A Facile Approach to Prepare Black TiO2 with Oxygen Vacancy for Enhancing Photocatalytic Activity
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of B-TiO2 Nanoparticles
2.3. Characterization
2.4. Photocatalytic Test
3. Results and Discussion
3.1. Characterization
3.2. Photocatalytic Activity
3.3. Mechanism
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Zuo, F.; Wang, L.; Wu, T.; Zhang, Z.Y.; Borchardt, D.; Feng, P.Y. Self-Doped Ti3+ Enhanced Photocatalyst for Hydrogen Production under Visible Light. J. Am. Chem. Soc. 2010, 132, 11856–11857. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Sheng, W.C.; Wang, M.S.; Lia, S.J.; Chen, J.R.; Zhang, Y.; Cao, S.S. In situ Synthesis of Carbon-doped TiO2 Single-crystal Nanorods with Aremarkably Photocatalytic Efficiency. Appl. Catal. B Environ. 2017, 209, 311–319. [Google Scholar] [CrossRef]
- Yu, J.G.; Low, J.X.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced Photocatalytic CO2-Reduction Activity of Anatase TiO2 by Coexposed {001} and {101} Facets. J. Am. Chem. Soc. 2014, 136, 8839–8842. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ni, Y.R.; Lu, C.H.; Xu, Z.Z. Hydrogenation Temperature Related Inner Structures and Visible-light-driven Photocatalysis of N–F co-doped TiO2 Nanosheets. Appl. Surf. Sci. 2014, 290, 125–130. [Google Scholar] [CrossRef]
- Liu, B.; Chen, H.M.; Liu, C.; Andrews, S.C.; Hahn, C.; Yang, P.D. Large-Scale Synthesis of Transition-Metal-Doped TiO2 Nanowires with Controllable Overpotential. J. Am. Chem. Soc. 2013, 135, 9995–9998. [Google Scholar] [CrossRef] [PubMed]
- Inturi, S.N.R.; Boningari, T.; Suidan, M.; Smirniotis, P.G. Flame Aerosol Synthesized Cr Incorporated TiO2 for Visible Light Photodegradation of Gas Phase Acetonitrile. J. Phys. Chem. C 2014, 118, 231–242. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Fang, L.; Dong, W.; Zheng, F.G.; Shen, M.R.; Wang, J.L. Inverse Opal Structured Ag/TiO2 Plasmonic Photocatalyst Prepared by Pulsed Current Deposition and its Enhanced Visible Light Photocatalytic Activity. J. Mater. Chem. A 2014, 2, 824–832. [Google Scholar] [CrossRef]
- Kamegawa, T.; Matsuura, S.; Seto, H.; Yamashita, H. A Visible-Light-Harvesting Assembly with a Sulfocalixarene Linker between Dyes and a Pt-TiO2 Photocatalyst. Angew. Chem. Int. Ed. 2013, 52, 916–919. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.H.; Cai, Z.Y.; Yu, Y.; Zhao, X.S. Controllable Synthesis of Mesoporous F-TiO2 Spheres for Effective Photocatalysis. J. Mater. Chem. 2011, 21, 11430–11438. [Google Scholar] [CrossRef]
- Senna, M.; Myers, N.; Aimable, A.; Laporte, V.; Pulgarin, C.; Baghriche, O.; Bowen, P. Modification of titania nanoparticles for photocatalytic antibacterial activity via a colloidal route with glycine and subsequent annealing. J. Mater. Res. 2013, 28, 354–361. [Google Scholar] [CrossRef]
- Milosevic, I.; Jayaprakash, A.; Greenwood, B.; van Driel, B.; Rtimi, S.; Bowen, P. Synergistic Effect of Fluorinated and N Doped TiO2 Nanoparticles Leading to Different Microstructure and Enhanced Photocatalytic Bacterial Inactivation. Nanomaterials 2017, 7, 391. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Y.; Gao, T.T.; Andino, J.M.; Li, Y. Copper and Iodine Co-modified TiO2 Nanoparticles for Improved Activity of CO2 Photo Reduction with Water Vapor. Appl. Catal. B Environ. 2012, 123, 257–264. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, J.; Hou, J.; Yang, J.J. Molybdenum and Nitrogen Co-doped Titanium Dioxide Nanotube Arrays with Enhanced Visible Light Photocatalytic Activity. Sci. Adv. Mater. 2013, 5, 535–541. [Google Scholar] [CrossRef]
- Chen, X.B.; Liu, L.; Yu, P.Y.; Mao, S.S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science 2011, 331, 746–750. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.Y.; Joo, J.H.; Samuelis, D.; Maier, J. Oxygen-Deficient TiO2−δ Nanoparticles via Hydrogen Reduction for High Rate Capability Lithium Batteries. Chem. Mater. 2012, 24, 543–551. [Google Scholar] [CrossRef]
- Samsudina, E.M.; Hamida, S.B.A.; Juana, J.C.; Basiruna, W.J.; Kandjani, A.E. Surface Modification of Mixed-phase Hydrogenated TiO2 and Corresponding Photocatalytic Response. Appl. Surf. Sci. 2015, 359, 883–896. [Google Scholar] [CrossRef]
- Zhu, Q.; Peng, Y.; Lin, L.; Fan, C.M.; Gao, G.Q.; Wang, R.X.; Xu, A.W. Stable Blue TiO2−x Nanoparticles for Efficient Visible Light Photocatalysts. J. Mater. Chem. A 2014, 2, 4429–4437. [Google Scholar] [CrossRef]
- Zou, X.X.; Liu, J.K.; Su, J.; Zuo, F.; Chen, J.S.; Feng, P.Y. Facile Synthesis of Thermal-and Photostable Titania with Paramagnetic Oxygen Vacancies for Visible-Light Photocatalysis. Chem. Eur. J. 2013, 19, 2866–2873. [Google Scholar] [CrossRef] [PubMed]
- Kang, Q.; Cao, J.Y.; Zhang, Y.J.; Liu, L.Q.; Xu, H.; Ye, J.H. Reduced TiO2 Nanotube Arrays for Photoelectrochemical Water Splitting. J. Mater. Chem. A 2013, 1, 5766–5774. [Google Scholar] [CrossRef]
- Liu, N.; Schneider, C.; Freitag, D.; Hartmann, M.; Venkatesan, U.; Müller, J.; Spiecker, E.; Schmuki, P. Black TiO2 Nanotubes: Cocatalyst-Free Open-Circuit Hydrogen Generation. Nano Lett. 2014, 14, 3309–3313. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, C.Y.; Lin, T.Q.; Yin, H.; Chen, P.; Wan, D.Y.; Xu, F.F.; Huang, F.Q.; Lin, J.H.; Xie, X.M.; et al. Visible-light Photocatalytic, Solar Thermal and Photoelectrochemical Properties of Aluminium-reduced Black Titania. Energy Environ. Sci. 2013, 6, 3007–3014. [Google Scholar] [CrossRef]
- Sinhamahapatra, A.; Jeon, J.P.; Yu, J.S. A New Approach to Prepare Highly Active and Stable Black Titania for Visible Light-assisted Hydrogen Production. Energy Environ. Sci. 2015, 8, 3539–3544. [Google Scholar] [CrossRef]
- Zhou, X.M.; Zolnhofer, E.M.; Nguyen, N.T.; Liu, N.; Meyer, K.; Schmuki, P. Stable Co-Catalyst-Free Photocatalytic H2 Evolution From Oxidized Titanium Nitride Nanopowders. Angew. Chem. Int. Ed. 2015, 54, 13385–13389. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Gao, S.; Xu, H.; Lou, Z.Z.; Wang, W.J.; Huang, B.B.; Dai, Y. Green Synthetic Approach for Ti3+ Self-doped TiO2−x Nanoparticles with Efficient Visible Light Photocatalytic Activity. Nanoscale 2013, 5, 1870–1875. [Google Scholar] [CrossRef] [PubMed]
- Pei, Z.X.; Ding, L.Y.; Lin, H.; Weng, S.X.; Zheng, Z.Y.; Hou, Y.D.; Liu, P. Facile Synthesis of Defect-mediated TiO2-x with Enhanced Visible Light Pphotocatalytic Activity. J. Mater. Chem. A 2013, 1, 10099–10102. [Google Scholar] [CrossRef]
- Wang, G.M.; Wang, H.Y.; Ling, Y.C.; Tang, Y.C.; Yang, X.Y.; Fitzmorris, R.C.; Wang, C.C.; Zhang, J.Z.; Li, Y. Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting. Nano Lett. 2011, 11, 3026–3033. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.Y.; Han, J.; Liu, Y.S.; Nakajima, A.; Matsushita, S.; Wei, S.H.; Gao, W. Defective Black TiO2 Synthesized via Anodization for Visible-Light Photocatalysis. ACS Appl. Mater. Interfaces 2014, 6, 1385–1388. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Zhu, G.L.; Wang, X.; Yuan, X.T.; Lin, T.Q.; Huang, F.Q. Progress in Black Titania: A New Material for Advanced Photocatalysis. Adv. Energy Mater. 2016, 6, 1600452. [Google Scholar] [CrossRef]
- Fan, C.Y.; Chen, C.; Wang, J.; Fu, X.X.; Ren, Z.M.; Qian, G.D.; Wang, Z.Y. Black Hydroxylated Titanium Dioxide Prepared via Ultrasonication with Enhanced Photocatalytic Activity. Sci. Rep. 2015, 5, 11712. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Zhang, Y.W.; Shenoy, V.B.; Gao, H.J. Effects of H-, N-, and (H, N)-Doping on the Photocatalytic Activity of TiO2. J. Phys. Chem. C 2011, 115, 12224–12231. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Wen, B.; Hao, Q.Q.; Liu, L.M.; Zhou, C.Y.; Mao, X.C.; Lang, X.F.; Yin, W.J.; Dai, D.X.; Selloni, A.; et al. Localized Excitation of Ti3+ Ions in the Photoabsorption and Photocatalytic Activity of Reduced Rutile TiO2. J. Am. Chem. Soc. 2015, 137, 9146–9152. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Lu, C.H.; Ni, Y.R.; Song, J.B.; Su, M.X.; Xu, Z.Z. Enhanced Visible-light Photoactivity of {001} Facets Dominated TiO2 Nanosheets with Even Distributed Bulk Oxygen Vacancy and Ti3+. Catal. Commun. 2012, 22, 19–23. [Google Scholar] [CrossRef]
- Chen, X.B.; Liu, L.; Liu, Z.; Marcus, M.A.; Wang, W.C.; Oyler, N.A.; Grass, M.E.; Mao, B.H.; Glans, P.A.; Yu, P.Y. Properties of Disorder-engineered Black Titanium Dioxide Nanoparticles Through Hydrogenation. Sci. Rep. 2013, 3, 1510. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Desai, R.; Jha, P.K.; Sahoob, S.; Kirinc, D. Titanium Dioxide Synthesized Using Titanium Chloride: Size Effect Study Using Raman Spectroscopy and Photoluminescence. J. Raman Spectrosc. 2010, 41, 350–355. [Google Scholar] [CrossRef]
- Parker, J.C.; Siegel, R.W. Calibration of the Raman Spectrum to the Oxygen Stoichiometry of Nanophase TiO2. Appl. Phys. Lett. 1990, 57, 943–945. [Google Scholar] [CrossRef]
- Liu, H.; Ma, H.T.; Li, X.Z.; Li, W.Z.; Wu, M.; Bao, X.H. The Enhancement of TiO2 Photocatalytic Activity by Hydrogen Thermal Treatment. Chemosphere 2003, 50, 39–46. [Google Scholar] [CrossRef]
- Mao, L.; Cai, X.Y.; Gao, H.; Diao, X.G.; Zhang, J.Y. A Newly Designed Porous Oxynitride Photoanode with Enhanced Charge Carrier Mobility. Nano Energy 2017, 39, 172–182. [Google Scholar] [CrossRef]
- Serpone, N. Is the Band Gap of Pristine TiO2 Narrowed by Anion-and Cation-Doping of Titanium Dioxide in Second-Generation Photocatalysts? J. Phys. Chem. B 2006, 110, 24287–24293. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lin, L.B.; Jing, F.Q. Theoretical Study of F-type Color Center in Rutile TiO2. J. Phys. Chem. Solids 2001, 62, 1257–1262. [Google Scholar] [CrossRef]
- Chen, J.; Song, W.X.; Hou, H.S.; Zhang, Y.; Jing, M.J.; Jia, X.N.; Ji, X.B. Ti3+ Self-Doped Dark Rutile TiO2 Ultrafine Nanorods with Durable High-Rate Capability for Lithium-Ion Batteries. Adv. Funct. Mater. 2015, 25, 6793–6801. [Google Scholar] [CrossRef]
- Huo, J.C.; Hu, Y.J.; Jiang, H.; Li, C.Z. In Situ Surface Hydrogenation Synthesis of Ti3+ Self-doped TiO2 with Enhanced Visible Light Photoactivity. Nanoscale 2014, 6, 9078–9084. [Google Scholar] [CrossRef] [PubMed]
- Ullattila, S.G.; Periyat, P. A ‘One Pot’ Gel Combustion Strategy towards Ti3+ Self-doped ‘black’ Anatase TiO2−x Solar Photocatalyst. J. Mater. Chem. A 2016, 4, 5854–5858. [Google Scholar] [CrossRef]
- Atuchin, V.V. Comment on “A ‘one pot’ Gel Combustion Strategy towards Ti3+ Self-doped ‘black’ Anatase TiO2−x Solar Photocatalyst,” by S.G. Ullattil and P. Periyat, J. Mater. Chem. A, 2016, 4, 5854. J. Mater. Chem. A 2017, 5, 426–427. [Google Scholar] [CrossRef]
- Pan, X.Y.; Yang, M.Q.; Fu, X.Z.; Zhang, N.; Xu, Y.J. Defective TiO2 with Oxygen Vacancies: Synthesis, Properties and Photocatalytic Applications. Nanoscale 2013, 5, 3601–3614. [Google Scholar] [CrossRef] [PubMed]
- Moya, A.; Cherevan, A.; Marchesan, S.; Gebhardt, P.; Prato, M.; Eder, D.; Vilatela, J.J. Oxygen Vacancies and Interfaces Enhancing Photocatalytic Hydrogen Production in Mesoporous CNT/TiO2 Hybrids. Appl. Catal. B Environ. 2015, 179, 574–582. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Yang, C.Y.; Lin, T.Q.; Yin, H.; Chen, P.; Wan, D.Y.; Xu, F.F.; Huang, F.Q.; Lin, J.H.; Xie, X.M.; et al. H-Doped Black Titania with Very High Solar Absorption and Excellent Photocatalysis Enhanced by Localized Surface Plasmon Resonance. Adv. Funct. Mater. 2013, 23, 5444–5450. [Google Scholar] [CrossRef]
- Sharma, P.K.; Pandey, A.C.; Zolnierkiewicz, G.; Guskos, N.; Rudowicz, C. Relationship between Oxygen Defects and the Photoluminescence Property of ZnO Nanoparticles: A Spectroscopic View. J. Appl. Phys. 2009, 106, 094314. [Google Scholar] [CrossRef]
- Tian, Z.L.; Cui, H.L.; Zhu, G.L.; Zhao, W.L.; Xu, J.J.; Shao, F.; He, J.Q.; Huang, F.Q. Hydrogen Plasma Reduced Black TiO2-B Nanowires for Enhanced Photoelectrochemical Water-Splitting. J. Power Sources 2016, 325, 697–705. [Google Scholar] [CrossRef]
- Komaguchi, K.; Maruoka, T.; Nakano, H.; Imae, I.; Ooyama, Y.; Harima, Y. Electron-Transfer Reaction of Oxygen Species on TiO2 Nanoparticles Induced by Sub-band-gap Illumination. J. Phys. Chem. C 2010, 114, 1240–1245. [Google Scholar] [CrossRef]
- Janotti, A.; Varley, J.B.; Rinke, P.; Umezawa, N.; Kresse, G.; Van de Walle, C.G. Hybrid Functional Studies of the Oxygen Vacancy in TiO2. Phys. Rev. B 2010, 81, 085212. [Google Scholar] [CrossRef]
- Cronemeyer, D.C. Infrared Absorption of Reduced Rutile TiO2 Single Crystals. Phys. Rev. 1959, 113, 1222–1226. [Google Scholar] [CrossRef]
- Hu, Y.H. A Highly Efficient Photocatalyst-Hydrogenated Black TiO2 for the Photocatalytic Splitting of Water. Angew. Chem. Int. Ed. 2012, 51, 12410–12412. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Xiao, Y.; Wang, Y.; Hu, Z.; Zhao, H.; Xie, W. A Facile Approach to Prepare Black TiO2 with Oxygen Vacancy for Enhancing Photocatalytic Activity. Nanomaterials 2018, 8, 245. https://doi.org/10.3390/nano8040245
Chen S, Xiao Y, Wang Y, Hu Z, Zhao H, Xie W. A Facile Approach to Prepare Black TiO2 with Oxygen Vacancy for Enhancing Photocatalytic Activity. Nanomaterials. 2018; 8(4):245. https://doi.org/10.3390/nano8040245
Chicago/Turabian StyleChen, Shihao, Yang Xiao, Yinhai Wang, Zhengfa Hu, Hui Zhao, and Wei Xie. 2018. "A Facile Approach to Prepare Black TiO2 with Oxygen Vacancy for Enhancing Photocatalytic Activity" Nanomaterials 8, no. 4: 245. https://doi.org/10.3390/nano8040245
APA StyleChen, S., Xiao, Y., Wang, Y., Hu, Z., Zhao, H., & Xie, W. (2018). A Facile Approach to Prepare Black TiO2 with Oxygen Vacancy for Enhancing Photocatalytic Activity. Nanomaterials, 8(4), 245. https://doi.org/10.3390/nano8040245