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Abstract: This paper reports the synthesis and complex characterization of nanocomposite hydrogels
based on polyacrylamide and functionalized magnetite nanoparticles. Magnetic nanoparticles
were functionalized with double bonds by 3-trimethoxysilyl propyl methacrylate. Nanocomposite
hydrogels were prepared by radical polymerization of acrylamide monomer and double bond
modified magnetite nanoparticles. XPS spectra for magnetite and modified magnetite were recorded
to evaluate the covalent bonding of silane modifying agent. Swelling measurements in saline solution
were performed to evaluate the behavior of these hydrogels having various compositions. Mechanical
properties were evaluated by dynamic rheological analysis for elastic modulus and vibrating sample
magnetometry was used to investigate the magnetic properties. Morphology, geometrical evaluation
(size and shape) of nanostructural characteristics and the crystalline structure of the samples were
investigated by SEM, HR-TEM and selected area electron diffraction (SAED). The nanocomposite
hydrogels will be further tested for the soft tissue engineering field as repairing scaffolds, due to their
mechanical and magnetization behavior that can stimulate tissue regeneration.
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1. Introduction

Polymeric hydrogel-like materials are a category of soft materials containing crosslinked
hydrophilic networks with a high swelling ability. The hydrophilic nature of the macromolecular
chains is based, in general, on side hydrophilic active groups [1–4]. The cross-linking reaction of
hydrophilic chains is an absolute requirement for dissolution avoiding of polymeric material. The
generation of a cross-linked network assumes formation of inter and intramolecular bridges, which do
not allow the solvent molecules to solve and unfold the macromolecules. Thus, the solvent can only
penetrate among polymeric molecules and swell the material [5,6]. In the swollen state, the polymeric
hydrogel exhibits brittleness and obvious low mechanical properties. These disadvantages seriously
limit their usage in special biomedical applications. The use of polymeric hydrogels is directly related
to the intrinsic mechanical properties in the swollen state. A relatively new concept of polymeric
nanocomposite hydrogels has started to overcome these problems by combining the advantage
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of polymeric hydrogels with the advantage of polymeric nanocomposites [7–15]. Nanocomposite
hydrogels have been developed by various methods, such as in situ polymerization or pre-modified
inorganic nanoparticles [16–21]. Modified inorganic nanomaterials have gained special attention, as
they can be used as inorganic crosslinkers. These types of modified crosslinkers exhibit a unique
flexible intrinsic structure with a serious contribution to improving mechanical properties [22]. The
major limitation of the swollen hydrogels is related to the network generation process based on
traditionally low molecular weight organic crosslinkers. The limitation of classic organic crosslinkers,
due to their relative low number of available groups for reactions with polymeric chains, can be
overcome by inorganic nanoparticles modified with multiple groups. A suitable modification involves
designing molecular architectures with long and short intermolecular and intramolecular bridges at
the same time [7,23–27]. The mechanical stress generates the fracture first of short chains to partially
dissipate the elastic energy, while the long chains take the remaining loading. Meanwhile, the hydrogel
is still intact [4,28–31]. Inorganic nanoparticles as crosslinkers possess high stretchability, elasticity
and superior toughness for polymeric nanocomposite hydrogels, with potential use in soft tissue
applications. Inorganic nanoparticles such as magnetite exhibit a high potential for modification with
functional groups, due to the presence of hydroxyl groups. They show outstanding physico-chemical
properties due to the presence of both species of iron [32–34]. Furthermore, magnetite has been used
with great success for various biomedical applications [34–37], including cellular imaging [38] or cancer
diagnosis, monitoring and treatment [39].

This research study is focused on the development of nanocomposite networks crosslinked by
highly-functionality modified magnetite with enhanced stretchability and elasticity for biological
tissue applications.

2. Materials and Methods

2.1. Materials

The reagents used for the synthesis of the magnetic iron oxide nanoparticles were iron chloride
iron (III) chloride (FeCl3, 97%), ferrous sulfate heptahydrate (FeSO4·7H2O) and ammonium hydroxide
solution (NH4OH). The acrylamide monomer, 3-trimethoxysilyl propyl methacrylate modifier agent
and potassium persulfate initiator were used for the preparation of hydrogels. All the reagents were
supplied by Sigma-Aldrich, 3050 Spruce Street, St. Louis, MO, United States.

2.2. Synthesis of Magnetite (Fe3O4) Nanoparticles

The synthesis of the Fe3O4 nanoparticles (MNPs) was carried out at room temperature, by
co-precipitation method, starting from iron (III) chloride, ferrous sulfate heptahydrate and ammonium
hydroxide solution [40,41]. The iron chloride was dissolved in deionized water to give a clear solution.
Under vigorous magnetic stirring, the FeSO4·7H2O was added to the solution (Fe2+/Fe3+ = 1:2 molar
ratio). Independently, an aqueous solution of ammonium hydroxide is prepared, and the mixture
solution resulting from the iron chloride and ferrous sulfate heptahydrate was added to it. Magnetite
nanoparticles formed and precipitated. The MNPs were separated from the reaction medium using a
strong magnet. The powder was rinsed several times with distilled water until reaching a neutral pH
(pH = 7) in the washing solution. After washing, the precipitate was dried for 12h in air oven, at 60 ◦C.

2.3. Synthesis of Double Bond Modified Magnetite Nanoparticles

The surface modification of the magnetic nanoparticles with double bonds was carried out in
several steps, as follows (Figure 1). Briefly, 2 g of MNPs were reacted with 4 mL of 3-trimethoxysilyl
propyl methacrylate (3-TPM) by dispersion in 40 mL of toluene for 24 hours at room temperature under
magnetic stirring. The modified magnetic nanoparticles (denoted by MMNPs) were then washed
several times with toluene to remove the unmodified MNPs and unreacted 3-TPM by centrifugation
and then dried.
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Figure 1. Modification of magnetite nanoparticles with double bonds.

2.4. Preparation of Polyacrylamide/MMNPs Nanocomposite Hydrogels (PAA/MMNPs)

Hydrogels were obtained by free-radical polymerization of acrylamide and MMNPs in aqueous
solution (Figure 2). Briefly, various ratios between acrylamide monomer and MMNPs (90/10; 80/20;
70/30; 60/40 and 50/50 w/w) were prepared. The MMNPs were dispersed in water by sonication and
added in a mixture of 15 wt. % aqueous acrylamide solution and initiator (potassium persulfate). The
ratio between organic phase (acrylamide) and MMNPs was varied in order to enhance the mechanical
properties of the hydrogels. The nanocomposite hydrogel samples were added in circular glass matrix
and put at 60 ◦C for 24 h. Finally, the nanocomposite hydrogel samples were removed from the glass
matrix and immersed in distilled water for 5 days to remove residual monomer and final purification.
Hydrogels were cut as disks for further mechanical investigations (rheological measurements).
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2.5. Swelling Measurements

Swelling behavior of the hydrogels was performed in saline solution at 37 ◦C. The weight changes
of the hydrogels were recorded at regular time intervals during swelling. The swelling degree of the
hydrogels was determined according to the following equation [42,43]:

SD =
Wt −Wo

W0
·100, (1)

where W and W0 denote the weight of the wet hydrogel at a predetermined time and the weight of the
dry sample, respectively. The equilibrium swelling degrees (ESD) were measured until the weight of
the swollen hydrogels was constant. At least three swelling measurements were performed for each
hydrogel sample and the mean values were reported.

Swelling kinetics. The dynamics of the water sorption process was studied by monitoring the
saline solution absorption by the hydrogels at different time intervals. For diffusion kinetic analysis,
the swelling results were used only up to 60% of the swelling curves. Fick’s equation was used [42–49]:

f = k·tn, (2)

where f is the fractional water uptake, k is a constant, t is swelling time and n is the swelling coefficient
that indicates whether diffusion or relaxation controls the swelling process. The fractional water
content f is Mt/Mn where Mt is the mass of water in the hydrogel at time t, and Mn is the mass of the
water at equilibrium.

2.6. Characterization Methods

FTIR analysis. FTIR spectra of native magnetite and 3-TPM modified magnetite were recorded on
a Bruker Vertex 70 FT-IR spectrophotometer with attenuated total reflectance (ATR) accessory with 32
scans and 4 cm−1 resolution in mid-IR region.

XPS analysis. The X-ray photoelectron spectroscopy spectra for magnetite and modified magnetite
were recorded to evaluate the covalent bonding of silane modifying agent. The spectra were recorded
on a K-Alpha instrument from Thermo Scientific, using a monochromated Al Kα source (1486.6 eV), at
a pressure of 2 × 10−9 mbar.

2.6.1. Evaluation of the Rheological Properties for the Nanocomposite Hydrogels

Rheological tests were performed with a rotational rheometer Kinexus Pro, Malvern Instruments,
and a temperature control unit. In oscillating mode, a parallel plate and a geometric measuring system
were used, and the gap was set according to the force value. The tests were performed on samples of
20 mm diameter with parallel plate geometry in a frequency range 1 to 30 Hz.

2.6.2. Magnetic Properties by Vibrating Sample Magnetometry (VSM)

Vibrating sample magnetometry (LakeShore 7404-s VSM) was used in order to investigate the
magnetic behavior of the hydrogels. Hysteresis loops were recorded at room temperature with an
applied field up to 15 kOe, increments of 200 Oe and ramp rate of 20 Oe/s.

2.6.3. Morphological Characterization by Scanning Electron Microscopy (SEM) and Transmission
Electron Microscopy (TEM)

The microstructure of the samples was analyzed by Scanning Electron Microscopy (SEM) using a
Quanta Inspect F50, with a field emission gun (FEG) having 1.2 nm resolution and an energy dispersive
X-ray spectrometer (EDXS) having 133 eV resolution at MnKα. Morphology, geometrical evaluation
(size and shape) of nanostructural characteristics and the crystalline structure of the samples were
investigated by high-resolution transmission electron microscopy (HR-TEM) and selected area electron
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diffraction (SAED) using a TECNAI F30 G2 S-TWIN microscope operated at 300 kV with energy
dispersive X-ray analysis (EDAX) facility.

3. Results and Discussion

3.1. Swelling Measurements

The most important property of a hydrogel is its ability to absorb and hold an amount of solvent
in its network structure. The equilibrium swelling of a hydrogel is a result of the balance of osmotic
forces determined by the affinity to the solvent and network elasticity. Hydrogel properties depend
strongly on the degree of cross-linking, the chemical composition of the polymer chains, and the
interactions of the network and surrounding liquid. Figure 3 shows the water swelling behavior of the
PAA/MMNPs hydrogels. The swelling curves show a decreasing trend of swelling degree with the
increase of the modified magnetite nanoparticles content (Figure 3). These results are sustained by the
fact that a higher amount of MMNPs lead to a higher crosslinking density. The crosslinking of the
hydrogel comes from the reaction between the double bonds from NPs surface and the double bonds
of the acrylamide monomer without the adding of any other crosslinker.Nanomaterials 2019, 9, x FOR PEER REVIEW 6 of 18 
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Figure 3. Swelling degree versus time in saline solution at 37 ◦C for PAA/MMNPs hydrogels.

Next, the swelling mechanism is evaluated by Equation (2). Here, by plotting ln f versus ln
t, we may calculate the swelling coefficient n as the slope of the linear graph. It is known that the
swelling process could be controlled by a Fickian-type mechanism, by relaxation of the chain or by
both mechanisms depending on the composition. The values of n were below 0.5 for 2 samples
(PAA/MMNPs 70/30, 60/40 ratio), which means a diffusion-controlled process (Fickian mechanism).
The other three nanocomposite samples (PAA/MMNPs, 90/10, 80/20 and 50/50 ratio) are governed by a
diffusion swelling coefficient with values above 0.5 and a water molecules transport model, done by
chain relaxation [50,51]. These data are shown in Table 1.

Table 1. The swelling diffusion coefficient and the regression model-R2.

Parameters/
Composition

PAA/MMNPs
90:10

PAA/MMNPs
80:20

PAA/MMNPs
70:30

PAA/MMNPs
60:40

PAA/MMNPs
50:50

n 0.6044 0.5816 0.4400 0.4818 0.5465
R2 0.9980 0.9979 0.9985 0.9981 0.9939
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3.2. FTIR Analysis

The modification of magnetite nanoparticles with 3-TPM was proved by FTIR investigation
(Figure 4). FTIR spectrum of modified magnetite shows several new peaks specific to organic modifier
3-TPM. Therefore, the peak at 1170 cm−1 can be assigned to stretching vibration of ester bonds; peaks
at 1299 cm−1 and 1325 cm−1 can be assigned to the stretching vibration of -Si-methylene- from the
internal structure of modifier agent; peaks at 1454 cm−1 and 1412 cm−1 can be assigned to the bending
vibration of methyl and methylene groups from the internal structure of the modifier agent; the peak
at 1638 cm−1 is specific to the stretching vibration of –C=C– from the internal structure of the modifier
agent; the peak at 1719 cm−1 is specific to the stretching vibration of carbonyl –C=O from the internal
structure of the modifier agent [52]. Considering all of the attributed peaks, FTIR analysis was a very
useful tool to evidence the modification of the magnetite nanoparticles with double bonds.
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Figure 4. FTIR spectra for magnetite and double bond functionalized magnetite nanoparticles.

3.3. XPS Analysis

XPS analysis for both magnetite and double bond modified magnetite was carried out in order
to reveal the interstitial organic/inorganic character of new generated magnetite lattice. The results
for surface modification are well correlated with the reaction mechanism and morphological results.
There is an increasing of C1s in the elemental composition up to the main elemental percent, due to
the modification on the surface of magnetite nanoparticles. Figure 5 highlights the high resolution
spectra of the O1s species from crude magnetite with two deconvoluted peaks, the first centered at
530.35 eV, which can be attributed to O-Fe in magnetite phase [53], and the second centered at 531.01 eV,
probably corresponding to the hydroxyl bonding within magnetite lattice. Furthermore, Figure 5
reveals the high magnification spectra of O1s species for functionalized magnetite nanoparticles with
three secondary deconvoluted peaks. The two O1s peaks at 529.67 eV and 531.13 eV can be attributed
to the crude magnetite structure and the new peak centered at 533.01 eV can be attributed to a Si-O
new formed species by covalent bonding of silane with magnetite hydroxyl groups [22].
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3.4. Evaluation of the Rheological Properties for the Nanocomposite Hydrogels

Rheological behavior of novel nanocomposites was performed on swollen samples in aqueous
NaCl 0.9 wt% solution at swelling equilibrium. The investigation involves the stress optimization
in order to maintain a linear viscoelastic domain and samples to be dependent only on frequency
and not on the applied stress. The elastic modulus for nanocomposite with 10% modified magnetite
nanoparticles showed a unique behavior with significant differences, as compared to other samples.
Figure 6 reveals a slow decreasing elastic of the modulus G’ up to 20 Hz, followed by a fast increasing
until 30 Hz for the sample with 90% PAA and 10% modified magnetite nanoparticles. This behavior
can be explained by a low amount of modified magnetite nanoparticles, which act as a crosslinking
agent. The low amount of inorganic modified agent does not allow the specific elastic network to
adapt to environmental mechanical changes [22]. The nanocomposite samples with a higher amount
of modified magnetite nanoparticles (30%, 50%) showed a different specific elastic behavior with
frequency variation, presenting a constant elastic modulus increasing from 1Hz up to 30 Hz. The
specific elastic behavior allows for the environmental changes, due to the formation of elastically active
chains by bridging multiple surrounding chains with various lengths. In the case of 30% modified
magnetite nanoparticles, the elastic modulus exhibited higher values over the frequency range. This is
probably due to the nanoparticles concentration that is optimal for a good dispersion into polymer
matrix. In the case of the 50% modified magnetite nanoparticles, the elastic modulus showed lower
values, probably due to a lower dispersion in the matrix, with significant influences on the segmental
mobility of the 3D network.
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3.5. Magnetic Properties by Vibrating Sample Magnetometry (VSM)

The magnetic properties of the magnetic iron oxide nanoparticles (Fe3O4 NPs) and of the hydrogels
were investigated by vibrating sample magnetometry (VSM) at room temperature. In Figure 7, the
magnetic hysteresis loops that are characteristic of superparamagnetic behavior can be observed for
all of the samples, due to the presence of the magnetite nanoparticles. Superparamagnetism is the
responsiveness to an applied magnetic field without retaining any magnetism after removal of the
applied magnetic field. The measured saturation magnetization (Ms) of the Fe3O4 NPs is 63.128 emu/g.
For PAA-MMNPs 90:10, the saturation magnetization was found at 9.74 emu/g, the lowest measured
saturation of the hydrogels. The saturation magnetization for the PAA-MMNPs 70:30 was found
at 26.73 emu/g and the highest saturation magnetization was at 31.88 emu/g, corresponding to the
PAA-MMNPs 50:50, the hydrogel with the highest concentration (50%) of MMNPs. These results show
that the magnetization of the hydrogels increases with the increase of the concentration of MMNPs
present in the hydrogels.
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3.6. Morphological Characterization by SEM and TEM

3.6.1. SEM Analysis

The microstructure of the PAA-MMNPs hydrogels was studied by SEM in cross-section and the
results are shown in Figure 8 (PAA-MMNPs 90:10) and Figure 9 (PAA-MMNPs 50:50). The image in
Figure 8A, (magnification ×2.000) shows submicronic areas of bright contrast (functionalized magnetite
aggregates) evenly distributed in a dark contrast PAA matrix. At higher magnifications (×200.000,
Figure 8B) it can be observed that the areas of bright contrast are aggregates of MMNPs. Also, the
image shows that the modified Fe3O4 nanoparticles showed a good distribution in the polymer matrix
by the presence of areas with high dispersed MMNPs and areas with local agglomeration of MMNPs.
However, even the local agglomerations revealed that the modified magnetite nanoparticles (MMNPs)
seem to be addressed by the polymer polyacrylamide matrix due to the effect of the crosslinking agent
of the MMNPs (Figure 8A,B). Thus, the polymer matrix covering the MMNPs is chemically linked by
the MMNPs and the whole ensemble displays a crosslinked network-like architecture.
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Figure 8. SEM micrographs of PAA-MMNPs 90:10 block hydrogel (A,B) and lyophilized PAA-MMNPs
90:10 hydrogel (C,D).

Figure 8C is a SEM backscattered electron image at a smaller magnification (×500), showing small
MMNPs agglomerates (white spots) uniformly dispersed on a mesh of micro-pores. Figure 8D is a detail
(×100.000 magnification) of a nano-size area from the central zone in Figure 8C, showing a nanostructure
of the lyophilized hydrogel as fibrils having evenly incorporated MMNPs. The crosslinked network-like
ensemble generated by the MMNPs is better highlighted by the lyophilized samples (Figure 8C,D).
The fibrils revealed branches-like structures which are extending on the sample surface and evenly
through the sample internal structure. The branched-like structures exhibited MMNPs linked to each
other by the polymer matrix and serve as the basis of the crosslinked network-like ensemble.

The SEM image in Figure 9A (magnification ×2.000) shows a higher density in MMNPs clusters
for the PAA-MMNPs 50:50 hydrogel due to the higher amount of modified magnetite, in comparison
to the PAA-MMNPs 90:10 hydrogel from Figure 8A. Detail from Figure 9A is shown in Figure 9B
(magnification ×200.000), proving that the clusters are made of nanoparticles. The polymeric matrix
is not homogenous, due to the fact that it has smaller nanoparticle aggregates embedded. The
cross-section of the lyophilized hydrogel shows microsize pores, with chains of MMNPs clusters,
which seem to be located especially on the pore walls. At higher magnifications (Figure 8D), it can be
observed that there are also nano-size areas having the same fibrils with branches-like structures with
incorporated MMNPs. A very interesting result of the lyophilized sample of both PAA-MMNPs 50:50
and PAA-MMNPs 90:10 (Figure 8C,D and Figure 9C,D) showed less local MMNPs agglomeration with
respect to un-lyophilized samples. This behavior can be explained by the lyophilization procedure.
During the process, the polymer matrix between MMNPs swells and the space grows between them.
Furthermore, the sublimation phenomenon leads to a rearrangement of the structure with the display
of the MMNPs in the pore walls and fragmentation of the local agglomerates.



Nanomaterials 2019, 9, 1384 10 of 16

Nanomaterials 2019, 9, x FOR PEER REVIEW 12 of 18 

 

 
Figure 9. SEM micrographs of PAA-MMNPs 50:50 hydrogel (A,B).and lyophilized PAA-MMNPs 
50:50 hydrogel (C,D); Energy dispersive X-ray (EDX) spectrum (E). 

3.6.2. TEM Analysis 

The morphology and nanostructural characteristics of magnetic nanoparticles (MNPs), modified 
magnetic nanoparticles (MMNPs) and of polyacrylamide modified magnetic nanoparticles (PAA-
MMNPs) hydrogels were analyzed by TEM, selected area electron diffraction (SAED) and high 
resolution electron microscopy (HR-TEM). 

3.6.3. TEM Analysis for Magnetite Nanoparticles (MNPS) and Modified Magnetite Nanoparticles 
(MMNPs) 

Figure 10A–C are TEM micrographs of the MNPs. The bright field TEM image (Figure 10A) 
shows that the magnetic Fe3O4 nanoparticles are nearly spherical with diameters between 5 and 12 
nm. The SAED pattern (inset of Figure 10A) of MNPs exhibits a typical face centered cubic (fcc) 
crystalline structure. The lattice spacing measured based on the diffractions rings is in accordance 
with the standard lattice spacing of Fe3O4 from the Powder Diffraction File (PDF) database (ICCD file 

Figure 9. SEM micrographs of PAA-MMNPs 50:50 hydrogel (A,B).and lyophilized PAA-MMNPs 50:50
hydrogel (C,D); Energy dispersive X-ray (EDX) spectrum (E).

The EDXS spectrum (Figure 9E), acquired on a large area of the PAA-MMNPs 50:50 hydrogel
surface and shows the presence in the sample of the elements Fe and O (from Fe3O4 NPs), C, N and Si
(from 3-TPM and PAA).

3.6.2. TEM Analysis

The morphology and nanostructural characteristics of magnetic nanoparticles (MNPs),
modified magnetic nanoparticles (MMNPs) and of polyacrylamide modified magnetic nanoparticles
(PAA-MMNPs) hydrogels were analyzed by TEM, selected area electron diffraction (SAED) and high
resolution electron microscopy (HR-TEM).
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3.6.3. TEM Analysis for Magnetite Nanoparticles (MNPS) and Modified Magnetite
Nanoparticles (MMNPs)

Figure 10A–C are TEM micrographs of the MNPs. The bright field TEM image (Figure 10A)
shows that the magnetic Fe3O4 nanoparticles are nearly spherical with diameters between 5 and
12 nm. The SAED pattern (inset of Figure 10A) of MNPs exhibits a typical face centered cubic (fcc)
crystalline structure. The lattice spacing measured based on the diffractions rings is in accordance
with the standard lattice spacing of Fe3O4 from the Powder Diffraction File (PDF) database (ICCD file
no. 04-002-5683). The HRTEM images of MNPs (Figure 10B,C) clearly show the single crystallinity
of Fe3O4 nanoparticles. The interplanar distances measured from the adjacent lattice fringes with
Fast Fourier Transform (FFT) (inset of Figure 10B) are 2.53 Å, 2.10 Å and 1.62 Å, corresponding to
(311), (400) and (511) crystalline family planes of Fe3O4 with crystalline structure, according to the
PDF database. Nanocrystalline particles with diameter size between 5.7 and 8.6 nm are highlighted in
Figure 10B. In the HRTEM image from Figure 10C it clearly shows the crystalline planes with 2.97 Å
and 2.53 Å measured interplanar distances corresponding to crystalline family planes with (220) and
(311) Miller indices.
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The TEM results of MMNPs are presented in Figure 10D,E,F. According to Figure 10D, modified
Fe3O4 nanoparticles still keep the morphological properties of Fe3O4 nanoparticles. According to
HRTEM images (Figure 10E,F), morphological and nanocrystalline properties of Fe3O4 nanoparticles
are maintained, but it is clearly shown that the nanoscale Fe3O4 nanoparticles are modified in the
MMNPs sample, because of the organic layer surrounding the Fe3O4 nanoparticles (highlighted in
Figure 10F). The tailoring of magnetite nanoparticles by chemically functionalization with silane 3-TPM
revealed by physico-chemical X-photoelectron spectroscopy is also sustained by the morphological
characterization by TEM. The high magnification Figure 10E,F exhibits a less ordered organic layer
consisted by silane 3-TPM, which addresses the magnetite nanoparticles. However, the surrounding
organic layer displayed a specific order and arrangement structure, which will be further discussed. The
Figure 10D revealed an overview result with a considering functionalization of the whole nanoparticles
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and not as an isolated modification. Thus, the magnetic nanoparticles were tailored with double bonds
by the presence of the silane structure (Figure 1).

3.6.4. TEM Analysis of Polyacrylamide-MMNPs Nanocomposite Hydrogels

The bright field TEM (BF-TEM) images from Figure 11A, 10D and 10G are results from
PAA-MMNPs 90:10, PAA-MMNPs 70:30 and PAA-MMNPs 50:50 samples. These images show that all
of the hydrogels have a similar morphology and nanostructure. The overview images (Figure 11A,D,G)
revealed an expected decreasing of polymer matrix area with the increasing of MMNPs amount. All of
the samples have isolated and local agglomerated magnetic Fe3O4 nanoparticles embedded within a
polymer matrix. By comparing the BF-TEM images from PAA-MMNPs (Figure 11A,D,G) with the
BF-TEM images from MNPs (Figure 10A) and MMNPs (Figure 10D), it can be concluded that the shape
and the dimensions of the embedded nanoparticles are kept in the same range. The SAED image
(inset of Figure 11G) shows that the PAA-MMNPs hydrogels contain similar Fe3O4 nanoparticles,
well crystallized, with the same lattice spacing measured on the SAED image from MNPs (inset of
Figure 10A). The diffraction of the matrix was not observed in the SAED image (inset of Figure 11G),
which is probably because the organic layer and the PAA matrix are not highly ordered and are
displaying short ordering range. In order to observe the detailed structure of PAA-MMNPs hydrogels,
HRTEM was employed. Figure 11B,C (from PAA-MMNPs: 90-10), Figure 11E,F (From PAA-MMNPs:
70-30) and Figure 11H,I (from PAA-MMNPs: 50-50) show that the nanoparticles are embedded within
a polymer matrix with amorphous structure. The nanoparticles have a round shape with diameters
between 5 and 14 nm. The MMNPs are well integrated into polymer matrix revealing a clear interaction
between the two phases. The nature of the interaction was revealed by the HR-TEM images, which
rarely highlighted the specific order and arrangement structure of the organic layer from MMNPs.
This result can be explained by the surrounding organic layer being in a chemical reaction with the
acrylamide monomer by the consumption of the silane double bonds. Thus, the MMNPs act as an
inorganic cross-linker by becoming generators of bridges between polymeric chains and development
of a hybrid network (Figure 2). Also, the HRTEM results show that the nanoparticles are nanocrystals,
disclosing the crystalline planes (220) and (311) of magnetite with 2.97 Å and 2.53 Å, respectively,
which are characteristic interplanar distances. Furthermore, the HRTEM images also reveal a short
ordering range in the matrix besides the amorphous phase, highlighted by squares (Figure 11F for
PAA-MMNPs: 70-30 and Figure 11I for PAA-MMNPs: 50-50), which shows the structural arrangement
of the polymer macromolecular chains compared with inorganic ordered magnetite nanoparticles.
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4. Conclusions

This study provides a comprehensive approach in the wide field of polymer nanocomposite
materials. A new hybrid polymer network was successfully developed by double bond modified
magnetic nanoparticles, using polyacrylamide as the crosslinked network structure, thereby overcoming
the limitation of traditional organically crosslinkers. Functionalization of magnetic nanoparticles with
the double bond was monitored by physico-chemical investigations. The details of the microarchitecture
were shown by modern morphological characterization techniques, highlighting the nature of the
interaction between the organic and inorganic phases. Furthermore, the obtained nanocomposite
hydrogels may have an efficient applicability in the soft tissue engineering field, in the form of repairing
scaffolds, due to their mechanical and magnetization behavior that can stimulate tissue regeneration.
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