High Performance Ultrathin MoO3/Ag Transparent Electrode and Its Application in Semitransparent Organic Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of the Transparent Electrode
2.2. Fabrication of Semitransparent Organic Solar Cell Devices
2.3. Measurement
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sangar, A.; Merlen, A.; Torchio, P.; Vedraine, S.; Flory, F.; Escoubas, L.; Patrone, L.; Delafosse, G.; Chevallier, V.; Moyen, E.; et al. Fabrication and characterization of large metallic nanodots arrays for organic thin film solar cells using anodic aluminum oxide templates. Sol. Energy Mater. Sol. Cells 2013, 117, 657–662. [Google Scholar] [CrossRef]
- Luo, G.; Cheng, X.; He, Z.; Wu, H.; Cao, Y. High-performance inverted polymer solar cells based on thin copper film. J. Photonics Energy 2014, 5, 057206. [Google Scholar] [CrossRef]
- Xia, Y.J.; Sun, K.; Ouyang, J.Y. Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv. Mater. 2012, 24, 2436–2440. [Google Scholar] [CrossRef] [PubMed]
- Sergeant, N.P.; Hadipour, A.; Niesen, B.; Cheyns, D.; Heremans, P.; Peumans, P.; Rand, B.P. Design of Transparent Anodes for Resonant Cavity Enhanced Light Harvesting in Organic Solar Cells. Adv. Mater. 2012, 24, 728–732. [Google Scholar] [CrossRef] [PubMed]
- Salinas, J.F.; Yip, H.L.; Chueh, C.C.; Li, C.Z.; Maldonado, J.L.; Jen, A.K. Optical Design of Transparent Thin Metal Electrodes to Enhance In-Coupling and Trapping of Light in Flexible Polymer Solar Cells. Adv. Mater. 2012, 24, 6362–6367. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.S.; Chen, T.L.; Formica, N.; Hwang, J.; Bruder, I.; Pruneri, V. High figure-of-merit Ag/Al:ZnO nano-thick transparent electrodes for indium-free flexible photovoltaics. Sol. Energy Mater. Sol. Cells 2012, 107, 338–343. [Google Scholar] [CrossRef]
- Cao, W.; Zheng, Y.; Li, Z.; Wrzesniewski, E.; Hammond, W.T.; Xue, J. Flexible organic solar cells using an oxide/metal/oxide trilayer as transparent electrode. Org. Electron. 2012, 13, 2221–2228. [Google Scholar] [CrossRef]
- Yang, K.; Rahman, M.A.; Jeong, K.; Nam, H.; Kim, J.; Lee, J. Semitransparent, thin metal grid-based hybrid electrodes for polymer solar cells. Mater. Sci. Semicond. Process. 2014, 23, 104–109. [Google Scholar] [CrossRef]
- Morgenstern, F.S.F.; Kabra, D.; Massip, S.; Brenner, T.J.K.; Lyons, P.E.; Coleman, J.N.; Friend, R.H. Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells. Appl. Phys. Lett. 2011, 4, 183307. [Google Scholar] [CrossRef]
- Kim, A.; Won, Y.; Woo, K.; Kim, C.; Moon, J. Highly Transparent Low Resistance ZnO/Ag Nanowire/ZnO Composite Electrode for Thin Film Solar Cells. ACS Nano 2013, 7, 1081–1091. [Google Scholar] [CrossRef] [PubMed]
- Krantz, J.; Stubhan, T.; Richter, M.; Spallek, S.; Litzov, I.; Matt, G.J.; Spiecker, E.; Brabec, C.J. Spray-Coated Ag Nanowires as Top Electrode Layer in Semitransparent P3HT:PCBM-Based Organic Solar Cell Devices. Adv. Funct. Mater. 2013, 23, 1711–1717. [Google Scholar] [CrossRef]
- Lee, J.Y.; Connor, S.T.; Cui, Y.; Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 2008, 8, 689–692. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Sun, Z.Z.; Yan, Z.; Jin, Z.; Tour, J.M. Rational design of hybrid graphene films for high-performance transparent electrodes. ACS Nano 2011, 5, 6472–6479. [Google Scholar] [CrossRef] [PubMed]
- De Arco, L.G.; Zhang, Y.; Schlenker, C.W.; Ryu, K.; Thompson, M.E.; Zhou, C.W. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics. ACS Nano 2010, 4, 2865–2873. [Google Scholar] [CrossRef] [PubMed]
- Xiao, G.; Tao, Y.; Lu, J.; Zhang, Z. Highly conductive and transparent carbon nanotube composite thin films deposited on polyethylene terephthalate solution dipping. Thin Solid Films 2010, 518, 2822–2824. [Google Scholar] [CrossRef] [Green Version]
- Travkin, V.V.; Luk’yanov, A.Y.; Drozdov, M.N.; Vopilkin, E.A.; Yunin, P.A.; Pakhomov, G.L. Ultrathin metallic interlayers in vacuum deposited MoOx/metal/MoOx electrodes for organic solar cells. Appl. Surf. Sci. 2016, 390, 703–709. [Google Scholar] [CrossRef]
- Cattin, L.; Morsli, M.; Dahou, F.; Yapi Abe, S.; Khelilc, A.; Bernède, J.C. Investigation of low resistance transparent MoO3/Ag/MoO3 multilayer and application as anode in organic solar cells. Thin Solid Films 2010, 518, 4560–4563. [Google Scholar] [CrossRef]
- Leem, D.; Eawards, A.; Faist, M.; Nelson, J.; Bradley, D.D.C.; de Mello, J.C. Efficient Organic Solar Cells with Solution-Processed Ag Nanowire Electrodes. Adv. Mater. 2011, 23, 4371–4375. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, N.; Søndergaard, R.; Jørgensen, M.; Krebs, F.C. Flow Synthesis of Ag Nanowires for Semitransparent Solar Cell Electrodes: A Life Cycle Perspective. ChemSusChem 2016, 9, 893–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastorelli, F.; Romero-Gomez, P.; Betancur, R.; Martinez-Otero, A.; Mantilla-Perez, P.; Bonod, N.; Martorell, J. Enhanced Light Harvesting in Semitransparent Organic Solar Cells using an Optical Metal Cavity Configuration. Adv. Energy Mater. 2015, 5, 1400614. [Google Scholar] [CrossRef]
- Hösel, M.; Angmo, D.; Søndergaard, R.R.; dos Reis Benatto, G.A.; Carlé, J.E.; Jørgensen, M.; Krebs, F.C. High-Volume Processed, ITO-Free Superstrates and Substrates for Roll-to-Roll Development of Organic Electronics. Adv. Sci. 2014, 1, 50–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.H.; Ou, Q.D.; Li, Y.Q.; Zhang, Y.B.; Zhao, X.D.; Xiang, H.Y.; Chen, J.D.; Zhou, L.; Lee, S.T.; Tang, J.X. Microcavity-Free Broadband Light Outcoupling Enhancement in Flexible Organic Light-Emitting Diodes with Nanostructured Transparent Metal-Dielectric Composite Electrodes. ACS Nano 2016, 10, 1625–1632. [Google Scholar] [CrossRef] [PubMed]
- Gu, D.; Zhang, C.; Wu, Y.K.; Guo, L.J. Ultrasmooth and Thermally Stable Ag-Based Thin Films with Subnanometer Roughness by Aluminum Doping. ACS Nano 2014, 8, 10343–10351. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, B.; Leong, E.S.P.; Yang, P.; Zong, Y.; Si, G.; Teng, J.; Maier, S.A. Enhanced Surface Plasmon Resonance on a Smooth Ag Film with a Seed Growth Layer. ACS Nano 2010, 4, 3139–3146. [Google Scholar] [CrossRef] [PubMed]
- Logeeswaran, V.J.; Kobayashi, N.P.; Islam, M.S.; Wu, W.; Chaturvedi, P.; Fang, N.X.; Wang, S.Y.; Williams, R.S. Ultrasmooth Ag Thin Films Deposited with a Germanium Nucleation Layer. Nano Lett. 2009, 9, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fryauf, D.M.; Garrett, M.; Logeeswaran, V.J.; Sawabe, A.; Islam, M.S.; Kobayashi, N.P. Phenomenological Model of the Growth of Ultrasmooth Ag Thin Films Deposited with a Germanium Nucleation Layer. Langmuir 2015, 31, 7852–7859. [Google Scholar] [CrossRef] [PubMed]
- Cioarec, C.; Melpignano, P.; Gherardi, N.; Clergereaux, R.; Villeneuve, C. Ultrasmooth Ag thin film electrodes with high polar liquid wettability for OLED microcavity application. Langmuir 2011, 27, 3611–3617. [Google Scholar] [CrossRef] [PubMed]
- Sahu, D.R.; Lin, S.-Y.; Huang, J.-L. ZnO/Ag/ZnO multilayer films for the application of a very low resistance transparent electrode. Appl. Surf. Sci. 2006, 252, 7509–7514. [Google Scholar] [CrossRef]
- Zhao, G.Q.; Kim, S.M.; Lee, S.-G.; Bae, T.-S.; Mun, C.W.; Lee, S.H.; Yu, H.S.; Lee, G.-H.; Lee, H.-S.; Song, M.; Yun, J. Bendable Solar Cells from Stable, Flexible, and Transparent Conducting Electrodes Fabricated Using a Nitrogen-Doped Ultrathin Copper Film. Adv. Funct. Mater. 2016, 26, 4180–4191. [Google Scholar] [CrossRef]
- Ito, S.; Takeuchi, T.; Katayama, T.; Sugiyama, M.; Matsuda, M.; Kitamura, T.; Wada, Y.; Yanagida, S. Conductive and Transparent Multilayer Films for Low-Temperature-Sintered Mesoporous TiO2 Electrodes of Dye-Sensitized Solar Cells. Chem. Mater. 2003, 15, 2824–2828. [Google Scholar] [CrossRef]
- Bauch, M.; Dimopoulos, T. Design of ultrathin metal-based transparent electrodes including the impact of interface roughness. Mater. Des. 2016, 104, 37–42. [Google Scholar] [CrossRef]
- Behrendt, A.; Friedenberger, C.; Gahlmann, T.; Trost, S.; Becker, T.; Zilberberg, K.; Polywka, A.; Gorrn, P.; Riedl, T. Highly robust transparent and conductive gas diffusion barriers based on tin oxide. Adv. Mater. 2015, 27, 5961–5967. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.H.; Jia, C.H.; Zheng, H.W.; Ding, L.H.; Zhang, W.F. High quality transparent conductive SnO2/Ag/SnO2 tri-layer films deposited at room temperature by magnetron sputtering. Mater. Lett. 2012, 85, 68–70. [Google Scholar] [CrossRef]
- Fahland, M.; Vogt, T.; Schoenberger, W.; Schiller, N. Optical properties of metal based transparent electrodes on polymer films. Thin Solid Films 2008, 516, 5777–5780. [Google Scholar] [CrossRef]
- Della, G.E.; Peng, Y.; Hou, Q.; Spiccia, L.; Bach, U.; Jasieniak, J.J.; Cheng, Y.-B. Ultra-thin high efficiency semitransparent perovskite solar cells. Nano Energy 2015, 13, 249–257. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Q.; Hsieh, Y.-T.; Song, T.-B.; Marco, N.D.; Zhou, H.; Yang, Y. Multilayer Transparent Top Electrode for Solution Processed Perovskite/Cu(InGa)(SeS)2 Four Terminal Tandem Solar Cells. ACS Nano 2015, 9, 7714–7721. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Tao, C.; Velusamy, M.; Aljada, M.; Zhang, Y.; Hambsch, M.; Burn, P.L.; Meredith, P. Efficient, Large Area ITO-and-PEDOT-free Organic Solar Cell Sub-modules. Adv. Mater. 2012, 24, 2572–2577. [Google Scholar] [CrossRef] [PubMed]
- Jeon, K.; Youn, H.; Kim, S.; Shin, S.; Yang, M. Fabrication and characterization of WO3/Ag/WO3 multilayer transparent anode with solution-processed WO3 for polymer light-emitting diodes. Nanoscale Res. Lett. 2012, 7, 253. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lv, Y.; Zhang, X.; Wang, X.; Liu, X. High-performance ITO-free electrochromic films based on bi-functional stacked WO3/Ag/WO3 structures. Sol. Energy Mater. Sol. Cells 2015, 136, 86–91. [Google Scholar] [CrossRef]
- Hong, K.; Kim, K.; Kim, S.; Lee, I.; Cho, H.; Yoo, S.; Choi, H.W.; Lee, N.-Y.; Tak, Y.-H.; Lee, J.-L. Optical Properties of WO3/Ag/WO3 Multilayer As Transparent Cathode in Top-Emitting Organic Light Emitting Diodes. J. Phys Chem. C 2011, 115, 3453–3459. [Google Scholar] [CrossRef]
- Lee, K.-T.; Lee, J.Y.; Seo, S.; Guo, L.J. Colored ultrathin hybrid photovoltaics with high quantum efficiency. Light-Sci. Appl. 2014, 3, e215. [Google Scholar] [CrossRef]
- Tao, C.; Xie, G.; Liu, C.; Zhang, X.; Dong, W.; Meng, F.; Kong, X.; Shen, L.; Ruan, S.; Chen, W. Semitransparent inverted polymer solar cells with MoO3/Ag/MoO3 as transparent electrode. Appl. Phys. Lett. 2009, 95, 53303. [Google Scholar] [CrossRef]
- Cho, J.M.; Lee, S.K.; Moon, S.-J.; Jo, J.; Shin, W.S. MoO3/Ag/MoO3 top anode structure for semitransparent inverted organic solar cells. Curr. Appl. Phys. 2014, 14, 1144–1148. [Google Scholar] [CrossRef]
- Upama, M.B.; Wright, M.; Elumalai, N.K.; Mahmud, M.A.; Wang, D.; Chan, K.H.; Xu, C.; Haque, F.; Uddin, A. High performance semitransparent organic solar cells with 5% PCE using non-patterned MoO3/Ag/MoO3 anode. Curr. Appl. Phys. 2017, 17, 298–305. [Google Scholar] [CrossRef]
- Köstlin, H.; Frank, G. Optimization of transparent heat mirrors based on a thin silver film between antireflection films. Thin Solid Films 1982, 89, 287–293. [Google Scholar] [CrossRef]
- Lee, C.-C.; Chen, S.-H.; Jaing, C.-C. Optical monitoring of silver-based transparent heat mirrors. Appl. Opt. 1996, 35, 5698–5703. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kang, T.E.; Han, D.; Kim, H.; Kim, B.J.; Lee, J.; Yoo, S. Polymer/small-molecule parallel tandem organic solar cells based on MoOx–Ag–MoOx intermediate electrodes. Sol. Energy Mater. Sol. Cells 2015, 137, 34–43. [Google Scholar] [CrossRef]
- Xu, W.-F.; Chin, C.-C.; Hung, D.-W.; Wei, P.-K. Transparent electrode for organic solar cells using multilayer structures with nanoporous Ag film. Sol. Energy Mater. Sol. Cells 2013, 118, 81–89. [Google Scholar] [CrossRef]
- Barrows, A.T.; Masters, R.; Pearson, A.J.; Rodenburg, C.; Lidzey, D.G. Indium-free multilayer semi-transparent electrodes for polymer solar cells. Sol. Energy Mater. Sol. 2016, 144, 600–607. [Google Scholar] [CrossRef]
- Lee, I.; Lee, J.-L. Transparent electrode of nanoscale metal film for optoelectronic devices. J. Photonics Energy 2015, 5, 057609. [Google Scholar] [CrossRef] [Green Version]
- Galhenage, R.P.; Yan, H.; Tenney, S.A.; Park, N.; Henkelman, G.; Albrecht, P.; Mullins, D.R.; Chen, D.A. Understanding the Nucleation and Growth of Metals on TiO2: Co Compared to Au, Ni, and Pt. J. Phys. Chem. C 2013, 117, 7191–7201. [Google Scholar] [CrossRef]
- Diebold, U.; Pan, J.-M.; Madey, T.E. Ultrathin metal film growth on TiO2(110): An overview. Surf. Sci. 1995, 331–333, 845–854. [Google Scholar] [CrossRef]
Ag Thickness (nm) | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|
Ta (%) | 71.00 | 71.72 | 74.22 | 72.28 | 69.39 |
Rs (ohm/sq) | 53.74 ± 9.16 | 38.71 ± 6.59 | 19.68 ± 1.77 | 17.48 ± 2.27 | 12.18 ± 0.74 |
Device (X/nm) | Jsc (mA/cm2) | Voc (V) | FF (%) | PCE (%) | Rs (Ω·cm2) | Rsh (Ω·cm2) | |
---|---|---|---|---|---|---|---|
7 | Average | 6.48 ± 0.08 (6.53) | 0.71 ± 0.008 (0.71) | 47.75 ± 1.89 (48.00) | 2.19 ± 0.07 (2.23) | 33.93 ± 5.77 (32.59) | 925.87 ± 121.89 (835.11) |
Best | |||||||
8 | Average | 6.96 ± 0.14 (7.12) | 0.71 ± 0.006 (0.71) | 44.33 ± 0.58 (45.00) | 2.18 ± 0.07 (2.26) | 39.54 ± 2.09 (40.29) | 669.53 ± 68.20 (675.17) |
Best | |||||||
9 | Average | 6.93 ± 0.40 (7.47) | 0.72 ± 0.005 (0.72) | 54.00 ± 2.45 (51.00) | 2.71 ± 0.05 (2.76) | 22.56 ± 3.07 (23.42) | 999.04 ± 131.60 (873.40) |
Best | |||||||
10 | Average | 6.71± 0.16 (6.85) | 0.71 ± 0.010 (0.71) | 53.17 ± 0.75 (54.00) | 2.54 ± 0.09 (2.63) | 22.40± 2.21 (21.68) | 859.18 ± 102.82 (883.63) |
Best | |||||||
11 | Average | 7.17 ± 0.17 (7.11) | 0.71 ± 0.010 (0.72) | 47.50 ± 2.38 (49.00) | 2.40 ± 0.12 (2.51) | 37.01 ± 6.54 (42.8) | 722.22 ± 137.24 (883.82) |
Best |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Cui, Y.; Gao, Y.; Wang, W.; Zhang, Y.; Zhu, F.; Hao, Y. High Performance Ultrathin MoO3/Ag Transparent Electrode and Its Application in Semitransparent Organic Solar Cells. Nanomaterials 2018, 8, 473. https://doi.org/10.3390/nano8070473
Shi L, Cui Y, Gao Y, Wang W, Zhang Y, Zhu F, Hao Y. High Performance Ultrathin MoO3/Ag Transparent Electrode and Its Application in Semitransparent Organic Solar Cells. Nanomaterials. 2018; 8(7):473. https://doi.org/10.3390/nano8070473
Chicago/Turabian StyleShi, Linlin, Yanxia Cui, Yupeng Gao, Wenyan Wang, Ye Zhang, Furong Zhu, and Yuying Hao. 2018. "High Performance Ultrathin MoO3/Ag Transparent Electrode and Its Application in Semitransparent Organic Solar Cells" Nanomaterials 8, no. 7: 473. https://doi.org/10.3390/nano8070473
APA StyleShi, L., Cui, Y., Gao, Y., Wang, W., Zhang, Y., Zhu, F., & Hao, Y. (2018). High Performance Ultrathin MoO3/Ag Transparent Electrode and Its Application in Semitransparent Organic Solar Cells. Nanomaterials, 8(7), 473. https://doi.org/10.3390/nano8070473