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Abstract: The electrocatalytic activities of the MnO2/C composites are examined in Li-O2 cells as
the cathode catalysts. Hierarchically mesoporous carbon-supported manganese oxide (MnO2/C)
composites are prepared using a combination of soft template and hydrothermal methods.
The composites are characterized by X-ray powder diffraction, scanning electron microscopy,
transmission electron microscopy, small angle X-ray scattering, The Brunauer–Emmett–Teller (BET)
measurements, galvanostatic charge-discharge methods, and rotating ring-disk electrode (RRDE)
measurements. The electrochemical tests indicate that the MnO2/C composites have excellent
catalytic activity towards oxygen reduction reactions (ORRs) due to the larger surface area of ordered
mesoporous carbon and higher catalytic activity of MnO2. The O2 solubility, diffusion rates of O2

and O2
‚´ coefficients (DO2 and DO´

2
), the rate constant (k f ) for producing O2

‚´, and the propylene
carbonate (PC)-electrolyte decomposition rate constant (k) of the MnO2/C material were measured
by RRDE experiments in the 0.1 M TBAPF6/PC electrolyte. The values of k f and k for MnO2/C are
4.29 ˆ 10´2 cm¨ s´1 and 2.6 s´1, respectively. The results indicate that the MnO2/C cathode catalyst
has higher electrocatalytic activity for the first step of ORR to produce O2

‚´ and achieves a faster
PC-electrolyte decomposition rate.
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1. Introduction

Energy storage devices with high energy and power densities are being developed for use as
power sources for electric vehicles (EV) and hybrid electric vehicles (HEV) [1–3]. Over the past
few decades, the vast majority of relevant research has focused on upgrading the performance of
conventional lithium-ion batteries for EV or HEV applications; however, their energy densities and
specific charge capacities still fail to satisfy commercial requirements such as long-range driving,
low cost, and fast charging [1,2,4]. In recent years, rechargeable nonaqueous Li-air batteries have
attracted much interest owing to their low cost, environmental friendliness, and high theoretical energy
density (~3500 Wh¨ kg´1), which is nearly equivalent to a nine-fold increase over conventional Li-ion
batteries (~400 Wh¨ kg´1) [4–7]. Despite these favorable characteristics, their practical applications are
still hampered by several serious challenges including limited rate capability, poor cycling stability
due to the instability of the electrode and electrolyte, and low round-trip efficiency induced by the
rather large polarization, resulting in a wide charge–discharge voltage gap [3,8–15]. These critical
problems are highly attributable to the O2 cathode.

A typical rechargeable Li-O2 battery is constituted by a porous oxygen diffusion cathode, a lithium
metal anode, and an Li+-conducting electrolyte. In general, the O2 cathode is an oxygen catalyst loaded
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with porous carbon material, which enables both Li2O2 deposition (oxygen reduction reactions, ORRs)
and decomposition (oxygen evolution reactions, OERs) reactions to occur upon battery discharge
and charge, respectively. Many reports [1,4–6,8,9,11,15–18] have pointed out that the electrochemical
performance of Li-O2 batteries depends on many factors such as: the nature and microstructure of the
O2 electrode, electrolyte formula (especially, the composition of solvent), O2 partial pressure, possible
presence of reactive contaminants (e.g., trace water), and the choice of catalysts. In order to enhance
the properties of rechargeable Li-O2 batteries, several strategies have been followed over the years to
explore the electrolyte formula, choice, and microstructure design of the O2 electrode and optimization
of the operating parameters [1,3,5,8–11].

Carbon materials with various nanostructures have been developed and used as O2 cathodes
in Li-O2 batteries [4,6,10,19]. It has been well demonstrated that the performance of Li-O2 batteries
is related to the properties of carbon, such as the morphology, surface area, porous structure, and
conductivity [6,9,20]. The design of porous carbon cathodes requires larger intraparticulate voids and
open frameworks in their architecture structure to accommodate the insoluble discharge products.
These voids and frameworks should help improve discharge capacity and cycling performance [19–21].
Obviously, designing an optimum pore structure for carbon materials can effectively improve
the electrochemical performance of Li-O2 batteries. Although various porous carbon structures
have been explored, some studies have demonstrated that hierarchically porous honeycomb-like
carbon cathodes with mesoporous/macroporous pore size can increase the specific capacity of Li-O2

batteries [4–6,15,19–26]. Moreover, it is well known that an ideal cathode catalyst can facilitate the
complete reversibility of ORRs and OERs with low polarization in Li-O2 batteries [21]. Several potential
catalysts have recently been proposed to promote ORRs and OERs, including nitrogen-doped carbon,
metal oxides, metal nitrides, precious and nonprecious metals, etc. [1,3,8,13,15,19,27–29]. Among metal
oxides, MnO2 is a catalyst material of great interest because of its low cost, environmental friendliness,
abundance, and electrocatalytic activity for ORRs in Li-O2 batteries [13,28,30–32]. This study of Li-O2

batteries focuses on MnO2-based catalysts.
In the first part of this work, we created a hierarchically mesoporous carbon-supported

β-manganese oxide (MnO2/C) as an O2 cathode material. We present a detailed study of the Li-O2

electrochemistry of the MnO2/C material using an electrolyte of 1 M LiPF6 in a propylene carbonate
(PC, which was used in many of the initial works on Li-O2 batteries) solvent. Although there have
been many studies of MnO2/C materials for Li-O2 battery applications, few studies have examined the
poor stability of the electrolyte due to its reaction with the superoxide radical (O2

‚´) produced upon
the discharge at the MnO2/C electrode. In this work, the stability of the electrolyte against the O2

‚´ of
the MnO2/C electrode was first explored by the RRDE technique. The RRDE was developed about
50 years ago and has been verified to be a powerful tool for the study of electrochemical reactions.
RRDE consists of two concentric electrodes (disk and ring electrodes) in a cylindrical holder with
both of the electrodes facing downward into the solution. Products generated at the disk reaction are
swept outward by the convection caused by rotation, and can be detected electrochemically at the
ring by fixing the potential on the ring electrode. In this study, a disk electrode coated with MnO2/C
materials and a Pt ring electrode was fixed at an O2

‚´/O2 oxidation potential to collect the O2
‚´ ions

in electrolytes. Therefore, in the second part, we emphasize aspects of the PC-based electrolyte reaction
against O2

‚´ and the related kinetic information of O2
‚´ in the MnO2/C electrode by studying

rotating ring disk electrode (RRDE) experiments and using a lithium-free non-aqueous electrolyte due
to the stability of the intermediate O2

‚´. In addition, the oxygen solubility in the electrolyte and the
oxygen diffusion velocity throughout the whole O2 electrode play key roles in determining battery
performance, especially at high current densities [33]. In this work, the O2 solubility, diffusion rates of
O2 and superoxide radical (O2

‚´) coefficients (DO2 and DO´
2

), rate constant (k f ) for producing O2
‚´,

and PC-electrolyte decomposition rate constant (k) of the MnO2/C electrode were quantified.
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2. Experimental Methods

MnO2/C composites were prepared by supramolecular self-assembly methods followed
by a hydrothermal process. A modification of the mesoporous metal oxides and carbon
nanocomposites procedure of Huang et al. [34] was applied to synthesize the MnO2/C composites.
The first step was to synthesize a 20 wt. % resol ethanolic solution according to an established
method [34,35]. A solution was prepared by dissolving 1.5 g of triblock copolymer Pluronic F127
(OH(CH2CH2O)n-(CH2CH(CH3)O)m-(CH2CH2O)nH, EO106PO70EO106, Sigma Aldrich, St. Louis,
MO, USA) in 10 g of anhydrous ethanol, then 5 g 20 wt. % resol ethanolic solution and 0.28 g
MnCl2¨ 4H2O (J.T. Baker, 99.8%) were added into the above solution slowly under stirring for 30 min
at an ambient temperature. The homogeneous mixture was then transferred into a Petri dish at an
ambient temperature for 24 h. After being dried, the films were heated at 100 ˝C for another 24 h to
form orange transparent membranes. The as-made products were scraped from the Petri dish and
ground into powders and then calcinated at 400 ˝C for 5 h under an Ar atmosphere with a heating
rate of 1 ˝C¨min´1 to yield Mn/C powders. To obtain MnO2/C composites, the as-prepared Mn/C
powders were subjected to a hydrothermal process at 180 ˝C for 12 h with 0.22 g KMnO4 (J.T. Baker)
and 30 mL of deionized water in a Teflon-lined stainless steel autoclave.

A Rigaku-D/MaX-2550 diffractometer (Rigaku, Tokyo, Japan) with Cu Kα radiation (λ = 1.54 Å)
was used to obtain X-ray diffraction (XRD) patterns for the samples. Small angle X-ray scattering (SAXS)
measurements were taken on a Nanostar U small-angle X-ray scattering system (Bruker, Karlsruhe,
Germany) using Cu Kα radiation (40 kV, 35 mA). The morphology of the sample was observed using
a scanning electron microscope (SEM, Hitachi S-3400 (Hitachi Limited, Tokyo, Japan)) and transmission
electron microscope (TEM, JEOL JEM-3010 (JEOL, Tokyo, Japan)). Selected area electron diffraction
(SAED) was applied to examine samples’ crystallinity. The Brunauer–Emmett–Teller (BET) method was
used to measure the specific surface area of the powders (ASAP2020). The residual carbon content of
the samples was measured by an automatic elemental analyzer (EA, Elementar vario, EL III (Elementar
Analysensysteme GmbH, Hanau, Germany)).

For electrochemical evaluation, the MnO2/C electrodes were prepared by wet coating, and were
made from as-prepared MnO2/C composites with super P and a poly(vinylidene difluoride) (PVDF)
binder (MKB-212C, Atofina, Serquigny, France) in a weight ratio of 64:16:20. The MnO2/C composites
and super-P were first added to a solution of PVDF in N-methyl-2-pyrrolidone (NMP, Riedel-deHaen,
Seelze, Germany). To make a slurry with an appropriate viscosity, the mixture was stirred for 20 min at
room temperature using a magnetic bar, and then for 5 min using a turbine at 2000 rpm. The resulting
slurry was coated onto a piece of separator (Celgard 2400, Charlotte, NC, USA) and dried at 60 ˝C
under vacuum for 12 h. The coating had a thickness of ~100 µm with an active material mass loading
of 8 ˘ 1 mg¨ cm´2. The quantity of active materials on the electrodes was kept constant. Electrodes
were dried overnight at 100 ˝C under a vacuum before being transferred into an argon-filled glove box
for cell assembly. The Li-O2 test cell (EQ-STC-LI-AIR, MTI Corporation, Richmond, CA, USA) was
constructed with lithium metal as the negative electrode and the MnO2/C electrode as the positive
electrode. A solution of 1 M LiPF6 in a PC solvent was used as the electrolyte in all cells. After assembly,
the test cell was taken away from the Ar-filled glove box and attached to a gas pipe that was constantly
purged with dry O2. Electrochemical tests were carried out after the cell was flushed with O2 for
6 h. The cells were cycled galvanostatically with a BAT-750B (Acu Tech System, Taipei, Taiwan) at a
constant current of 100 mA/g with a voltage region of 2.0–4.3 V vs. Li/Li+ at room temperature.

For the RRDE experiments, the RRDE system (AFMT134DCPTT, Pine Research Instrumention,
Durham, NC, USA) with interchangeable disk consisted of a 5 mm diameter glassy carbon electrode and
a Pt ring electrode (1 mm width) with a 0.5 mm gap between them. The collection efficiency with this
geometry is 0.24. The rotating ring-disk assembly was operated on a Pine AFMSRX rotator and CH705
Bipotentiostat (CH Instruments, Austin, TX, USA) with a computerized interface. Experiments were
conducted using a three-electrode cell containing 10 mL of the electrolyte of interest and assembled
in a dry Ar-filled AtmosBag (Sigma-Aldrich Z108450, St. Louis, MO, USA). Figure 1 shows the
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schematic of a four-neck, jacketed glass cell with the RRDE system. The counter electrode was a Li foil
connected to a Ni wire, which was isolated by a layer of Celgard 2400 separator to prevent convective
oxygen transport to the electrode. The Ag/Ag+ reference electrode consisted of an Ag wire immersed
into 0.1 M AgNO3 in CH3CN and sealed with a vycor frit at its tip. All potentials in this study
were referenced to the Li/Li+ potential scale (volts vs. Li+/Li or VLi+), obtained by calibration of
the reference electrode against a fresh lithium wire before the experiments (0 VLi = ´3.46 ˘ 0.01 V
vs. Ag/Ag+). The working electrode consisted of a catalyst-covered glassy carbon disk and was
immersed into the Ar or O2-purged electrolyte for 30 min before each experiment. Prior to the RRDE
measurements, Alternating current (AC) impedance measurements were carried out to determine
the uncompensated ohmic electrolyte drop between working and reference electrodes by applying
a 10 mV perturbation (0.1 MHz to 10 mHz) at the open circuit. IR (drop) correction to remove ohmic
losses was performed by considering a total cell resistance of ~293 Ω measured by AC impedance.
The capacitive-corrected ORR currents were calculated by subtracting the current measurement under
Ar from that obtained in pure O2 under identical scan rates, rotation speeds, and catalyst loadings.
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Figure 1. Schematic of a four-neck, jacketed glass cell with a rotating ring-disk electrode (RRDE) system.

3. Results and Discussion

The phase composition and structure of the prepared MnO2/C composites were examined by
the wide-angle XRD and SAXS patterns given in Figure 2a,b. As shown in Figure 2a, all peaks can be
identified as a pure and well-crystallized β-MnO2 phase (JCPDS 24-0735) with an ordered tetragonal
structure indexed to the P42/mnm space group. Moreover, the XRD curves did not show any evidence
of the formation of crystalline or amorphous carbon. It appears that when using resol/Pluronic
F127 templates as a carbon source, the final product is most likely to remain amorphous or in a low
crystalline carbon state. The appearance of the scattering peak in the SAXS pattern, as shown in
Figure 2b, indicates the long-range regularity and highly ordered nature of the mesoporous structures
of the prepared MnO2/C composite.

The morphology of the prepared MnO2/C composite was observed using SEM and TEM,
as shown in Figure 3a–f. From the SEM images of the MnO2/C composite (Figure 3a,b), it is clear that
the oriented tetragonal MnO2 nanorods are arranged on the surface of the carbon matrix. The prepared
β-MnO2 nanorods, typically 2–3 µm in length, have a square cross-section with an edge length in
the range of 200–300 nm. Figure 3c,d show the TEM images of the MnO2/C composite at different
magnifications. Large domains of highly ordered stripe-like 1D channels are clearly observed. Figure 3e
displays a TEM image of a typical nanorod with a smooth surface, and a SAED pattern based on a
single nanorod (Figure 3f), indicating single-crystalline nature. The SEM and TEM analysis suggest
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that hollow MnO2 nanorods grow homogeneously on the ordered mesoporous carbon frameworks to
form the structure of the hierarchically mesoporous MnO2/C composite.
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area electron diffraction (SAED) pattern of the region marked with a square in (e).
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The pore structure of the mesoporous MnO2/C composite was determined by nitrogen
adsorption-desorption isothermal measurements. As shown in Figure 4, the adsorption isothermal
curve of the MnO2/C composite has a well-defined step as in typical IV classification with a H1-type
hysteretic loop in the p/po range of 0.40–1.0, indicating mesoporous material character. These findings
suggest that the MnO2/C composite sample does not contain framework-confined pores but is rather
made up of individual nanorods. This is in agreement with the results from the SEM and TEM images.
The Barrett–Joyner–Halenda (BJH) pore size distribution for the mesoporous MnO2/C composite,
shown in the insert of Figure 4, reveals peaks centering at 4.8 and 35 nm. This result confirms that
most of the pore channels in the ordered mesoporous carbon are not blocked by the loading of MnO2

nanorods. The nanoarchitecture of ordered mesoporous channels is maintained, which is desirable
for the O2 electrode in Li-O2 batteries. Moreover, the measured BET surface area of the MnO2/C
composite is relatively high, at about 424 m2¨g´1. The hierarchical microstructure of the MnO2/C
composite results in a large specific surface area. This is important for enhancing the electrochemical
properties of an O2 cathode material.
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MnO2 has been known as a highly active ORR catalyst for some time [30,32,36] and has recently
been applied as an O2 cathode catalyst in Li-O2 batteries. Due to the studies of the electrocatalytic
activity of MnO2, the following discussions regarding electrochemical tests make comparisons between
Super-P carbon (SP) and MnO2/C materials. To better study the catalytic activity of the electrodes,
cyclic voltammetry (CV) and charge-discharge voltage measurements were carried out. At first,
CV was carried out in the Ar-purged electrolyte and subsequently in the same solution saturated with
O2. The capacitively-corrected CV curves derived from both measurements are shown in Figure 5a.
The CV plots of the O2 electrodes prepared from MnO2/C and SP cycled between 1.5 and 4.5 V
with 2 mV¨ s´1 and the O2-saturated 1 M LiPF6/PC electrolyte are shown in Figure 5a. From the
CV curves, the reduction peak voltage is shifted toward positive voltage, exhibiting electrocatalytic
activity in the ORR of both samples. However, the MnO2/C offers more positive onset reduction
peak potential and a larger peak current, which clearly indicate the superior electrocatalytic activity
of MnO2/C compared to SP. Furthermore, the onset oxidation peaks appearing in the CV curves
are about 2.7 and 2.9 V for MnO2/C and SP, respectively. This demonstrates that MnO2/C, with its
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lower onset oxidation peak, is more efficient for Li2O2 decomposition and has higher catalytic activity
for the OER. The initial charge–discharge voltage profiles for both samples are shown in Figure 5b.
The charge–discharge profiles of the MnO2/C electrode exhibit much lower charge overpotential
than do those of the SP electrode, although the reduction of the total overpotential is only about
25%. The round-trip efficiencies of the Li-O2 batteries with a MnO2/C electrode were lower than
those with the SP electrode. These results indicate that the MnO2/C composite can facilitate the
complete reversibility of ORR and OER with low polarization for a Li-O2 battery. This finding is in
good agreement with the CV measurement. The initial discharge capacities of the MnO2/C and SP
electrodes were 612 mAh¨ g´1 and 589 mAh¨ g´1, respectively. The good electrochemical performance
of the MnO2/C electrode may be due to the hierarchical mesostructure and large specific surface area,
and the catalytic activity of the MnO2/C composite.
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Figure 5. (a) CV curves were recorded at a scanning rate of 2 mV¨ s´1 for MnO2/C and Super-P carbon
samples; (b) initial charge–discharge profiles for MnO2/C and Super P samples at a current density of
0.2 mA¨ cm´2.

The rotating ring disk electrode (RRDE) technique was also used to investigate the kinetics of ORR
since the ORR current is strongly relevant to hydrodynamic conditions [31]. Here, we used a glassy
carbon (GC) electrode and an as-prepared MnO2/C composite coated on the GC (MnO2/C-GC)
electrode as the working electrodes to study the stability of the electrolyte at the MnO2/C electrode.
Many reports [1,5,9] have shown the O2

‚´ produced in the first step of the ORR upon battery discharge:

O2 ` e´
k f
Ñ O2

‚´ (1)

The reaction between the O2
‚´ and the electrolyte is the critical problem that causes poor Li-O2

battery cyclability. In the PC-based electrolyte, the ethereal carbon atom in PC suffers from nucleophilic
attacks by O2

‚´, yielding carbonate, acetate, and formate species (among others), according to
Equation (2) [37,38]:

PC`O2
‚´ k
Ñ CO3

2´, HCOO´, CH3COO´ (2)

Here, we applied rotating disk electrode (RDE) voltammetry to measure the rate constant (k f )
when reducing O2 to O2

‚´ for Equation (1) in the 0.1 M TBAPF6/PC electrolyte. The reaction rate
constant, k f , can be evaluated via the Koutecky–Levich (K–L) equation for a first-order reaction as
follows [31]:

1
i
“

1
ik
`

1
id

(3)

ik “ nFk f CO2 (4)

id “ 0.62nFDO2
2{3ν´1{6CO2ω

1{2 (5)
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where ik and id represent kinetics and diffusion limiting current density (A¨m´2), respectively;
n is the number of electrons exchanged in the electrochemical reaction; F is Faraday’s constant
(96,485 C¨mol´1); k f is the rate constant for Equation (1); DO2 is the diffusion coefficient of O2 in
the solution; ν is the kinematic viscosity; ω is the angular frequency of the rotation; and CO2 is the
saturation concentration of O2 in the solution. Additionally, knowing the values of ν and DO2 for an
electrolyte, one can obtain the concentration of oxygen (CO2 ) and rate constant (k f ) for Equation (1) by
linearly fitting the K-L plots of i´1 vs. ω´0.5, as follows

1
i
“

1
ik
`

1

0.62nFD2{3
O2

ν´1{6CO2ω
1{2

(6)

Prior to estimating the value of k f from the K–L equation, the kinematic viscosity (ν) of the
electrolyte and the diffusion coefficients of O2 and O2

‚´ (DO2 and DO´
2

), need to be quantified.

The value of ν for PC with 0.1 M TBAPF6 is 2.59 ˆ 10´2 cm2¨ s´1 at 25 ˝C (ρ = 1.2 g¨mL´1 and
η = 3.13 mPa¨ s) and was measured by a Rheometer (Malvern Gemini, Malvern Instruments Ltd.,
Malvern, UK). For a known viscosity, the diffusion coefficients can be directly determined from the
transit-time (Ts) measurement by the RRDE technique, as reported previously [37,39]. Figure 6a shows
an example of Ts measurement in O2-saturated solutions of 0.1 M TBAPF6 in PC atω = 100 rpm; Ts,
the origin of which is taken at time = 2 s (the time at which the disk is conducted cathodic potential
at 1.85 VLi), is measured graphically from the intercept of the base steady ring current and the fast
attenuate ring current line. Figure 6b,c show measurements of steady ring currents at the rotation rates
(ω) of different electrodes, yielding Ts values for O2 and O2

‚´. Then, the obtained Ts is related to the
ω and the ratio of ν and the diffusion coefficient (D), according to Equation (7) [37,39]:

Ts “ K
´ ν

D

¯1{3
ω´1 (7)

where K is proportionally constant depending on the RRDE’s geometry; K = 43.1[log(r2/r1)]2/3 (for
Ts, reported in s and ω in rpm). For the RRDE used here, with r1 = 0.25 cm and r2 = 0.325 cm,
the value of K is 10.1 rpm¨ s. Table 1 shows the estimated values of the diffusion coefficients of O2

and O2
‚´ calculated from Equation (7) based on the slopes of Ts vs. ω´1 obtained from Figure 6d.

Figure 7a shows that well-defined O2 diffusion-limited currents are obtained for the ORR on a GC
electrode in an O2-saturated 0.1 M TBAPF6/PC solution. The K–L plot for the disk current values
at 1.50 VLi reveals the expected linear relation between the inverse of the limiting current andω´0.5

(see Equation (6)). As shown in Table 1, the concentration of oxygen (CO2) on the GC electrode was
estimated from the slope of the K–L plot using the prior measured values of ν and DO2 , where n = 1
(according to the reaction of Equation (1)). The value of CO2 is 6.1 M, which is higher than the finding
of a previous report (4.8 M) [37]. This can be attributed to the larger O2 flow rate in this experiment.
The estimated value of CO2 was also applied in the following calculations of the MnO2/C-GC electrode
since the same operation parameters (i.e., O2 flow rate, electrolyte composition, and amount) were
used, as listed in Table 1. The rate constant for producing O2

‚´, k f for GC and the MnO2/C-GC
electrodes can be obtained by linearly fitting the K–L plots of i´1 vs. ω´0.5 (see Equation (6)), as shown
in Figure 7a,b. The values of k f for GC and the MnO2/C-GC electrodes are 1.92 ˆ 10´2 cm¨ s´1 and
4.29 ˆ 10´2 cm¨ s´1, respectively. This result indicates that the MnO2/C cathode catalyst exhibits
a larger k f value, resulting from higher electrocatalytic activity for the first step of the ORR (see
Equation (1)) which produces a higher concentration of O2

‚´.
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Figure 7. (a) Steady-state CV curves of a glassy carbon rotating disk electrode (RDE) in an O2-saturated
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Recently, Herranz et al. [37] used RRDE voltammetry to quantify the stability of an electrolyte
against O2

‚´ by the rate constant (k) for Equation (2) According to their methods, the O2
‚´ produced

at the disk electrode in Equation (1) and the amount of O2
‚´ were quantified at the ring electrode.

The amount of O2
‚´ consumed depends on the effective transient time, Ts, between the disk and

the ring and the rate constant, k, for Equation (2). Longer Ts and larger k values cause increasing
consumption of O2

‚´ due to its reaction with the electrolyte, resulting in a lower O2
‚´ oxidation

current at the ring. Therefore, the collection efficiency, Nk, for O2
‚´ at the ring electrode decreases

with increasing transient time, which, in turn, depends on the geometry of ring and disk electrode, the
diffusion coefficient of O2

‚´ in the electrolyte, DO´
2

, and the electrode rotation speed,ω. The correlation
with the collection efficiency is the absolute ratio of ring and disk currents and can be characterized by
the following equation [37,40]:

Nk “ ´
iring

idisk
“ Ngeometrical ´β

2
3

´

1´UA´1
1

¯

`
1
2

A´1
1 A2

2κ2Uβ
4
3 ´ 2A2κ2T2 (8)

where A1 = 1.288, A2 = 0.643 ν1/6 DO´
2

1/3, β = 3ln(r3/r2), U = k´1tanh(A1k) and T2 = 0.718ln(r2/r1),
whereby r1–r3 refer to the radius of the disk and internal and external ring radii, respectively; ν is
the kinematic viscosity; ω is the rotation rate; k is the rate constant for Equation (2); and DO´

2
is

the diffusion coefficient of O2
‚´. Ngeometrical is the geometrical collection efficiency of the RRDE

corresponding to the fraction of a species electrochemically generated at the disk. This species is
detected at the ring due to the lack of side-reactions with the electrolyte. Equation (8) shows the
variation of Nk where the rotation rate and the rate constant (k) can be calculated at higher rotation
rates, which show that the Nk is close to a constant value. Figure 8a shows the RRDE profiles of
the MnO2/C sample coating on the disk electrode. The disk and ring currents are recorded in an
O2-saturated 0.1 M TBAPF6/PC solution at rotation rates between 300 and 2100 rpm, with continuous
holding of the Pt ring at 2.85 VLi. The ring current increases with the rotation rates because the shorter
transient time at higher rotation rates reduces the reaction time between O2

‚´ and the PC electrolyte
so that a higher concentration of superoxide radical can be oxidized at the ring. Also, the Nk increases
with rotation rates (ω) and is close to a constant value (0.14) atω = 2100 rpm, as shown in Figure 8b.
The PC-electrolyte decomposition rate constant (k) can be calculated by Equation (8) using the Nk
value at a rotation speed of 2100 rpm with the kinematic viscosity (ν) and DO´

2
listed in Table 1. Table 2

shows the rate constant for producing O2
‚´, k f , and the PC-electrolyte decomposition rate constant, k,

on the GC and MnO2/C-GC electrodes. The value of k (1.5 s´1) on the GC electrode is close to that
of a previously reported measurement (k = 1.3 s´1) [37]. Obviously, the k value on the MnO2/C-GC
electrode of 2.6 s´1 is larger than that on the GC electrode. This result shows that MnO2/C is more
active for the first step of the ORR (larger rate constant; k f ), producing a higher concentration of
O2
‚´ and leading to faster PC-electrolyte decomposition due to the attack by a large amount of O2

‚´.
Therefore, it is important to choose an appropriate electrolyte to avoid decomposition by O2

‚´ attack
for highly active catalyst applications on the cathode materials in Li-O2 batteries. More detailed RRDE
experiments and analysis will be carried out to estimate the decomposition rates of various electrolytes
with different active catalysts.

Table 2. The rate constant for producing O2
‚´, k f , and the PC-electrolyte decomposition rate constant,

k, on the GC and MnO2/C-GC electrodes.

Disk Material/Electrolyte k f (cm¨ s´1) k (s´1) Reference

GC/0.1 M TBAPF6, PC 1.9 ˆ 10´2 1.5 This work
MnO2/C-GC/0.1 M TBAPF6, PC 4.3 ˆ 10´2 2.6 This work

GC/0.2M TBATFSI, PC 1.3 [37]
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Figure 8. (a) RRDE profiles of MnO2/C recorded at 50 mV¨ s´1 in an O2-saturated 0.1 M TBAPF6/PC
solution, at rotation rates between 300 and 2100 rpm with continuous holding of the Pt ring at 2.85 VLi;
(b) evolution of the absolute ratio between the ring and disk current (Nk) and the electrode rotation
speed (ω).

4. Conclusions

A hierarchically mesoporous carbon-supported manganese oxide (MnO2/C) has been synthesized
by a combination of soft template and hydrothermal methods. SEM and TEM analysis confirmed that
hollow MnO2 nanorods grow homogeneously on ordered mesoporous carbon frameworks to form
a hierarchically mesoporous MnO2/C composite structure. The CV and galvanostatic charge–discharge
tests indicate that MnO2/C composites have excellent catalytic activity towards ORR due to the larger
surface area of ordered mesoporous carbon and higher catalytic activity of MnO2.

The O2 solubility, the diffusion rates of O2 and O2
‚´ coefficients, the rate constant for producing

O2
‚´ (k f ), and the PC-electrolyte decomposition rate constant (k) of the MnO2/C composites have

been measured by RRDE experiments and analysis in the 0.1 M TBAPF6/PC electrolyte. The results
indicate that MnO2/C is more active for the first step of the ORR (larger rate constant; k f ), produces
a higher concentration of O2

‚´, and leads to faster PC-electrolyte decomposition due to the attack by
a large amount of O2

‚´. The stability of the electrolyte is very important when applying an active
catalyst on a cathode material in Li-O2 batteries. More detailed RRDE experiments and analysis will
be carried out to estimate the decomposition rates of various electrolytes. These results seem to be
interesting for the design of advanced Li-O2 batteries with high electrochemical performance.
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