses. The MinION device, flowcell,
and kits were purchased from Oxford Nanopore Technologies (New York, NY, USA), and
the library preparation and sequencing were performed according to the MinION 1D
16S Barcoding Kit (SQK-RAB204) protocol. The DNA samples were amplified by PCR
using the kit-specific 16S primers (27F and 1492R) with barcodes and 5′ tags that facilitate
ligase-free attachment of Rapid Sequencing Adapters. The PCR products were cleaned and
concentrated with Agencourt AMPure XP beads (Beckman Coulter, Mississauga, Canada)
and quantified with the Qubit 3.0. The PCR products for each library were then pooled
at the required ratio, rapid sequencing adapter attached, loading beads added, and then
loaded into the MinION flowcell. Using the MinKNOW software Version 1.15.4 (Oxford
Nanopore Technologies) with real-time base-call monitoring, the sequencing was stopped
at ~150,000 reads to maintain a consistent read depth for all reactor samples.

2.5.4. 16S rRNA Gene Sequencing

The MinKNOW generated Fastq files were BLASTed against the NCBI 16S bacterial
database, using Oxford Nanopore’s cloud-based analysis platform EPI2ME with the 16S
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Fastq workflow. Each read was classified based on % coverage and identity. Results
were transcribed into Excel data sheets where they were sorted into different taxonomy
classifications (phylum and genus level) for every time point and BMP reactor. A 3%
sequence dissimilarity cut-off value, commonly used to estimate the species level of phy-
lotype diversity, was universally applied. During the study, biodiversity was estimated
for the top detected phyla with a relative abundance of ≥ 0.01%. Alpha biodiversity
(Shannon-Wiener index, evenness, and richness) and Beta-Euclidean biodiversity were
estimated and analyzed for bacteria at the phylum level. Relative abundance was estimated
and compared for each BMP reactor at phylum and genus levels. The cutoff value for
biodiversity analysis at the genus level was ≥ 1% relative abundance. Several interesting
genera were discussed, including those with a relative abundance of ≤1%. These genera
were selected based on their function in the anaerobic digestion process, as cited in the
literature, and shown in Table S1 in the Supplementary Materials. The Shannon-Wiener
index, used to characterize the diversity of phyla in a community, was determined by
calculating the percentage of a phylum and comparing it to the other phyla in a community,
then multiplying it by the natural logarithm of this proportion. The resulting values are
summed across the phyla and multiplied by −1 Equation (1) [33]. Evenness was calculated
according to Equation (2) [33,34]. Evenness is between 0 and 1, with 1 being complete
evenness. Richness (N) is the total number of phyla after the cut-off.

H = −∑N
i=1 piln pi (1)

E =
H

Hmax
= H/ln N (2)

where

H: Shannon-Wiener index
N: total number of phyla
pi: proportion of phylum i to all other phyla
E: phyla evenness

Beta-Euclidean diversity was calculated according to Equation (3) [35].

Beta − Euclidean = sqrt
(
∑N

1 (nki − nkj)2
)

(3)

where

N: total number of phyla
nki: count of OTU k in sample i
nkj: count of OTU k in sample j

2.6. Statistical Analyses

A one-way analysis of variation (ANOVA) at a 95% confidence level was used to study
and evaluate significant differences between the reactors over time; the difference was
considered significant if p-values were <0.05. If there were significant differences between
two reactors, the post hoc Tukey test was used to further separate mean values, using the
same significance level [36]. Three replicates were performed for each analysis, and the
results are reported with average ± standard deviations. To compare values within the
same group, the coefficient of variance (CV) was applied to compare an individual data set,
if the CV is ≤ 0.05 then the data are not significantly different (i.e., the confidence is ≥95%).
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3. Results and Discussion
3.1. Anaerobic Digestion Performance

The progression of anaerobic digestion was examined by monitoring the changes
in the total and soluble COD (tCOD and sCOD), TS, VS, and biogas generation. The
concentrations of tCOD and sCOD (Figures 1 and 2) steadily decreased over time with no
significant variations between the control and the other reactors (p-values > 0.05). There
were no significant differences in the percentage removal of tCOD between the AgNP and
CuONP reactors, but they were slightly lower (approximately 5%) compared to the control
reactor. Percent sCOD removals were approximately 10% lower in the CuONP reactors
compared to the control and the AgNP reactors (Table 4) with no significant differences,
except for reactor F (p value = 0.01).

Nanomaterials 2025, 15, x FOR PEER REVIEW 7 of 33 
 

 

and the results are reported with average ± standard deviations. To compare values within 

the same group, the coefficient of variance (CV) was applied to compare an individual 

data set, if the CV is ≤ 0.05 then the data are not significantly different (i.e., the confidence 

is ≥95%). 

3. Results and Discussion 

3.1. Anaerobic Digestion Performance 

The progression of anaerobic digestion was examined by monitoring the changes in 

the total and soluble COD (tCOD and sCOD), TS, VS, and biogas generation. The concen-

trations of tCOD and sCOD (Figures 1 and 2) steadily decreased over time with no signif-

icant variations between the control and the other reactors (p-values > 0.05). There were 

no significant differences in the percentage removal of tCOD between the AgNP and 

CuONP reactors, but they were slightly lower (approximately 5%) compared to the con-

trol reactor. Percent sCOD removals were approximately 10% lower in the CuONP reac-

tors compared to the control and the AgNP reactors (Table 4) with no significant differ-

ences, except for reactor F (p value = 0.01). 

Table 4. Biogas volume, tCOD, sCOD and VS reduction in the BMP reactors. 

Reactor  

Final Biogas Vol-

ume Generated 

(mL) 

tCOD Re-

duction 

% 

sCOD Reduc-

tion 

% 

VS Reduction 

% 

Control 800.5 ± 3 56.4 ± 4.2 71.1 ± 5.2 50.0 ± 3.8 

Reactor A  

(2 mg AgNPs/g TS) 
704.0 ± 4 50.8 ± 2.7 70.3 ± 7.1 50.1 ± 1.3 

Reactor B  

(10 mg AgNPs/g TS) 
689.0 ± 5 43.9 ± 2.2 70.0 ± 5.5 46.2 ± 2.1 

Reactor C  

(30 mg AgNPs/g TS) 
580.5 ± 3 51.3 ± 1.7 70.0 ± 3.4 49.8 ± 1.8 

Reactor D  

(2 mg CuONPs/g TS) 
769.0 ± 2 53.1 ± 2.1 59.0 ± 6.4 43.6 ± 2.4 

Reactor E  

(10 mg CuONPs/g TS) 
768.0 ± 3 52.1 ± 3.1 59.5 ± 7.1 41.2 ± 4.1 

Reactor F  

(30 mg CuONPs/g TS) 
562.5 ± 2 50.8 ± 3.2 61.9 ± 6.1 41.9 ± 3.4 

Data represents the mean ± standard deviation of replicate measurements. 

 

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

0 5 10 15 20 25 30 35 40

tC
O

D
 (

m
g

/L
)

Time (d)

Control

Reactor A

Reactor B

Reactor C

(a)

Nanomaterials 2025, 15, x FOR PEER REVIEW 8 of 33 
 

 

 

Figure 1. Concentrations of tCOD over time, for the control and reactors A, B, and C (a), and reactors 

D, E, and F (b) (the control had no nanoparticles and reactors A, B, and C had 2, 10, and 30 mg 

AgNPs/g TS, respectively, and reactors D, E, and F had 2, 10, and 30 mg CuONPs/g TS, respectively). 

 

 

Figure 2. Concentrations of sCOD over time, for the control and reactors A, B, and C (a), and reactors 

D, E, and F (b) (the control had no nanoparticles and reactors A, B, and C had 2, 10, and 30 mg 

AgNPs/g TS, respectively, and reactors D, E, and F had 2, 10, and 30 mg CuONPs/g TS, respectively). 

The changes in TS and VS were also investigated (Figures 3 and 4), and the results 

demonstrated that both TS and VS decreased gradually over time and showed similar 

trends at increasing concentrations of AgNPs and CuONPs. As shown in Table 4, the per-

cent removal of VS was lower in the CuONP reactors compared to the control (p-value 

was 0.03 for reactor F compared to control), but there were no significant differences 

among the AgNP and CuONP reactors (p > 0.05). Biogas generation also decreased with 

increasing concentrations of AgNPs and CuONPs (Figure 5). Based on ANOVA analysis, 

reactors C and F were significantly different than the control (p-values were 0.11, 0.09, 

0.03, 0.4, 0.45, and 0.003 for reactors A, B, C, D, E, and F, respectively). 

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

0 5 10 15 20 25 30 35 40

tC
O

D
 (

m
g

/L
)

Time (d)

Control

Reactor D

Reactor E

Reactor F

(b)

0

5,000

10,000

15,000

20,000

25,000

0 5 10 15 20 25 30 35 40

sC
O

D
 (

m
g

/L
)

Time (d)

Control

Reactor A

Reactor B

Reactor C

(a)

0

5,000

10,000

15,000

20,000

25,000

0 5 10 15 20 25 30 35 40

sC
O

D
 (

m
g

/L
)

Time (d)

Control

Reactor D

Reactor E

Reactor F

(b)

Figure 1. Concentrations of tCOD over time, for the control and reactors A, B, and C (a), and reactors
D, E, and F (b) (the control had no nanoparticles and reactors A, B, and C had 2, 10, and 30 mg
AgNPs/g TS, respectively, and reactors D, E, and F had 2, 10, and 30 mg CuONPs/g TS, respectively).
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Figure 2. Concentrations of sCOD over time, for the control and reactors A, B, and C (a), and reactors
D, E, and F (b) (the control had no nanoparticles and reactors A, B, and C had 2, 10, and 30 mg
AgNPs/g TS, respectively, and reactors D, E, and F had 2, 10, and 30 mg CuONPs/g TS, respectively).

Table 4. Biogas volume, tCOD, sCOD and VS reduction in the BMP reactors.

Reactor Final Biogas Volume
Generated (mL)

tCOD Reduction
%

sCOD Reduction
%

VS Reduction
%

Control 800.5 ± 3 56.4 ± 4.2 71.1 ± 5.2 50.0 ± 3.8
Reactor A
(2 mg AgNPs/g TS) 704.0 ± 4 50.8 ± 2.7 70.3 ± 7.1 50.1 ± 1.3

Reactor B
(10 mg AgNPs/g TS) 689.0 ± 5 43.9 ± 2.2 70.0 ± 5.5 46.2 ± 2.1

Reactor C
(30 mg AgNPs/g TS) 580.5 ± 3 51.3 ± 1.7 70.0 ± 3.4 49.8 ± 1.8

Reactor D
(2 mg CuONPs/g TS) 769.0 ± 2 53.1 ± 2.1 59.0 ± 6.4 43.6 ± 2.4

Reactor E
(10 mg CuONPs/g TS) 768.0 ± 3 52.1 ± 3.1 59.5 ± 7.1 41.2 ± 4.1

Reactor F
(30 mg CuONPs/g TS) 562.5 ± 2 50.8 ± 3.2 61.9 ± 6.1 41.9 ± 3.4

Data represents the mean ± standard deviation of replicate measurements.
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The changes in TS and VS were also investigated (Figures 3 and 4), and the results
demonstrated that both TS and VS decreased gradually over time and showed similar
trends at increasing concentrations of AgNPs and CuONPs. As shown in Table 4, the
percent removal of VS was lower in the CuONP reactors compared to the control (p-value
was 0.03 for reactor F compared to control), but there were no significant differences among
the AgNP and CuONP reactors (p > 0.05). Biogas generation also decreased with increasing
concentrations of AgNPs and CuONPs (Figure 5). Based on ANOVA analysis, reactors C
and F were significantly different than the control (p-values were 0.11, 0.09, 0.03, 0.4, 0.45,
and 0.003 for reactors A, B, C, D, E, and F, respectively).

Previously, Hou et al. [37] reported that AgNPs did not significantly impact the
removal of COD during sequencing batch reactor treatment of wastewater, which is an
aerobic process. On the impact of AgNPs on anaerobic digestion, previous studies reported
inhibition [21,38] as well as no significant impact [39,40]. The inhibitory impact of CuONPs
on anaerobic digestion appears to be higher than that for AgNPs, which was also reported
by other studies. For example, Luna-delRisco et al. [20] demonstrated that the presence
of CuONPs at 10.7 mg Cu/L decreased methane production by 50% during anaerobic
digestion of cattle manure for 14 d at 35 ◦C. Another study by Otero-González et al. [41]
found that long-term exposure (126–150 d) to CuONPs at 1.4 mg Cu/L during anaerobic
digestion of synthetic wastewater at 30 ± 2 ◦C reduced methane production by more than
50% due to severe toxicity that reduced more than 85% of the acetoclastic methanogenic
activity. Gonzalez-Estrella et al. [23] and Ünşar et al. [24] reported similar results.
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Figure 3. Concentrations of TS over time, for the control and reactors A, B, and C (a), and reactors D,
E, and F (b) (the control had no nanoparticles and reactors A, B, and C had 2, 10, and 30 mg AgNPs/g
TS, respectively, and reactors D, E, and F had 2, 10, and 30 mg CuONPs/g TS, respectively).
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Figure 4. Concentrations of VS over time, for the control and reactors A, B, and C (a), and reactors D,
E, and F (b) (the control had no nanoparticles and reactors A, B, and C had 2, 10, and 30 mg AgNPs/g
TS, respectively, and reactors D, E, and F had 2, 10, and 30 mg CuONPs/g TS, respectively).
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Figure 5. Cumulative biogas production over time for BMP reactors that had AgNPs (a) and
CuONPs (b) with negative controls for each.

3.2. Impact of AgNPs and CuONPs on Cell Viability

The impact of AgNPs and CuONPs on the viability of sludge bacteria was investigated
using a Live/Dead viability assay. Viable cells with intact membranes are stained and
fluoresce green, while cells with compromised membranes are considered non-viable,
and are stained and fluoresce red under the microscope. Results of live cell percentages
in sludge reactors are shown in Figure 6, and representative Live/Dead cell images at
each time point for each reactor are shown in Figures S1–S7 (Supplementary Materials).
The percentage of live cells showed a similar trend for the control and test reactors over
time with reactors E and F having the lowest live cell percentages, with no statistically
significant differences (p > 0.05) between the control and other reactors. Overall, the results
showed that AgNPs had no significant impact on the live cells while CuONPs decreased
the percentage of the live cells. As seen in Figure 6, the percentage of live cells decreased
in all reactors until day 17, when the percentage of live cells started to increase. This
was supported by the DNA concentrations over time (Figure 7), and may be due to a
compensatory effect. Kaweeteerawat et al. [42] reported that AgNPs inhibited Escherichia
coli and caused oxidative stress, which eventually led to increased bacterial resistance
to antibiotics due to increased stress tolerance. Prolonged exposure to AgNPs can alter
the cell membrane lipids [43] and cause physiological changes in bacteria resulting in
antibiotic resistance.
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Figure 6. Percent live cells for the control and reactors A, B, and C (a), and reactors D, E, and F (b) (the
control had no nanoparticles and reactors A, B, and C had 2, 10, and 30 mg AgNPs/g TS, respectively,
and reactors D, E, and F had 2, 10, and 30 mg CuONPs/g TS, respectively).
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Figure 7. Total genomic DNA over time, for the control, and reactors A, B, and C (a), and reactors D,
E, and F (b) (the control had no nanoparticles and reactors A, B, and C had 2, 10, and 30 mg AgNPs/g
TS, respectively, and reactors D, E, and F had 2, 10, and 30 mg CuONPs/g TS, respectively).

3.3. Impact of AgNPs and CuONPs on Bacterial Community Structure

The relative abundance and taxonomic distribution of the bacterial community in each
DNA extraction (DNA concentrations shown in Figure 7) were analyzed at the phylum
and genus levels, including the genera related to functions in the anaerobic digestion
process. The sequencing results indicated that each sludge reactor had highly diverse
bacterial communities (Figure 8). The number of species represented by unique operational
taxonomic units (OTUs) tallied from all time points, were 2157, 2192, 2148, 2117, 2151,
1925, and 2045, for the control and reactors A, B, C, D, E, and F, respectively. It is evident
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that AgNPs and CuONPs at high concentrations decreased the overall species richness in
these reactors.
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Figure 8. Beta-Euclidean diversity (a), the most abundant phyla ≥98% of the observed OTUs (b), and
the next most abundant phyla ≤2% of the observed OTUs (c). Phyla with ≤0.01% relative abundance
were not included. (Reactors A, B, and C contain 2, 10, and 30 mg AgNPs/g TS, respectively, and
reactors D, E, and F contain 2, 10, and 30 mg CuONPs/g TS, respectively).
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Bacterial Alpha and Beta-Euclidean biodiversity was estimated at the phylum level.
Alpha diversity is a standard measure of the phyla/genera/species diversity in a commu-
nity, while Beta-Euclidean diversity is a measure used to compare the composition between
two or more communities. Alpha diversity is represented by the Shannon-Wiener index
(characterizes the composition and commonness of bacteria in a community), evenness
(measures how close in number each bacterial taxonomic group in a community is), and
richness (the number of unique OTUs or phyla/genera/species in a community). The esti-
mated Shannon-Wiener index and the different phyla presented, as shown in Table 5, were
in most cases slightly higher in the reactors with higher concentrations of nanoparticles.
Similar observations were reported by Huang et al. [44], who showed an increase in the
Shannon-Wiener index with higher doses of tetracycline. It is possible that the antimicrobial
properties of nanoparticles adversely impact the growth of the dominant bacteria (most
abundant bacteria) in sludge allowing less abundant bacteria to thrive, resulting in an
increased Shannon-Wiener index and the number of different phyla presented [44–46]. An-
other explanation is that these species could be nanoparticle resistant bacteria. For example,
Huang et al. [47] showed that the presence of CuONPs at 20 mg/g total suspended solids
(TSS) during anaerobic digestion increased the abundance of antibiotic-resistant genes with
no significant impact on the resistance mechanisms and types. The Shannon-Wiener index
for each reactor over time was also assessed (Figure 9), and the results showed no significant
differences (p-values >0.05). The bacterial diversity represented by the Shannon-Wiener
index was low for each reactor on day 0, particularly in reactors C, E, and F, which were
lower than the control by 26.0, 18.5, and 3.5%, respectively. This may be due to the toxicity
of higher concentrations of AgNPs (30 mg/g) and CuONPs (10 and 30 mg/g) in those
three reactors. The Shannon-Wiener index increased significantly for all reactors in the first
4–9 days and then stabilized for the duration of the experiment (p-value = 0.99).

Table 5. Overall diversity of the microbial population in the BMP reactors (all time points combined).

Reactor

Nanoparticles
Concentration (mg
NPs/g TS of
Sludge)

Overall
Number of
Sequences

Classified (%)
Total Number
of Observed
Phyla

Average
Process
Accuracy (%)

Shannon-
Wiener Index
(Phyla)

Control None 148,735 83 24 83 1.15
Reactor A (AgNPs) 2 147,632 76 27 82 1.12
Reactor B (AgNPs) 10 149,972 87 27 83 1.16
Reactor C (AgNPs) 30 143,490 87 27 83 1.14
Reactor D (CuONPs) 2 141,444 89 27 83 1.14
Reactor E (CuONPs) 10 136,469 86 29 83 1.17
Reactor F (CuONPs) 30 148,759 85 23 83 1.17

Phyla evenness and richness were also used to characterize the phyla population and
diversity (Figure 10). The evenness is the relative abundance of phyla, and the richness
represents the number of phyla in a community. As only the phyla with ≥0.01% rela-
tive abundance were considered, the phyla number was 13 in each reactor, as shown in
Figure 10b. The evenness index was low and similar for all sludge reactors (CV = 4.09%).
Since the evenness index determines the diversity of a bacterial community, the results in
Figure 10a indicate that the reactors with AgNPs and CuONPs had slightly lower diversity
compared to the control.
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Figure 9. Shannon-Wiener index comparing number of species per phyla for the control and reactors
A, B, and C (a), and reactors D, E, and F (b) (the control contains no nanoparticles and reactors A, B,
and C contain 2, 10, and 30 mg AgNPs/g TS, respectively, and reactors D, E, and F contain 2, 10, and
30 mg CuONPs/g TS, respectively).
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Figure 10. Overall phyla evenness (a) and phyla richness (b) with a relative abundance ≥ 0.01% in
each reactor (reactors A, B, and C contain 2, 10, and 30 mg AgNPs/g TS, respectively, and reactors D,
E, and F had 2, 10, and 30 mg CuONPs/g TS, respectively).
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The bacterial community similarity was assessed through Beta-Euclidean diversity
at the phyla level (Figure 8a), which was estimated by comparing the control reactor to
each reactor. The difference between the control and other reactors was more pronounced
when compared to the reactors with higher AgNPs or CuONPs concentrations, indicating
that the presence of these nanoparticles adversely affected the bacterial diversity in the
anaerobically digested sludge. Thus, all studied indices pointed to a similar outcome that
high concentrations of AgNPs and CuONPs can reduce diversity at the phyla level during
anaerobic digestion.

3.4. Abundance and Diversity of Bacteria at the Phylum Level

Three dominant phyla were identified in each reactor consisting of Proteobacteria,
Firmicutes, and Bacteroidetes, as shown in Figure 8b. These results are consistent with other
bacterial population studies measuring the abundance of bacterial phyla in anaerobically
digested sludge [48–51]. The results showed that each of the three dominant phyla had
high OTUs (between 20,000 and 50,000 reads out of ~150,000 total) with a total relative
abundance of >98%. There were similar trends over time in all of the reactors, with no
significant difference between them (p-value >0.05), indicative that neither AgNPs nor
CuONPs seemed to significantly affect their occurrence. The next most abundant group of
phyla, which comprised ~2% of the total population included Actinobacteria, Spirochaetes,
Lentisphaerae, Verrucomicrobia, Planctomycetes, Chloroflexi, Fusobacteria, Fibrobacteres,
Acidobacteria, and Synergistetes. When comparing the abundance of these phyla in the
control reactor relative to the test reactors, slight differences in their relative abundance
were observed over time, which were due to the presence of the nanoparticles; however,
these differences were not statistically significant (p-value >0.05). Reactor B, followed by
the control reactor had the highest number of observed phyla OTUs among the reactors,
which may explain the lower diversity seen in test reactors with nanoparticles as shown
in Figure 8c. This is in alignment with the species OTU results discussed in Section 3.3,
where the presence of AgNPs and CuONPs gave rise to a higher Shannon-Wiener index
and increased the overall number of phyla but lowered the observed unique OTUs at the
species level within each phylum.

The 16S rRNA gene sequencing analysis showed that Bacteroidetes, Lentisphaerae,
Verrucomicrobia, and Planctomycetes were among the phyla most impacted, all of which
showed dissimilar trends over time with no significant differences between the control and
test reactors (Figure 11).

3.5. Abundance and Diversity of Bacterial Genera

The genera discussed in this study were chosen based on their role in anaerobic
digestion of sludge. The analysis showed that the total number of OTUs representing
different genera detected were 504, 515, 517, 501, 461, 454, and 476 for the control and
reactors A, B, C, D, E, and F, respectively. The highest concentration of AgNPs and all
three concentrations of CuONPs resulted in a decreased number of genera when compared
to the control, although not significantly different (p-value >0.05). The top 21 genera
(Figure 12) represent approximately 90% of the total observed OTUs; each had ≥1% average
relative abundance in all the reactors. Also, 16 genera of interest, selected from the top
75 with a relative abundance between 0.1 and 1%, were analyzed. Of the 37 (21 + 16)
studied genera, several decreased in relative abundance compared to the control, in the
presence of higher concentrations of AgNPs and CuONPs; these included Novosphingobium,
Syntrophus, Clostridium, Lachnoclostridium, Gracilibacter, Christensenella, Romboutsia, and
Syntrophobacter as shown in Figure 13a. Conversely there were genera that seemed to
thrive in the reactors with higher concentrations of AgNPs and CuONPs compared to
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the control, which included Acidovorax, Bacteroides, Alistipes, Aeromonas, Hydrogenophaga,
Sunxiuqinia, Treponema, Prolixibacter, and Microbacter, as shown in Figure 13b; other genera,
that represented approximately 48–50% of the OTUs, did not show any change. Even
though the higher concentrations of AgNPs and CuONPs affected the relative abundance
of several genera as shown in Figure 13a,b, the impact was not significant, consistent with
the findings of other studies [52]. However, AgNPs at a concentration of 500 mg/g TSS
(very high concentration) during anaerobic digestion reduced the biogas generation by
26.5% compared to the control and inhibited the population of the bacteria and archaea
assessed [25].

3.6. Key Bacterial Genera Involved in the Anaerobic Digestion Process

At the genus level, bacterial metagenomics can provide valuable information about
the functions of communities in the sludge reactor. There are four governing stages in
the anaerobic digestion process: hydrolysis, acidogenesis, acetogenesis, and methanogen-
esis. The efficiency and stability of the process are entirely dependent on the diversity
of bacteria that are involved in each of the four stages, and their collective synergism to
achieve effective sludge reduction and methane formation. Based on a literature review
(Table S1, Supplementary Data), it is clear that specific bacterial genera are involved in
more than one stage of the process. In this study, 37 bacterial genera selected from the top
75 genera were analyzed, and their role in anaerobic digestion was explored based on the
literature, as shown in Table S1. According to the 16S rRNA gene sequencing analysis,
different bacterial genera observed were found to be involved in the processes of hydrolysis,
acidogenesis or acetogenesis; acidogenesis and hydrolysis; acidogenesis and acetogenesis;
and hydrolysis, acidogenesis, and acetogenesis (Table 6).
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Figure 11. OTU over time (1), and total OTUs (2) of Bacteroidetes (a), Lentisphaerae (b), Verrucomicro-
bia (c), and Planctomycete (d) for each reactor (reactors A, B, and C contain 2, 10, and 30 mg AgNPs/g
TS, respectively, and reactors D, E, and F contain 2, 10, and 30 mg CuONPs/g TS, respectively).
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Figure 12. Relative abundance of the top 21 genera and those that have a relative abundance ≥1%
(reactors A, B, and C contain 2, 10, and 30 mg AgNPs/g TS, respectively, and reactors D, E, and F
contain 2, 10, and 30 mg CuONPs/g TS, respectively).
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Figure 13. Relative abundance of 37 genera, relative abundance >0.1%, that were negatively affected
by AgNPs and CuONPs (a), relative abundance of 37 genera, relative abundance >0.1%, that had
higher observed OTUs in the presence of higher nanoparticle concentrations (b) (reactors A, B, and C
contain 2, 10, and 30 mg AgNPs/g TS, respectively, and reactors D, E, and F contain 2, 10, and 30 mg
CuONPs/g TS, respectively).
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Table 6. Relative abundance of bacterial genera involved in different stages of the anaerobic.

Bacterial
Phylum/Genera

Control
(%)

Reactor A
(%)

Reactor B
(%)

Reactor C
(%)

Reactor D
(%)

Reactor E
(%)

Reactor F
(%)

Proteobacteria/Novosphingobium.
Bacteroidetes/Bacteroides and
Sunxiuqinia.

11.1 9.1 9.4 5.4 10.2 9.0 8.2

Firmicutes/Trichococcus,
Lachnoclostridium, Gracilibacter,
Christensenella, Acidaminococcus,
Desulfovibrio, Treponema, and
Caldicoprobacter.
Bacteroidetes/Alistipes, Prolixibacter,
and Microbacter

12.5 11.8 13.2 12.5 12.8 16.0 14.6

Proteobacteria/Syntrophus.
Firmicutes/Desulfotomaculum, Moorella,
Syntrophomonas, Pelotomaculum, and
Acetobacterium.

10.7 9.6 10.6 8.2 9.8 8.3 9.6

Proteobacteria/Acidovorax, Arcobacter,
Thauera, Simplicispira, Rhodoferax, and
Aeromonas.
Firmicutes/Oscillibacter,
Ruminiclostridium, and Faecalicatena.
Spirochaetes/Sphaerochaeta.

52.1 56.0 52.7 60.5 55.5 55.8 55.2

Firmicutes/Sedimentibacter,
Ruminococcus, and Thermoanaerobacter. 7.9 8.1 8.7 8.9 6.3 6.1 7.3

Firmicutes/Clostridium, Romboutsia,
and Syntrophobacter. 3.9 3.5 3.5 2.6 3.5 2.7 3.1

Table 6 and Figure 14 show that acidogenesis and hydrolysis had the highest relative
abundance of bacterial genera in the samples. Acidogenic bacteria, mainly Proteobacteria,
can assimilate amino acids, fatty acids, sugars, and alcohols, and it has been shown
that this phylum is less susceptible to environmental changes than others [53], which
may explain the corresponding high OTUs observed. Firmicutes phylum include a wide
range of syntrophic bacteria that play an important role in anaerobic sludge digestion,
including the assimilation of different volatile fatty acids (VFAs) [54]. The results also
showed a high number of bacteria involved in hydrolysis and acidogenesis belonging to
the Bacteroidetes phylum, which play a significant role in the anaerobic digestion process,
including decomposition and conversion of organic materials into organic acids, CO2 and
H2 [52,55]. The acetogenesis stage of the process was attributed to the least abundant
genera assessed (0.1–1% relative abundance), which appeared to be lower in abundance
in the presence of higher levels of AgNPs and CuONPs as most acetogenesis associated
genera showed lower levels of observed OTUs, as shown in Figure 15.

The results also showed that the bacterial genera responsible for hydrolysis and
acidogenesis (combined) had a higher relative abundance in sludge reactors containing
AgNPs or CuONPs compared to the control (Table 6). For example, the genus Acidovorax
was the highest occurring taxa in all reactors with lower OTUs in the control. In addition,
the genus Arcobacter was found to be the second most prevalent genus in all reactors,
with higher OTUs observed in some reactors that had AgNPs or CuONPs. These two
genera belong to the phylum Proteobacteria and are facultative anaerobic bacteria that
utilize nitrate or acetate as electron acceptors to grow under anaerobic conditions and can
assimilate organic matter, acids, sugars, and proteins/amino acids [56–58]. The presence of
AgNPs and CuONPs appeared to decrease the relative abundance of acetogenic bacterial
genera, as the relative abundance of Syntrophus, Sedimentibacter, and Clostridium genera
were lower in the reactors with higher concentrations of AgNPs or/and CuONPs. These
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genera represent a broad class of syntrophic bacteria that have an essential role in the
anaerobic decomposition of organic matter to methane and carbon dioxide, along with
fermentative and methanogenic organisms [59].
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Figure 14. Relative abundance of bacterial genera involved in hydrolysis, acidogenesis, and hydrolysis
and acidogenesis (reactors A, B, and C contain 2, 10, and 30 mg AgNPs/g TS, respectively, and reactors
D, E, and F contain 2, 10, and 30 mg CuONPs/g TS, respectively).
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Figure 15. Relative abundance of bacterial genera involved in acetogenesis, acidogenesis and ace-
togenesis, and hydrolysis, acidogenesis, and acetogenesis (reactors A, B, and C contain 2, 10, and
30 mg AgNPs/g TS, respectively, and reactors D, E, and F contain 2, 10, and 30 mg CuONPs/g
TS, respectively).

3.7. Metagenomic Analyses of Select Genera

Prevalence of genera OTUs over time followed similar trends overall with no signif-
icant differences among all sludge reactors. However, several genera showed different
trends, which slightly varied from that of the control, including Acidovorax, Sedimentibac-
ter, Syntrophus, Clostridium, Syntrophomonas, Sunxiuqinia, Prolixibacter, Acidaminococ-
cus, Microbacter, and Geobacter, as shown in Figure 16. Sedimentibacter baseline OTUs
were similar at the onset of the experiment but steadily increased over time, with the
greatest observed OTUs in the AgNP reactors. The increase in Sedimentibacter OTU per-
centages on day 37 was 326, 327.2, 374.8, 381.5, 251.3, 257.6, and 283.2% for the control and
reactors A, B, C, D, E, and F, respectively. Syntrophus and Clostridium showed that higher
concentrations of AgNPs and CuONPs might be responsible for lower OTUs for both. For
example, Syntrophus showed a 27% higher observed OTUs in reactor C compared to 62%
higher in the control reactor over the 37 days, and Clostridium showed a 5% lower ob-
served OTUs in control, while reactors C and F showed reduced observed OTUs of 62 and
40.5%, respectively. The genera Syntrophomonas and Sunxiuqinia showed higher observed
OTUs over time in all reactors with higher OTU percentage prevalence in the reactors with
AgNPs and CuONPs. Syntrophomonas observed OTUs increased by 17,000 and 16,600%
in reactors C and F, respectively, while the control increased by 6800%. The increase in
Sunxiuqinia OTUs was 1825 and 2350% for reactors C and F, respectively, compared to
925% for the control. Prolixibacter and Microbacter genera showed the highest variation
in OTUs in the CuONPs reactors. The increase in Prolixibacter OTUs in reactor F was
5550% compared to 400% in the control and was 228.6% compared to 25% in the control for
Microbacter. Acidaminococcus and Geobacter genera also showed similar trends over time
in all reactors where higher concentrations of AgNPs and CuONPs seemed to decrease
the prevalence of OTUs, as shown in Figure 16. Acidaminococcus OTUs increased by 12.5
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and 27% in reactors C and F, respectively, compared to the control increase of 30%. The
OTUs percentage increase in Geobacter was 88 and 1060% in reactors C and F, respectively,
compared to 76.5% in control. Although there were, in some cases, marked differences in
baseline OTUs over time, all sludge reactors showed similar trends after a certain amount
of time. This indicates that AgNPs and CuONPs at the three tested concentrations did not
have a significant impact on the population of these genera over time.
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Figure 16. Trends of select genera over time for each reactor (reactors A, B, and C contain 2, 10,
and 30 mg AgNPs/g TS, respectively, and reactors D, E, and F contain 2, 10, and 30 mg CuONPs/g
TS, respectively).

3.8. Discussion of the Relationship Between Bacterial Function and Digestion Performance of
the Reactors

The 16S rRNA gene sequencing results (Table 6) showed that the relative abundance
of the bacteria responsible for hydrolysis and acidogenesis was the highest, and increased
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with higher AgNP and CuONP concentrations, whereas the relative abundance of aceto-
genic bacteria was the least and decreased with higher nanoparticle concentrations. This is
likely due to the different characteristics of bacteria that were involved in these stages, for
example, hydrolytic and fermentative bacteria are phylogenetically diverse, grow rapidly,
and have lower sensitivity to environmental changes, while acetogenic bacteria live in
syntrophy with methanogens and are more susceptible to environmental changes [49].
Comparing the biogas generation from the reactors, the results indicated slight differences
between the control and the other sludge reactors that had AgNPs and CuONPs, except
the reactor that had the highest concentration of CuONPs (reactor F), which showed less
generation (Figure 5). This was supported by the 16S rRNA gene sequencing analysis
that showed no significant impact due to the presence of AgNPs and CuONPs. These
findings agree with several studies that show the low inhibitory impact of AgNPs, while
there was some inhibition due to CuONPs on methanogens [23,24]. Sulfidation of AgNPs
and CuONPs under anaerobic conditions may also be an explanation for low inhibition of
methanogenesis. The interaction of AgNPs and CuONPs with sulfur, and the subsequent
production and precipitation of silver and copper sulfide, results in a significant reduction
in their toxicity due to the lower solubility of silver and copper sulfide, which have limited
short-term environmental impacts [60–64]. Another factor that could interfere with the
antimicrobial activity of AgNPs and CuONPs is the exposure of the microbial community
to high COD concentrations during the digestion process, which can diminish the antimi-
crobial activity and favor the growth and further acclimatization of the bacteria that were
not inhibited, as well as limit the growth of some bacterial species adapted to lower COD
concentrations [6]. In addition, several studies have demonstrated that AgNPs or CuONPs’
toxicity is due to the release of their ions by oxidation [65,66], which suggest that oxygen
needs to be present for nanoparticles to become toxic. For example, AgNPs toxicity can be
controlled by managing the availability of oxygen [66]. However, other studies have shown
that the toxicity could be due to the properties of the nanoparticles themselves, including
their very high surface area to volume ratio that enable them to easily bind to the bacterial
cell wall and alter the membrane structure or penetrate the inside of the cell membrane
and elicit further damage, including interaction with sulfur and phosphorus-containing
compounds, such as proteins and DNA [67,68]. Asharani et al. [69] investigated the impact
of AgNPs on red human blood cells and observed various types of cytotoxicity that were
mainly due to the effect of AgNPs damaging DNA, and no toxic effects were observed
when the cells were exposed to silver ions.

4. Conclusions
In this study, the impact of three different concentrations (2, 10, and 30 mg/g TS) of

AgNPs and CuONPs on the anaerobic digestion of sludge and the bacterial community
structure were investigated. Biogas generation decreased with increasing concentrations of
AgNPs and CuONPs, and the decrease was greater at the highest concentration (30 mg/g
TS) of both NPs. Some inhibition on the digestion of organic matter, measured by tCOD,
sCOD, TS, and VS, was visible when the control reactor was compared to the reactors
dosed with AgNPs and CuONPs, and particularly for the 30 mg/g TS of CuONPs reactor.
CuONPs exhibited stronger inhibition of bacterial growth compared to the AgNPs evi-
denced by the large difference in sCOD and VS reduction. After the addition of AgNPs and
CuONPs, cell viability gradually decreased over the first two weeks but recovered after that.
The decreases in cell viability were noticeable with increasing concentrations of NPs, partic-
ularly for CuONPs, but were not statistically significant. At high concentrations, AgNPs
and CuONPs decreased the overall species diversity, and inhibited the dominant bacterial
species, allowing the less abundant species to increase. The relative abundance of the
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bacteria responsible for hydrolysis and acidogenesis increased and the relative abundance
of acetogenic bacteria decreased with higher AgNP and CuONP concentrations. Compared
to the AgNPs, CuONPs had a stronger adverse effect on the bacterial community structure,
diversity, abundance, and functions. The majority of the parameters measured for monitor-
ing the anaerobic digestion performance and bacterial community were not statistically
significant at the lowest 2 mg/g TS of AgNPs and CuONPs concentrations tested in this
study, which represents naturally present concentrations in wastewater sludge.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano15030236/s1, Figure S1: Live/Dead cells images for the
control over time; Figure S2: Live/Dead cells images for reactor A (2 mg AgNPs/g TS of sludge);
Figure S3: Live/Dead cells images for reactor B (10 mg AgNPs/g TS of sludge); Figure S4: Live/Dead
cells images for reactor C (30 mg AgNPs/g TS of sludge); Figure S5: Live/Dead cells images for
reactor D (2 mg AgNPs/g TS of sludge); Figure S6: Live/Dead cells images for reactor E (10 mg
AgNPs/g TS of sludge); Figure S7: Live/Dead cells images for reactor F (30 mg AgNPs/g TS
of sludge); Table S1: Genus of interest and their role in the sludge anaerobic digestion process.
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