Effects of Embedded Helium on the Microstructure and Mechanical Properties of Erbium Films
Abstract
:1. Introduction
2. Experimental Details
2.1. Sample Preparation
2.2. Sample Characterizations
3. Results and Discussions
3.1. Helium Depth Distribution in Er Films
3.2. Microstructures of He-Embedded Er Films and the Morphology of He Bubbles in the Films
3.3. Mechanical Propertiesof He-Embedded Er Films
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shen, H.H.; Zu, H.Y.; Peng, S.M.; Yang, L.; Zhou, X.S.; Sun, K.; Xiang, X.; Zu, X.T. On the study of the oriented cracks formed in ErD2 thin film. Mater. Lett. 2013, 106, 259–262. [Google Scholar] [CrossRef]
- Snow, C.S.; Browning, J.F.; Bond, G.M.; Rodriguez, M.A.; Knapp, J.A. 3He bubble evolution in ErT2: A survey of experimental results. J. Nucl. Mater. 2014, 453, 296–306. [Google Scholar] [CrossRef]
- Martínez, E.; Schwen, D.; Caro, A. Helium segregation to screw and edge dislocations in α-iron and their yield strength. Acta Mater. 2015, 84, 208–214. [Google Scholar] [CrossRef]
- Martínez, E.; Hirth, J.P.; Nastasi, M.; Caro, A. Structure of a 2o (010) Cu twist boundary interface and the segregation of vacancies and He atoms. Phys. Rev. B 2012, 85, 060101. [Google Scholar] [CrossRef]
- Terentyev, D.; He, X. Effect of Cr precipitates and He bubbles on the strength of <1 1 0> tilt grain boundaries in BCC Fe: An atomistic study. Comput. Mater. Sci. 2011, 50, 925–933. [Google Scholar]
- Knapp, J.A.; Browning, J.F.; Bond, G.M. Aging of ErT2 thin films: ERD analysis and mechanical property changes. Nucl. Instrum. Meth. B 2010, 268, 2141–2143. [Google Scholar] [CrossRef]
- Brugarolas, T.; Gianola, D.S.; Zhang, L.; Campbell, G.M.; Bassani, J.L.; Feng, G.; Lee, D. Tailoring and Understanding the Mechanical Properties of Nanoparticle-Shelled Bubbles. ACS Appl. Mater. Interfaces 2014, 6, 11558–11572. [Google Scholar] [CrossRef]
- Knapp, J.A.; Browning, J.F.; Bond, G.M. Evolution of mechanical properties in ErT2 thin films. J. Appl. Phys. 2009, 105, 053501. [Google Scholar] [CrossRef]
- Hetherly, J.; Martinez, E.; Di, Z.F.; Nastasi, M.; Caro, A. Helium bubble precipitation at dislocation networks. Scr. Mater. 2012, 66, 17–20. [Google Scholar] [CrossRef]
- Trinkaus, H. Energetics and formation kinetics of helium bubbles in metals. Radiat. Eff. 1983, 78, 189–211. [Google Scholar] [CrossRef]
- Shen, H.H.; Peng, S.M.; Long, X.G.; Xiang, X.; Zhou, X.S.; Yang, L.; Zu, X.T. Microstructure changes of erbium and erbium deuteride films induced by helium implantation. Mater. Lett. 2012, 80, 17–19. [Google Scholar] [CrossRef]
- Bufford, D.; Snow, C.; Hattar, K. Bubble Formation in Er and ErD2 During In Situ He+ Ion Implantation. Microsc. Microanal. 2014, 20, 1828–1829. [Google Scholar] [CrossRef]
- Redstone, R.; Rowland, M.C. High-temperature Hydrogen Isotope Targets. Nature 1964, 201, 1115–1116. [Google Scholar] [CrossRef]
- Graves, E.R.; Rodrigues, A.A.; Goldblatt, M.; Meyer, D.I. Preparation and Use of Tritium and Deuterium Targets. Rev. Sci. Instrum. 1949, 20, 579–582. [Google Scholar] [CrossRef]
- Blackburn, R. Inert Gases in Metals. Metall. Rev. 1966, 11, 159–176. [Google Scholar]
- Höchbauer, T.; Misra, A.; Hattar, K.; Hoagland, R.G. Influence of interfaces on the storage of ion-implanted He in multilayered metallic composites. J. Appl. Phys. 2005, 98, 123516. [Google Scholar] [CrossRef]
- Zhu, H.; Wei, T.; Blackford, M.; Short, K.; Carr, D.; Harrison, R.; Edwards, L.; Seo, D.; Maruyama, K. Irradiation behaviour of α2 and γ phases in He ion implanted titanium aluminide alloy. Intermetallics 2014, 50, 28–33. [Google Scholar] [CrossRef]
- Shi, L.; Liu, C.; Xu, S.; Zhou, Z.Y. Helium-charged titanium films deposited by direct current magnetron sputtering. Thin Solid Films 2005, 479, 52–58. [Google Scholar] [CrossRef]
- Wei, Y.C.; Shi, L.Q.; Zhang, L.; He, Z.J.; Zhang, B.; Wang, L.B. Preparation and thermal desorption properties of dc sputtered zirconium-hydrogen-helium thin films. J. Vac. Sci. Technol. A 2008, 26, 1511–1518. [Google Scholar] [CrossRef]
- Hellgren, N.; Berlind, T.; Gueorguiev, G.K.; Johansson, M.P.; Stafström, S.; Hultman, L. Fullerene-like BCN thin films: A computational and experimental study. Mater. Sci. Eng. B 2004, 113, 242–247. [Google Scholar] [CrossRef]
- Furlan, A.; Gueorguiev, G.K.; Högberg, H.; Stafström, S.; Hultman, L. Fullerene-like CPx: A first-principles study of the relative stability of precursors and defect energetics during synthetic growth. Thin Solid Films 2006, 515, 1028–1032. [Google Scholar] [CrossRef]
- Gao, J.; Bao, L.; Huang, H.; Li, Y.; Lei, Q.; Deng, Q.; Liu, Z.; Yang, G.; Shi, L. ERDA, RBS, TEM and SEM characterization of microstructural evolution in helium-implanted Hastelloy N alloy. Nucl. Instrum. Meth. B 2017, 399, 62–68. [Google Scholar] [CrossRef]
- Schiettekatte, F.; Ross, G.G. ERD spectrum to depth profile conversion program for Windows. AIP Conf. Proc. 1997, 392, 711–714. [Google Scholar]
- Koyanagi, T.; Takao, K.; Fukuma, Y. Effects of He on Cu film formation by rf sputtering. Vacuum 1998, 51, 575–582. [Google Scholar] [CrossRef]
- Hall, E.O. The Deformation and Ageing of Mild Steel: II Characteristics of the L ders Deformation. Proc. Phys. Soc. Sec. B 1951, 64, 742–747. [Google Scholar] [CrossRef]
- Petch, N. The Cleavage Strength Of Polycrystals. J. Iron Steel Inst. Lond. 1953, 173, 25–28. [Google Scholar]
- Christensen, R.M. Two Theoretical Elasticity Micromechanics Models. J. Elast. 1998, 50, 15–25. [Google Scholar] [CrossRef]
- Kumar, K.S.; Van Swygenhoven, H.; Suresh, S. Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 2003, 51, 5743–5774. [Google Scholar] [CrossRef]
- Vliet, K.J.V.; Tsikata, S.; Suresh, S. Model experiments for direct visualization of grain boundary deformation in nanocrystalline metals. Appl. Phys. Lett. 2003, 83, 1441–1443. [Google Scholar] [CrossRef] [Green Version]
Flow Ratio of He:Ar | Deposited Rate /(nm/min) | Film Thickness /(µm) | He Concentration /(%) |
---|---|---|---|
0:1 | 60.0 | 1.80 | 0 |
6:1 | 48.0 | 1.44 | 3.04 |
9:1 | 42.7 | 1.28 | 25.18 |
13:1 | 42.3 | 1.27 | 29.80 |
18:1 | 31.7 | 0.95 | 49.60 |
He:Ar | He Concentration /(%) | 2θ of (100) Peak /(°) | Normalized Peak Height/(%) | FWHM /(°) | Grain Size/(nm) |
---|---|---|---|---|---|
0:0 | 0 | 28.77 | 31.37 | 0.445 | 19.7 |
6:1 | 3.04 | 28.80 | 23.29 | 0.459 | 17.7 |
9:1 | 25.18 | 28.76 | 63.71 | 0.483 | 16.8 |
13:1 | 29.81 | 28.68 | 49.07 | 0.520 | 15.6 |
18:1 | 49.60 | 28.64 | 171.41 | 0.544 | 14.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, W.; Shen, H.; Shi, L.; Zhou, X.; Long, X. Effects of Embedded Helium on the Microstructure and Mechanical Properties of Erbium Films. Nanomaterials 2019, 9, 1564. https://doi.org/10.3390/nano9111564
Fu W, Shen H, Shi L, Zhou X, Long X. Effects of Embedded Helium on the Microstructure and Mechanical Properties of Erbium Films. Nanomaterials. 2019; 9(11):1564. https://doi.org/10.3390/nano9111564
Chicago/Turabian StyleFu, Wenbo, Huahai Shen, Liqun Shi, Xiaosong Zhou, and Xinggui Long. 2019. "Effects of Embedded Helium on the Microstructure and Mechanical Properties of Erbium Films" Nanomaterials 9, no. 11: 1564. https://doi.org/10.3390/nano9111564
APA StyleFu, W., Shen, H., Shi, L., Zhou, X., & Long, X. (2019). Effects of Embedded Helium on the Microstructure and Mechanical Properties of Erbium Films. Nanomaterials, 9(11), 1564. https://doi.org/10.3390/nano9111564