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Abstract:



Crystalline nanoparticles or nanoprecipitates with a cubic structure often have near polyhedral shapes composed of low-index planes with {100}, {111} and {110}. To consider such near polyhedral shapes, algebraic formulas of extended superspheres that can express intermediate shapes between spheres and various polyhedra have been presented. Four extended superspheres, (i) {100} regular-hexahedral; (ii) {111} regular-octahedral (iii) {110} rhombic-dodecahedral and (iv) {100}-{111}-{110} rhombicuboctahedral superspheres are treated in this study. A measure ∏ to indicate the degree of polyhedrality is presented to discuss shape transitions of the extended superspheres. As an application of ∏ superspherical coherent precipitate is shown.
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1. Introduction


To consider intermediate shapes of nanoparticles or nanoprecipitates between a sphere and cube, a solid figure called a supersphere was discussed in previous studies [1,2]. An equation describing the supersphere is


[image: there is no content]



(1)




and expresses a sphere with radius R when p = 2 and a cube with edges 2R as [image: there is no content]. It is reported in [3] that Equation (1) first appeared in a paper by Gabriel Lamé, the 19th century French mathematician. When [image: there is no content] and [image: there is no content], Equation (1) becomes [image: there is no content]. This explains the reason why the limit for Equation (1) gives a cube surrounded by three sets of parallel planes [image: there is no content], [image: there is no content] and [image: there is no content] [4]. Shape transition from a sphere to cube can be represented by increasing p. Figure 1 shows the shape given by Equation (1) for [image: there is no content] and [image: there is no content].


Figure 1. The shape given by Equation (1) for [image: there is no content] and [image: there is no content].
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In the case of crystals having cubic structures, nanoparticles or nanoprecipitates often have near polyhedral shapes composed of low-index planes with {100}, {111} and {110} [5,6]. These planes have lower values of the surface-energy density and the anisotropy of surface-energy density affects the equilibrium shapes [7,8]. The anisotropy of elastic moduli also affects equilibrium shapes of misfit nanoprecipitates in alloys [9,10]. The nearly polyhedral shapes of the nanoparticles or nanoprecipitates have been often explained by such anisotropies [7,8,9,10].



Onaka recently extended Equation (1) and derived algebraic formulas to describe intermediate shapes between spheres and various convex polyhedra [4,11]. Now superspheres mean shapes intermediate between spheres and various polyhedra [4]. The original supersphere given by Equation (1) can be called a cubic or hexahedral supersphere to distinguish these from other superspheres such as an octahedral supersphre. The extended superspheres have been used to approximate various near polyhedral shapes of nanoparticles and nanoprecipitates [8,12].



The superspherical-shape approximation is useful to discuss various near polyhedral shapes of crystalline nanomaterials [1,8,10,12,13,14,15]. The extended superspheres are also treated in mechanics as possible shapes of inclusions and pores in materials [16,17,18,19,20,21]. When we use the superspherical-shape approximation, a measure of the degree of polyhedrality is needed to discuss the shape transitions [2,8,10]. Equations to describe the extended superspheres essentially have the same form as Equation (1) [4,11]. Since the shapes of the extended superspheres also change from spheres to polyhedra with increasing the power exponent p in Equation (1), p has been hence used as the measure of the degree of polyhedrality[2,4]. Instead of p without the upper bound, a parameter [image: there is no content] given by


[image: there is no content]



(2)




which satisfies [image: there is no content] when [image: there is no content] and [image: there is no content] when [image: there is no content] has also been used [2]. Since [image: there is no content] is the ratio of the maximum to minimum radii on the cross-sections of the cubic supersphere, it is a convenient parameter to grasp the shape transition [2]. However, for the other extended superspheres, [image: there is no content] does not generally have such geometrical meaning. As will be shown later, p or [image: there is no content] is not appropriate as a common measure of the degree of polyhedrality of the extended superspheres. In the present paper, we propose a new parameter [image: there is no content] as the measure of the degree of polyhedrality. As an application of [image: there is no content], we will show the precipitate-shape dependence of elastic-strain energy of a material containing a superspherical coherent precipitate.




2. Equations of Extended Superpheres


Here we show equations of the extended superspheres that become polyhedra composed of {100}, {111} and {110} as the limiting shapes [4].



• {100} Regular-hexahedral supersphere:


[image: there is no content]



(3a)




where


[image: there is no content]



(3b)




Here the x, y and z axes mean [image: there is no content] of a crystal with a cubic structure. Equations (3) are the same as Equation (1) for the original supersphere.



• {111} Regular-octahedral supersphere:


[image: there is no content]



(4a)




where


[image: there is no content]



(4b)







• {110} Rhombic-dodecahedral supersphere:


[image: there is no content]



(5a)




where


[image: there is no content]



(5b)







• {100}-{111}-{110} Polyhedral supersphere:


[image: there is no content]



(6)







This Equation (6) is an equation combining [image: there is no content], [image: there is no content] and [image: there is no content] and gives superspheres which become the {100}-{111}-{110} polyhedra as the limiting shapes. When [image: there is no content], we find that the innermost surfaces of the polyhedra are retained to form the combined polyhedron among the three polyhedra given by [image: there is no content], [image: there is no content] and [image: there is no content] [4]. The parameters a and b are those for determining the ratios of the {100}, {111} and {110} surfaces of the limiting shapes. Figure 2 shows the shapes of the polyhedra as a function of a and b [4]. In the present study, we will consider the supersphere with [image: there is no content] and [image: there is no content] that becomes a rhombicuboctahedron (RCO) with six square {100}, eight equilateral-triangular {111} and twelve square {110} when [image: there is no content].


Figure 2. Diagram showing the variations of polyhedra composed of {100}, {111} and {110} as the limiting shapes of the extended superspheres The parameters a and b are those for determining the ratios of the {100}, {111} and {110}. The points P, R and S respectively correspond to the {100} hexahedron, the {111} octahedron and the {110} dodecahedron. Polyhedra composed of one or two of the crystallographic planes can be shown around the quadrilateral surrounded as shown in the insets. The {100}-{111}-{110} polyhedra with different ratios of the three crystallographic planes are expressed inside of the quadrilateral.



[image: Nanomaterials 06 00027 g002]









3. Geometrical Changes in Superpheres and Measure of the Degree of Polyhedrality


Sphere is the solid figure having the minimum surface area under constant volume. The shape transitions of the extended superspheres from spheres to polyhedra cause the increase of surface area when the volume is kept constant. When [image: there is no content] and [image: there is no content] respectively denotes the surface area and volume of a solid figure, [image: there is no content] given by


[image: there is no content]



(7)




is a measure of the surface area under constant volume [8,12]. The cube of [image: there is no content],


[image: there is no content]



(8)




is known as the Steinitz number that has been used to discuss geometrical characteristics of polyhedral [22,23].



The shape transitions of the extended superspheres from spheres to various polyhedra represented by the relationship between [image: there is no content] and [image: there is no content] are shown in Figure 3 for the hexahedral, octhedral and dodecahedral superspheres respectively given by Equations (3)–(5) and RCO supersphere given by Equation (6) with [image: there is no content] and [image: there is no content]. In Figure 3, the results are shown with the insets of the polyhedral shapes when [image: there is no content]. Although [image: there is no content] monotonically increases from that for a sphere [image: there is no content] to those of the polyhedra, the change in N with increasing [image: there is no content] is not the same among the four superspheres.


Figure 3. The relationship between [image: there is no content] and [image: there is no content] for the hexahedral, octahedral and dodecahedral superspheres respectively given by Equations (3)–(5) and rhombicuboctahedral (RCO) supersphere given by Equation (6) with [image: there is no content] and [image: there is no content]. The results for the superspheres are shown with insets of the polyhedral shapes when [image: there is no content].
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To compare the changes in [image: there is no content] from spheres to the polyhedra, we introduce the normalized change [image: there is no content] given by:


[image: there is no content]



(9)







For a sphere and polyhedron, we have [image: there is no content] and [image: there is no content] respectively. Figure 4 shows the changes in [image: there is no content] as a function of [image: there is no content] for the hexahedral, octhedral, dodecahedral and RCO superspheres. The [image: there is no content] dependence of [image: there is no content] shown in Figure 4 is quite different among the superspheres. The shape transitions from spheres to the polyhedra are delayed in the order of the hexahedral, octhedral, dodecahedral and ROC superspheres. For example, although the hexahedral supersphere with [image: there is no content] has a near polyhedral shape as shown in Figure 1, the RCO supersphere with the same value of [image: there is no content] still has the values of [image: there is no content] and [image: there is no content] almost the same as those of a sphere. The shape transition of the RCO supersphere is not noticeable at [image: there is no content].


Figure 4. The relationship between [image: there is no content] given by Equation (9) and [image: there is no content] for the hexahedral, octahedral and dodecahedral and RCO superspheres, where [image: there is no content] is a function of [image: there is no content].
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The parameter [image: there is no content] given by [image: there is no content] is a more reasonable measure of the degree of polyhedrality than [image: there is no content] or [image: there is no content]. Figure 5 shows the shape variations of the superspheres at various values of Π. The values in a parenthesis separated by a slash in Figure 5 are those of [image: there is no content] (left) and [image: there is no content] (right) for the shape. For the initial shape transitions at lower [image: there is no content], [image: there is no content] and [image: there is no content] at the same [image: there is no content] are much different among the various superspheres. For example, when [image: there is no content], we have 1.216 and 1.365 for the values of [image: there is no content] for the hexahedral and RCO superspheres, respectively.


Figure 5. The shapes of the hexahedral, octahedral, dodecahedral and RCO superspheres at various values of [image: there is no content]. The values in a parenthesis separated by a slash are those of [image: there is no content] (left) and [image: there is no content] (right) for each shape.
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We have considered [image: there is no content] given by [image: there is no content], since [image: there is no content] has a clear geometrical-meaning, the surface area under constant volume. If we use the Steinitz number [image: there is no content] given by Equation (8) instead of [image: there is no content], the normalized change [image: there is no content] given by


[image: there is no content]



(10)




is obtained. It is interesting to note that even if we consider [image: there is no content] given by [image: there is no content], we have the [image: there is no content] relation (Figure 6) which is very similar to the [image: there is no content] relation (Figure 4).


Figure 6. The relationship between [image: there is no content] and [image: there is no content] for the hexahedral, octahedral and dodecahedral and RCO superspheres, where [image: there is no content] is a function of the Steinitz number [image: there is no content]. It is interesting to note that this [image: there is no content] relation is very similar to the [image: there is no content] relation (Figure 4).
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4. Example of Applications of the Polyhedrality


It is well known that the total surface or interface energy changes when shapes of particles or precipitates change. Similarly, mechanical energy such as elastic strain energy is also changed by shape changes of misfit precipitates in alloys [9,10,14]. As an example of applications of the polyhedrality [image: there is no content], here we show the precipitate-shape dependence of the elastic-strain energy for coherent precipitates in a matrix.



The situation to consider the elastic-strain energy is summarized in Figure 7a. The matrix with a face-centered cubic structure contains a coherent precipitate having the same elastic moduli as the matrix. Those of the extended superspheres treated in the present study give possible shapes of the precipitate. The precipitate has a purely dilatational misfit strains [image: there is no content] and causes elastic strains in the material including the precipitate [24], where [image: there is no content] the Kronecker delta giving the components of the strain tensor. The elastic strain energy [image: there is no content] due to the superspherical precipitate can be numerically calculated as a function of the misfit strain [image: there is no content], the volume of the precipitate [image: there is no content], the elastic modulus of the material including their anisotropy and the shape factor of the superspherical precipitate such as [image: there is no content], [image: there is no content] or [image: there is no content] [10]. Figure 7b shows the relationship between the normalized elastic-strain energy [image: there is no content] and the polyhedrality [image: there is no content], where


[image: there is no content]



(11)




and [image: there is no content] is one of the elastic modulus of the cubic material. The anisotropy of elastic moduli of Cu is used to show Figure 7b. [image: there is no content] for precipitates with sharp edges are evaluated by extrapolation [10] as shown by broken lines in Figure 7b.


Figure 7. (a) Schematic illustration showing a superspherical coherent precipitate in a matrix with a cubic structure. The precipitate has a purely dilatational misfit strains [image: there is no content] and causes elastic strains in the material containing the precipitate. (b) The precipitate-shape dependence of the elastic-strain energy shown by the relationship between the normalized elastic-strain energy [image: there is no content] and the polyhedrality [image: there is no content]. The results for the precipitate shapes of the hexahedral, octhedral, dodecahedral and RCO superspheres are shown.



[image: Nanomaterials 06 00027 g007]






As shown in Figure 7b, the values of [image: there is no content] for the {100}-{111}-{110} RCO supersphere are always almost the same as that for a sphere at [image: there is no content]. The {100} hexahedral and the {111} octahedral polyhedra have the minimum and the maximun [image: there is no content] among the polyhdron. Including the {110} dodecahedral superspheres, the increasing and decreasing behavior of [image: there is no content] for these superspheres with shape transitions from the sphere are similar when we adopt [image: there is no content] as a measure of the degree of polyhedrality. The introduction of the polyhedrality [image: there is no content] is convenient to discuss such changes in [image: there is no content] with the shape transitions. Other applications of [image: there is no content] will be shown in our future work.






5. Conclusions


Crystalline nanoparticles or nanoprecipitates often have near polyhedral shapes composed of low-index planes. Intermediate shapes between spheres and various convex polyhedra can be approximated with the concept of the extended superspheres. Four extended superspheres, (i) {100} regular-hexahedral; (ii) {111} regular-octahedral, (iii) {110} rhombic-dodecahedral and (iv) {100}-{111}-{110} rhombicuboctahedral superspheres have been treated in this study. A measure [image: there is no content] to indicate the degree of polyhedrality has been presented to discuss shape transitions of the extended superspheres. As an application of [image: there is no content], the precipitate-shape dependence of elastic-strain energy of a material containing the superspherical coherent precipitate has been shown.
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