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Abstract: G-quadruplex is a quadruple helical form of nucleic acids that can appear in guanine-rich
parts of the genome. The basic unit is the G-tetrad, a planar assembly of four guanines connected
by eight hydrogen bonds. Its rich topology and its possible relevance as a drug target for a number
of diseases have stimulated several structural studies. The superior stiffness and electronic π-π
overlap between consecutive G-tetrads suggest exploitation for nanotechnologies. Here we inspect
the intimate link between the structure and the electronic properties, with focus on charge transfer
parameters. We show that the electronic couplings between stacked G-tetrads strongly depend on
the three-dimensional atomic structure. Furthermore, we reveal a remarkable correlation with the
topology: a topology characterized by the absence of syn-anti G-G sequences can better support
electronic charge transfer. On the other hand, there is no obvious correlation of the electronic coupling
with usual descriptors of the helix shape. We establish a procedure to maximize the correlation with
a global helix shape descriptor.

Keywords: G-quadruplex; DNA; electronic coupling; transfer integrals; structure; density
functional theory

1. Introduction

Artificial G-quadruplexes engineered to assemble with four parallel G strands and no terminal
loops are viable electrical conductors up to the scale of 100 nm, at odds with double-stranded DNA
molecules of comparable length [1]. This remarkable evidence will boost exploitation of these molecules
in nanotechnology [2,3]. In order to achieve control in this field, it is necessary to know how the
electrons behave, and in particular how strongly electrons residing in adjacent G-tetrads are coupled
to each other and can sustain electron or hole transfer.

Natural G-quadruplexes have long been known for their inherent biological relevance. Special
G-rich nucleic acid sequences that occur in the telomeric region of chromosomes, as well as in regulatory
and transcription regions, may fold into a quadruple motif [4]. These “monomolecular” (from a single
parent strand) genetic G-quadruplexes are only 2–4 G-tetrad long and can fold with parallel or
antiparallel strands. They may be responsible for chromosome stability. Recently, G-quadruplex
folding has been observed in vivo in human cells, for both DNA and RNA [5,6].

G4-motifs are genetic sequences that can fold in a quadruple helix in certain circumstances,
even during replication. G-quadruplexes folded from such motifs have been classified in terms of
structural topologies, which are dictated by the succession of syn and anti glycosidic bond angles
(GBA), as well as by the base sequence and loop length [7,8]. Note that the possible alternation
of syn and anti GBA’s in the quadruplex develops upon folding. It was observed that the circular
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dichroism signal is a fingerprint of topology group [9,10]. This evidence raises the question whether
the sequence, structure and folding topology can be exploited to tune the optical and electronic
properties of G-quadruplexes. This achievement would be a landmark for exploitation of this versatile
biological motif for therapeutical and nanotechnology applications. Thus, we investigated the relation
between the quadruplex topology and the transfer integral indicator of the electronic structure, by
means of density functional theory (DFT) calculations. This particular indicator will eventually
determine whether the G-quadruplex can be used as an electrical conductor and as a target (e.g., for
drugs) to control the propagation of oxidative damage in the human body by tuning the folding of
G-rich sequences.

2. Results

2.1. Choice of Relevant G4 Structures, Spanning Viable Topologies

G-quadruplex structures can be described in terms of three topology groups [9]. Group I is
constituted of quadruplex stems in which the four strands are parallel and the guanines are all anti.
Group II is constituted of antiparallel quadruplexes in which successive guanines along a strand
have the same (anti-anti or syn-syn) or distinct (anti-syn or syn-anti) GBA’s. Group III is constituted
of antiparallel quadruplexes in which successive guanines along a strand have only distinct (anti-syn
or syn-anti) GBA’s. Consistently with the choice adopted in optical experiments [9], we have selected
structures available in the nucleic acid database, as reported in Tables 1 and 2. For each structure,
we have taken into account all the NMR models, for a total of 142 structural models. From each
structural model, we have extracted all the possible intra-strand G-G couples for DFT transfer integral
calculations, for a total of 960 of frozen G-G DFT calculations (248 for group I, 392 for group II and
320 for group III), which are a viable sample for statistical analysis.

Table 1. Summary of the computed structures and electronic correlation.

Group PDB Code Nr. G4 § P(VIF-HL) †

I
1XAV 3 −0.49
2O3M 3 −0.73

II

2GKU 3 −0.71
2HY9 3 −0.87
2JPZ 3 −0.81

2KZD 3 −0.82
186D 3 −0.78

III

2KOW 2 −0.92
201D 4 −0.60
143D 3 −0.57
2KKA 2 −0.41
2KM3 2 −0.94
148D 2 −0.87
2KF8 2 −0.94

§ Nr. G4 is the number of G-tetrads. † P(VIF-HL) is the Pearson’s correlation coefficient between the electronic
structure parameters VIF (transfer integral) and HL (energy gap), which are defined and commented later.
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Table 2. Summary of the computed structures.

PDB Code Nr.
Models †

Nr.
Tetrads ‡

Nr.
Guanines

Strand
Directions Parent Sequence

Group I 1XAV [11] 20 3 22 ++++ 5’-TGAGGGTGGGTAGGGTGGGTAA-3’
2O3M [12] 11 3 22 ++++ 5’-AGGGAGGGCGCTGGGAGGAGGG-3’
2GKU [13] 12 3 24 ++−+ 5’-TTGGGTTAGGGTTAGGGTTAGGGA-3’
2HY9 [14] 10 3 26 ++−+ 5’-AAAGGGTTAGGGTTAGGGTTAGGGAA-3’
2JPZ [15] 10 3 26 +−++ 5’-TTAGGGTTAGGGTTAGGGTTAGGGTT-3’

2KZD [16] 10 3 20 +−++ 5’-AGGGIAGGGGCTGGGAGGGC-3’
Group II

186D [17] 7 3 24 +−++ 5’-TTGGGGTTGGGGTTGGGGTTGGGG-3’

Group III

2KOW [18] 10 2 20 +−+− 5’-TAGGGTAGGGTAGGGTAIGG-3’
201D [19] 6 4 28 +−+− 5’-GGGGTTTTGGGGTTTTGGGGTTTTGGGG-3’
143D [20] 6 3 22 +−+− 5’-AGGGTTAGGGTTAGGGTTAGGG-3’
2KKA [21] 8 2 23 +−+− 5’-AGGGTTAGGGTTAIGGTTAGGGT-3’
2KM3 [22] 10 2 22 +−+− 5’-AGGGCTAGGGCTAGGGCTAGGG-3’
148D [23] 12 2 15 +−+− 5’-GGTTGGTGTGGTTGG-3’

Group III

2KF8 [24] 10 2 22 +−+− 5’-GGGTTAGGGTTAGGGTTAGGGT-3’
† The number of models in the NMR structure from the protein databank. ‡ Number of G-tetrads that compose
the G-quadruplex. Strand directions in the quadruplex stem: + means parallel, - means antiparallel. The first
strand is + starting from the 5’ end of the parent strand. The parent sequence indicates the DNA G4-motif.

2.2. Strength of Electronic Coupling

We find that the parallel topology boosts electronic charge transfer through G-quadruplexes.
The strength of the electronic coupling between adjacent guanines is represented by the transfer
integral VIF, which was computed through the Marcus-Hush two-state model as implemented in
Gaussian09. Technical details are included in Section 4. For a clean data set, we computed only
intra-strand transfer integrals. Against comparison with a higher level of theory [25], we find that the
two-state model is a good approximation, at least in G-G stacked couples.

Figure 1 summarizes the statistical distribution of the transfer integral across all the G-G models,
separately for the three topology groups. For group I we obtain an average transfer integral with
standard deviation of 0.07 ± 0.04 eV. For both group II and group III the average values with standard
deviations are 0.06 ± 0.06 eV. In all the cases the distribution is very broad, which was also observed
in other studies of duplex and quadruplex DNA [25–28]. This finding confirms accumulating evidence
that charge transfer through DNA should be analyzed taking into account the dynamical flexibility,
in order to attain a quantitative description of realistic experimental conditions. Our results identify
a special correlation between the strength of electronic coupling and the topology. Although the
average values are almost identical in all groups, the pattern of the distributions in Figure 1 reveals
that the average value is representative only for group I, where it is a good approximation of the most
probable value, ~0.05 eV. In groups II and III, the distribution is not regular and the most probable
value is ~0.01 eV, much smaller than that of group I (see also Supporting Figure S1). Thus, we can
safely conclude that the group II and III topologies, with antiparallel strands and syn-anti and anti-syn
GBA sequences, are detrimental to charge transfer through the quadruplex axis. These results are
in line with experimental findings by Porath and coworkers, who showed that 4-stranded parallel
G-quadruplexes exhibit a superior electrostatic polarizability and larger thickness than monomolecular
G-quadruplexes when deposited onto mica [29]. Indeed, only 4-stranded parallel G-quadruplexes are
able to transport electrical currents in such a solid-state configuration [1].
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Figure 1. Distributions (normalized counts) of the computed transfer integral values for the three
topology groups across the NMR structural models. The vertical axis reports the normalized counts.
The group topologies are sketched in Figure 2 of Reference [9].

2.3. Correlation between Helix Shape Parameters and Electronic Coupling Parameters

We find that the quadruplex shape and the electronic parameters vary substantially across the
NMR structures. Furthermore, None of the conventional helix shape parameters correlates significantly
with indicators of the electronic structure.

The quadruplex shape has been evaluated with the software Curves 5.3 [30]. This methodology
implemented in this software applies only to regular Watson-Crick-like conformations, namely with
the anti-anti uniform GBA sequence. Thus, for this analysis we considered only the structures in groups
I and II (Table 1). Attention has been focused on the local inter-base intra-strand parameters that have
been evaluated for stacked G-G couples (Figure 2, top). Moreover, for group II we have discarded
all the parameters evaluated for syn-syn, syn-anti and anti-syn G-G couples (Table 3). Heat maps of
two electronic parameters—HL and VIF—and four quadruplex shape parameters—rise, twist, roll and
shift—are illustrated in the bottom part of Figure 2. HL is the energy gap between the highest occupied
molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the +1 charged
G-G couple, which is relevant to hole transfer. VIF is the computed transfer integral. The helix
shape parameters are those illustrated in Figure 2. We can see big variations for all the parameters,
distributed among all the structures. The roll of most conformations for all the structures is around the
mid-range value. The twist of all conformations for structure 2JPZ is around the minimum value of
20 degrees; also for structure 186D the twist mostly assumes small values in all the 21 conformations
of G-G couples. The other quantities are more uniformly spread. Considering all the 395 G-G
couples together, the ranges are: VIF = 0.000 − 1.193 eV, HL = 0.264 − 0.276 eV, rise = 2.90 − 4.28 Å,
twist = 14.27 − 41.37 degrees, roll = −25.58 − 26.76 degrees, shift = −1.43 − 1.81 Å.
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Figure 2. Top: illustration of the inter-base helix parameters between stacking guanines. Bottom:
heat mapss of the structural and electronic parameters on which correlations have been evaluated.
The 7 structures of group I and group II are arranged on the vertical axis, from bottom to top in each
panel: PDB ID 1XAV, 2O3M, 2GKU, 2HY9, 2JPZ, 2KZD, 186D. The horizontal axis represents the
different representative conformations (or NMR model) deposited for each structure in the nucleic
acid database (details in Table 3). The scale is shown on the right vertical axis: HL and VIF are in eV,
rise and shift are in Å, twist and roll are in degrees.

Table 3. Number of G-G couples from the G-quadruplex for the analysis in Figures 1–3.

PDB Code Nr. G-G Couples for VIF
* Statistics (Figure 1)

Nr. G-G Couples for Conformation
Fluctuations and Structure-Electronic

Correlations (Figures 2 and 3)

Group I
1XAV 160 160
2O3M 88 88

total group I 248 248

Group II

2GKU 96 36
2HY9 80 30
2JPZ 80 30

2KZD 80 30
186D 56 21

Group II

total group II 392 147

Group III

2KOW 40 0
201D 72 0
143D 48 0
2KKA 32 0
2KM3 40 0
148D 48 0
2KF8 40 0

Group III

total group III 320 0
* VIF is the transfer integral, computed according to the details described in the Computational approach below.
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We have calculated the Pearson’s correlation coefficient [31] between VIF and each of the helix
shape parameters shown in Figure 2—P(VIF-rise), P(VIF-twist), etc.—as well as between VIF and
HL–P(VIF-HL). The VIF-HL Pearson’s correlation coefficients are reported in Table 1. We find a negative
correlation between VIF and HL, which is consistent with the definition of the transfer integral in
terms of the energy splitting at the reaction coordinate (Section 4). For the structures of group I and
II the absolute value is larger than 0.7, with the exception of 1XAV; for the structures of group III
smaller values occur. The VIF-helix Pearson’s correlation coefficients are reported in detail in the
Supplementary Materials (Table S1). Here we discuss the salient features. The Pearson’s correlation
coefficient does not reveal any remarkable correlation between VIF and the inter-guanine helix shape
parameters: they are scattered between 0.07 and 0.69 in absolute values; some of them even vary
between positive and negative correlation. Intuitively, one would think that the stacking distance
(rise shape parameter) is a particularly crucial factor in determining the value of VIF: the larger the
rise, the smaller the electronic coupling, with a negative correlation. However, we find a large spread
of P(VIF-rise), from −0.63 to 0.17, with positive coefficients for structures with PDB ID’s 1XAV and
2HY9. Then we have searched for a homogeneous linear combination of the shape parameters that
maximizes the Pearson’s correlation coefficient for each structure (Section 4.3). The values are much
more meaningful, ranging between 0.49 to 0.85 for individual structures, while they are 0.59 and
0.44 for group I and II, respectively. The fact that cumulatively the correlation coefficients are smaller
means that different linear combinations apply to different structures of the same group. Indeed, we
note that in each group there are structures that conform to the intuition of a high negative correlation
between VIF and rise and other structures that do not. We have thus looked more closely at the origin
of the NMR studies, in order to make a selection. In group I we note that the quadruplex with PDB
ID 2O3M [12] has a reasonable P(VIF-rise) value and that also P(VIF-twist) is negative, while these
coefficients are oddly both positive in the quadruplex with PDB ID 1XAV [11]. Having these structures
a parallel topology, one would expect a very regular behavior and similar to each other. They were
resolved by different experimental groups, with PDB ID 1XAV being prior. Among the structures of
group II, quadruplexes with PDB ID’s 2GKU [20] and 2JPZ [15] have the largest negative correlation
coefficients of VIF with rise and twist: PDB ID 2GKU quadruplex [20] was resolved by the same group
that solved PDB ID 2O3M; PDB ID 2JPZ quadruplex [22] was solved by the same group that solved PDB
ID 1XAV. PDB ID 186D [17] is very old from 1994. PDB ID 2KZD quadruplex [16] was also resolved by
Phan and coworkers (as PDB ID’s 2O3M and 2GKU), while PDB ID 2HY9 [14] was resolved by Yang
and coworkers (as PDB ID’s 1XAV and 2JPZ). We have tried a restricted analysis of structure-function
correlations using a limited set of structures resolved after 2006 and for which P(VIF-rise) is negative
with large absolute value: We take PDB ID 2O3M as representative of group I, PDB ID’s 2GKU and
2JPZ as representative of group II. We find that the Pearson’s correlation coefficient between VIF and
the helix shape can be maximized by taking a unique homogeneous linear combination of the helix
shape parameters. Specifically, the linear combination of the opposite of the rise, 1/2 of the roll and
−5/3 of the twist maximizes the shape-VIF correlation. A slight further improvement is achieved by
including also −1/3 of the shift. Scatter plots obtained for group I and group II using this combination
of the helix shape parameters are shown in Figure 3 and reveal a significant linear correlation: the
linear fits have a R2 of 0.62 and 0.65 for group I and group II, respectively. For the restricted set
of conformations represented in Figure 3, spanning parallel and hybrid topologies of the human
telomeric sequence, the global shape variable can be tuned to design efficient molecular wires based
on G-quadruplex.
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The insets illustrate the representative structures for group I (2O3M) and group II (2GKU top left, 2JPZ
bottom right).

3. Discussion

As a note of caution, we conclude by remarking that the representative models for NMR structure
do not have a definite precision and collecting all of them in the statistical analysis may overweigh some
features that hide the true shape-electronic correlations. On the other hand, Lech and collaborators
reported that such correlations are hidden also in a molecular dynamics simulation. Moreover, our
preliminary analysis of correlations between shape and transfer integral over regular snapshots from a
10 µs-long trajectory of a parallel quadruplex does not reveal a clear correlation. It may be necessary to
filter the trajectory by eliminating internal distortions, which deserves full attention for a separate work.

In the present stage, we propose that, although no single shape parameter is responsible for
the value of the electronic coupling, the inter-guanine parameters in the combination outlined above
explain the electronic couplings in the experimental structures of groups I and II, characterized by
different topologies, to a fair degree of confidence. While the value of the electronic coupling is highest
for the topology of group I, the electronic-shape correlation is fairly independent of the topology.

4. Materials and Methods

4.1. Structural Analysis

The version Curves 5.3 that we have used to extract shape parameters supports the analysis
of 4-stranded DNA structures. What really counts for the correct use of Curves is the sequence of
glycosidic bond angles, which should be anti-anti as in B-DNA, because otherwise one should rotate
locally the reference system to calculate shape parameters. This is true for inter-base parameters, which
are the only parameters we are looking at. For other parameters, such as tip and opening, there may
be issues; but not for those chosen by us, which we believe are the most relevant for charge transfer.
This is the reason why the group of structures for the analysis of correlations is restricted to those in
the rightmost column of Table 4.
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Table 4. GBA sequence in the selected structures.

PDB Code Strand 1 Strand 2 Strand 3 Strand 4 Strand
Directions

Group I 1XAV
4(a)
5(a)
6(a)

8(a)
9(a)

10(a)

13(a)
14(a)
15(a)

17(a)
18(a)
19(a)

++++

2O3M
2(a)
3(a)
4(a)

6(a)
7(a)
8(a)

13(a)
14(a)
15(a)

10(a)
21(a)
22(a)

++++

Group II

2GKU
3(s)
4(a)
5(a)

9(s)
10(a)
11(a)

17(a)
16(s)
15(s)

21(s)
22(a)
23(a)

++−+

2HY9
4(s)
5(a)
6(a)

10(s)
11(a)
12(a)

18(a)
17(s)
16(s)

22(s)
23(a)
24(a)

++−+

2JPZ
4(s)
5(a)
6(a)

12(a)
11(s)
10(s)

16(s)
17(a)
18(a)

22(s)
23(a)
24(a)

+−++

2KZD
2(s)
3(a)
4(a)

10(a)
9(s)
8(s)

13(s)
14(a)
15(a)

17(s)
18(a)
19(a)

+−++

Group II

186D
3(s)
4(a)
5(a)

12(a)
11(s)
10(s)

16(s)
17(a)
18(a)

21(s)
22(a)
23(a)

+−++

Group III

2KOW 3(s)
4(a)

9(a)
8(s)

14(s)
15(a)

19(a)
20(s) +−+−

201D

1(s)
2(a)
3(s)
4(a)

12(a)
11(s)
10(a)
9(s)

17(s)
18(a)
19(s)
20(a)

28(a)
27(s)
26(a)
25(s)

+−+−

143D
2(a)
3(s)
4(a)

10(s)
9(a)
8(s)

14(a)
15(s)
16(a)

22(s)
21(a)
20(s)

+−+−

2KKA 2(s)
3(a)

9(a)
8(s)

15(s)
16(a)

21(a)
20(s) +−+−

2KM3 3(s)
4(a)

10(a)
9(s)

15(s)
16(a)

22(a)
21(s) +−+−

148D 1(s)
2(a)

6(a)
5(s)

10(s)
11(a)

15(a)
14(s) +−+−

Group III

2KF8 1(s)
2(a)

8(a)
7(s)

14(s)
15(a)

20(a)
19(s) +−+−

The numbers indicate the guanine (DG) labels in the NMR structure file with the specified pdb code.
In parentheses: a = anti, s = syn. The column “strand directions” is repeated from Table 1.

4.2. Computational Approach—Electronic Structure Calculations

From each G-quadruplex we extracted one, two or three dimers of stacked G-tetrads, according to
Table 2. A dimer is the fragment of the quadruplex constituted of two adjacent tetrads (Figure 4) and
we label it (G4)2. These fragments, deprived of the backbone, were subjected to quantum mechanical
(QM) calculations in the framework of density functional theory.

DFT calculations were performed with Gaussian09 using the Becke Half-and-Half (BHH)
functional [32] and the 6-31+G* basis set. The BHH functional comprises 1

2 Hartree-Fock exchange,
1
2 Slater exchange and 1

2 PW91-LDA correlation. Being derived from the rigorous adiabatic connection
formula for the exchange-correlation energy of Kohn-Sham DFT [33–36], the BHH functional rests
on a clear theoretical basis, rather than on an empirical choice for the amount of exact exchange. For
different π-stacked aromatic complexes, this density functional gave results in agreement with post-HF
calculations and experimental data [37–40].



Nanomaterials 2016, 6, 184 9 of 15

Nanomaterials 2016, 6, 184 9 of 14 

 

are not ideal structure formulas but come from real NMR data and have not been further optimized. 

Consequently, 𝜀1 ≠ 𝜀2 in the formula for 𝑉𝐼𝐹. 

 

Figure 4. Exemplifying structure of a (G4)2 dimer. This is taken from the G-quadruplex 1XAV, which 

contains three tetrads. The tetrads shown here included guanines 4, 8, 13, 17, 5, 9, 14, 18, as labeled in 

the PDB file. 

We are aware that the two-state model for VIF introduces errors in the estimated quantity, which 

can in principle be bypassed by more accurate theories [25,37,40]. We chose in this work a simple 

method that can routinely be applied to several fairly large structures, which are computationally 

prohibitive for more sophisticated approaches. We verified that this method gives satisfactory 

accuracy for the transfer integral of two stacked guanines. We used the standard G-G stacking 

geometry as an example: the transfer integral computed by us with the energy splitting approach and 

the technical ingredients specified above is 0.083 eV. This is a good approximation of the value 0.075 

eV determined by Migliore and co-workers using a refined formula for 𝑉𝐼𝐹, a more complete basis 

set for the electronic wave functions and diabatic states for the dimer [25]. To our purposes of 

analyzing the topological dependence of 𝑉𝐼𝐹 and revealing possible structure-𝑉𝐼𝐹  correlations this 

accuracy is sufficient and allows us to sample about a thousand relevant geometries. Furthermore, 

the similar fragment charge difference approach was successfully employed for the investigation of 

several G-quadruplex conformations [26]: the reliability of this and other semi-empirical methods is 

also discussed in the existing literature [47–49]. 

4.3. Statistical Analysis—Maximizing the Pearson’s Correlation Coefficient with the Transfer Integral for a 

Linear Combination of Helix Shape Parameters 

Let us define the variables  

𝑥𝑛 = 𝑠ℎ𝑖𝑓𝑡, 𝑠𝑙𝑖𝑑𝑒, 𝑟𝑖𝑠𝑒, 𝑑1 sin 𝑡𝑖𝑙𝑡, 𝑑2 sin 𝑟𝑜𝑙𝑙,
1
2⁄ 𝑑1(sin 𝑡𝑤𝑖𝑠𝑡 + cos 𝑡𝑤𝑖𝑠𝑡) and  

𝑧 = ∑ 𝛼𝑛
6
𝑛=1 𝑥𝑛, 

(1) 

with n ranging from 1 to 6, d1 = 7.4 Å  and d2 = 4.0 Å  being the size of the long and short side of guanine, 

respectively. z is a homogeneous linear combination of the local inter-base helix parameters, with 

coefficients 𝛼𝑛 that we wish to optimize to maximize the Pearson’s correlation coefficient between z 

and the transfer integral VIF–P(z,VIF), or between z and the HOMO-LUMO gap HL–p(z,HL).  

For xn, z, VIF and HL we have several instances, because we have considered different NMR 

structures, each of them with a number of models. So we use another index i that labels the G-G 

stacked couples, as a superscript. N is the total number of such couples in each considered group. A 

group could be Group I, Group II or Group III, or any single pdb (e.g., 2O3M), or any other 

classification that we want to consider. 

Figure 4. Exemplifying structure of a (G4)2 dimer. This is taken from the G-quadruplex 1XAV, which
contains three tetrads. The tetrads shown here included guanines 4, 8, 13, 17, 5, 9, 14, 18, as labeled in
the PDB file.

The aqueous environment was simulated in the framework of the polarizable continuum
model [41].

The sugar-phosphate backbone has been omitted from these calculations and the dangling bond
was saturated with a H atom. This choice was based on previous evidence that frontier orbitals, which
are mostly responsible for electronic coupling through π-stacked nucleotides, are essentially localized
on the base hetero-rings [42,43]. We are thus representing a framework in which any influence of the
backbone topology on the electronic structure and charge transfer is indirect. Namely, the backbone
moieties do not participate in charge transfer but impose structural conformations that are more or
less conducive to charge transfer along the helix axis. The backbone effect on electronic couplings in
DNA has been widely discussed by several authors and is discussed in reviews [44]. In particular,
Beratan and coworkers revealed that base interactions clearly dominate the bridge-mediated coupling
interactions, even in the presence of the bridging backbone [45].

The strength of the electronic coupling between adjacent molecules is represented by the transfer
integral, which was computed through the energy-splitting in dimer model as implemented in
Gaussian09. The transfer integral crucially depends on tiny atomic movements that change the
shape of frontier electron orbitals, specifically the highest occupied molecular orbital (HOMO) and the
orbital lying immediately below in the energy scale (HOMO-1) of the neutral complex. The transfer
integral of a selected (G4)2 dimer is related to the energy splitting between HOMO and HOMO-1
of the dimer, which in turn are determined by the HOMO of the unit guanine. Thus, we computed
intra-strand and inter-strand transfer integrals between guanines in consecutive tetrads. When two
guanine molecules approach each other, their interaction induces an energy splitting between the two
highest occupied molecular orbitals in the dimer. The transfer integral VIF can be expressed in terms
of the energy difference between the HOMO and HOMO-1 in the interacting guanine dimer [46,47]:

VIF =
√
(EHOMO − EHOMO−1)

2 − (ε1 − ε2)
2, where ε1 and ε2 are the energy levels of the HOMOs of

the two interacting guanines. If the two interacting guanines were identical we would have ε1 = ε2.
In our work, however, the geometries of two stacked guanines are never identical: they are not ideal
structure formulas but come from real NMR data and have not been further optimized. Consequently,
ε1 6= ε2 in the formula for VIF.

We are aware that the two-state model for VIF introduces errors in the estimated quantity, which
can in principle be bypassed by more accurate theories [25,37,40]. We chose in this work a simple
method that can routinely be applied to several fairly large structures, which are computationally
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prohibitive for more sophisticated approaches. We verified that this method gives satisfactory accuracy
for the transfer integral of two stacked guanines. We used the standard G-G stacking geometry
as an example: the transfer integral computed by us with the energy splitting approach and the
technical ingredients specified above is 0.083 eV. This is a good approximation of the value 0.075 eV
determined by Migliore and co-workers using a refined formula for VIF, a more complete basis set
for the electronic wave functions and diabatic states for the dimer [25]. To our purposes of analyzing
the topological dependence of VIF and revealing possible structure-VIF correlations this accuracy is
sufficient and allows us to sample about a thousand relevant geometries. Furthermore, the similar
fragment charge difference approach was successfully employed for the investigation of several
G-quadruplex conformations [26]: the reliability of this and other semi-empirical methods is also
discussed in the existing literature [47–49].

4.3. Statistical Analysis—Maximizing the Pearson’s Correlation Coefficient with the Transfer Integral for a
Linear Combination of Helix Shape Parameters

Let us define the variables

xn = shi f t, slide, rise, d1sintilt, d2sinroll,
1
2

d1 (sintwist + costwist) and z =
6

∑
n=1

αnxn, (1)

with n ranging from 1 to 6, d1 = 7.4 Å and d2 = 4.0 Å being the size of the long and short side of guanine,
respectively. z is a homogeneous linear combination of the local inter-base helix parameters, with
coefficients αn that we wish to optimize to maximize the Pearson’s correlation coefficient between z
and the transfer integral VIF–P(z,VIF), or between z and the HOMO-LUMO gap HL–p(z,HL).

For xn, z, VIF and HL we have several instances, because we have considered different NMR
structures, each of them with a number of models. So we use another index i that labels the G-G stacked
couples, as a superscript. N is the total number of such couples in each considered group. A group
could be Group I, Group II or Group III, or any single pdb (e.g., 2O3M), or any other classification that
we want to consider.

By definition, the Pearson’s correlation coefficient between our target structural variable z and a
generic electronic variable t (t is either VIF or HL) is:

P (z, t) =
∑N

i=1
(
zi − z

) (
ti − t

)√
∑N

i=1
(
zi − z

)2
√

∑N
i=1
(
ti − t

)2
(2)

Now let us replace zi with its definition from Equation (1):

P (z, t) =
∑N

i=1 ∑6
n=1 αn

(
xi

n − xn
) (

ti − t
)

T
√

∑N
i=1 ∑6

n,m=1 αnαm
(
xi

n − xn
) (

xi
m − xm

) (3)

In Equation (3), T =
√

∑N
i=1
(
ti − t

)2 is a constant factor that can be excluded from the
maximization problem.

Exploiting the definition of covariance, the problem of maximizing P(z,t) in Equation (3) can be
recast as:

Max

(
∑6

n=1 αncov (xn, t)

∑6
n,m=1 αnαmcov (xn, xm)

)
(4)

The quantity cov (xn, t) is a 6-component vector (for n = 1, . . . ,6), say
→
b . The numerator in

Equation (4) is thus the scalar product
→
α ·
→
b , with

→
α being the 6-component vector formed by the
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coefficients αn. Anm = cov (xn, xm) are the matrix elements of the 6×6 matrix A. In matrix-vector
notation, Equation (4) becomes:

Max

 →
α ·
→
b√

→
α

T
A
→
α

 (5)

Matrix diagonalization of A yields the eigenvalues λn and eigenvectors
→
δ n (n = 1, . . . ,6).

By definition, the matrix A can be expressed in terms of its eigenvalues and eigenvectors:

A =
6

∑
n=1

λn
→
δ n
→
δ

T

n (6)

The 6-component vector
→
α can be expressed on the basis of the eigenvectors

→
δ n with proper

coefficients an:
→
α =

6

∑
n=1

an
→
δ n (7)

With these expression Equation (5) can be further developed to:

Max

∑6
n=1 an

→
δ n ·

→
b

∑6
n=1 a2

nλn

 (8)

For further manipulation to a manageable analytical solution, after defining and substituting
ã = an

√
λn one obtains:

Max

∑6
n=1 ãn

(→
δ n ·
→
b√

λn

)
∑6

n=1 ã2
n

 (9)

Or

Max

(
∑6

n=1 ãndn

∑6
n=1 ã2

n

)
, dn =

→
δ n ·

→
b√

λn
(10)

The expression in Equation (8) is maximum for ãn = dn√
∑6

k=1 d2
k

, and going backwards it is

possible to write an and then
→
α , whose 6 components are the coefficients of the linear combination in

Equation (1), namely the solution of the problem. From the diagonalization of the matrix A one thus
obtains the coefficients that maximize the Pearson’s correlation coefficient P(z,t).

In summary, the steps of this procedure, which has been applied to obtain the data in the rightmost
column of Table S1 (Supplementary Materials) and the scatter plots of Figure 3, are:

• compute the covariance of each inter-base helix parameter xn with VIF and with all the other

inter-base helix parameters xm; the former is vector
→
b (this vector can also be obtained for the

electronic quantity t = HL), the latter is matrix A;
• diagonalize matrix A;
• use the eigenvalues and eigenvectors of A to determine the coefficients an that maximize the

shape-electronic Pearson’s correlation coefficient;
• calculate the Pearson’s correlation coefficient of this combination, which is an effective helix

parameter, with VIF (and HL), reported in Table S1.

The scatter plots in Figure 3 have been obtained using a similar linear combination, but with
the coefficients tuned to represent all the representative structures of groups I and II, with a reduced
number of parameters (as discussed in Section 2.3). Such a global homogeneous structural quantity
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takes into account how the relevant part (inter-base parameters) of the entire helical shape correlates
with the ability of the guanine stack to sustain charge transfer. It means that the global shape, rather
a single parameter, is relevant for physicochemical function, at least for the specific function of
charge transfer.

5. Conclusions

We have carried out density functional theory calculations of transfer integrals for G-G stacked
couples extracted from G-quadruplexes of different topologies, and looked for correlations between
this electronic quantities and helix shape parameters. Our results indicate that the parallel topology
is characterized by the highest transfer integrals, relative to antiparallel and hybrid topologies.
Furthermore, we find that it is not a single shape parameters that correlates with the electronic
coupling, but rather a linear combination of inter-base parameters that embodies the global helix shape.
This global shape parameter can be tuned to optimize charge transport through G-quadruplexes.

Supplementary Materials: The following are available online at www.mdpi.com/2079-4991/6/10/184/s1.
Table S1: Pearson’s correlation coefficients [31] between structural and electronic parameters. Figure S1: Gaussian
fits of statistical distributions.
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