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Abstract: Ag quantum dots (QDs) anchored on CeO2 nanosheets with a carbon coating (Ag/CeO2@C)
(composites) were prepared via an in situ reduction approach for the photocatalytic degradation of
Cr(VI) and tetracycline hydrochloride (TCH) in the visible-light region. The photocatalytic activity
of Ag/CeO2@C was greatly affected by carbon content, Ag-doping content, Cr(VI) concentration,
pH value, and inorganic ions. Enhanced photocatalytic activity was obtained by Ag/CeO2@C
(compared to CeO2 and CeO2@C), of which 3-Ag/CeO2@C-2 with an Ag-doping content of 5.41%
presented the best removal efficiency and the most superior stability after five cycles. ·O2

− and ·OH
radicals were crucial for the photocatalytic capacity of 3-Ag/CeO2@C-2. The combined effect of the
surface plasma resonance (SPR) of Ag QDs, an electron trapper of carbon shells, and the redox
activity of the Ce(III)/Ce(IV) coupling induced efficient charge transfer and separation, suppressing
the recombination of electron–hole pairs.
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1. Introduction

The wide-ranging use of antibiotics, dyes, and heavy metals and their reckless release in
water has drawn intensive attention due to their toxicity and non-biodegradability [1–3]. In recent
years, many strategies, such as electrochemical oxidation [4], coagulation and flocculation [5],
adsorption [6], membrane filtration [7], and advanced oxidation [8], have been applied for water
purification. Photocatalysis, a typical advanced oxidation technique, has become the route with
the most potential to conquer these intensifying environmental problems via the utilization of solar
light [9–11]. Hence, various semiconductors, such as g-C3N4, TiO2, ZnS, ZnO, CuS, and MoS2, have been
confirmed as cost-effective photocatalysts for the heterogeneous photocatalytic purification of polluted
water [12–17]. Due to their wide band gap, nontoxicity, and high stability, cerium dioxide (CeO2) and
TiO2 have been widely applied in photocatalytic reactions [18–20]. In addition, CeO2 exhibits strong
UV-light sorption capacity and a high resistance to photocorrosion [21].
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The adsorption and desorption capacities of oxygen ions are critical for the catalytic process of
CeO2. The oxygen storage capacity of CeO2 is greatly affected by the redox activity of the Ce(III)/Ce(IV)
coupling, further depending on the type and content of oxygen vacancies in the lattice structure [22].
The defect structure of Ce3+–Ov–Ce4+ (Ov- oxygen vacancy) and the formation of Ce3+ ions induce
a red shift in the band gap of CeO2 [23]. In fact, the crystal defect of CeO2 is greatly related to its
crystal structure and morphologies. Various microstructures of CeO2 have been fabricated for practical
applications via different approaches in previous works, including bowknot-like crystallites, nanocubes,
X-architecture, nanopolyhedra, square-like nanoparticles, nanosheets, nano-octahedrons, ribbon-like
nanofibers, urchin-like hierarchical structures, flower-like microspheres, and well-aligned nanorod
arrays [24–33]. Unfortunately, CeO2 with indirect band gap energy (3.2 eV) is strictly limited in the
photocatalytic system of the UV-light region. Hence, nonmetal or metal ions such as S, N, P, Er, Fe,
Sm, and Y have been doped in CeO2 to extend light harvesting to the visible-light region, leading to
enhanced photocatalytic activity [34–40]. Apart from a doping strategy, noble metals such as Au and
Ag loaded on CeO2 have been confirmed to present much better photocatalytic activity [41]. In addition,
the fabrication of heterojunctions coupled with other semiconductors can simultaneously enhance the
separation efficiency of charge carriers and restrain the recombination rate of photoexcited electron–hole
pairs through the interface structure of different semiconductors, especially core–shell structures [42–44].
To further avoid photocorrosion in solar energy-driven reaction systems, carbon has been employed
for the synthesis of heterojunction composites due to its unique physicochemical properties and low
cost [45–48]. Carbon with a porosity structure and a high surface area not only exhibits excellent affinity
for pollutant molecules, but also efficiently captures and transfers the photoexcited electron, leading to
an enhancement in photocatalytic activity [49,50]. However, the combined effect of Ag doping and
carbon coating on the enhanced photocatalytic capacity of CeO2 nanosheets has been scarcely reported
in previous works.

This work focused on the effect of Ag quantum dots (QDs) on the photocatalytic activity
of carbon-coated CeO2 (CeO2@C) nanosheets in the visible-light region. In this strategy, Ag QDs
were anchored in situ on CeO2@C nanosheets to form Ag/CeO2@C. The photocatalytic capacity of
Ag/CeO2@C was affected by the carbon dosage, the Ag-doping content, the Cr(VI) concentration,
the pH value, and inorganic ions. The combined effects of the surface plasma resonance (SPR) of Ag
QDs, an electron trapper of carbon shells, and the redox activity of the Ce(III)/Ce(IV) coupling were
responsible for enhanced visible-light harvesting and efficient charge transfer and separation, leading
to excellent photocatalytic activity in the CeO2 nanosheets [39,41,45,51,52]. The possible photocatalytic
mechanism of Ag/CeO2@C is discussed in detail.

2. Materials and Methods

2.1. Preparation of Catalysts

CeO2 nanosheets were prepared via a hydrothermal route. Briefly, 1.0 mmol of cerium nitrate
hexahydrate (Ce(NO3)3·6H2O) and 2 mmol of hexamethylenetetramine (C6H12N4) were dissolved
in 70 mL of deionized water through vigorous stirring. Then, 3 mL of acetic acid (CH3COOH) was
added to the above solution and stirred at room temperature for 2 h. This mixture was transferred
to a 100 mL Teflon-lined autoclave and treated at 433 K for 9 h. After being cooled down to room
temperature, the suspension was filtered, washed with ethanol and deionized water, dried at 333 K for
6 h, and calcined at 773 K for 3.0 h to obtain CeO2 nanosheets.

Carbon-coated CeO2 (CeO2@C) nanosheets were also synthesized through a hydrothermal
route. Here, 0.1 g obtained CeO2 bulks, 0.2 g glucose (C6H12O6), and 1.0 g polyvinyl pyrrolidone
(PVP, M = 58,000) were dispersed into 30 mL of deionized water through intensive stirring at room
temperature for 2.0 h and then treated at 453 K for 15.0 h in a 50 mL Teflon-lined autoclave. After being
cooled down to room temperature, the above suspension was centrifuged, washed, dried at 343 K for
5.0 h, and calcined at 773 K for 2.0 h in an N2 flow rate of 40 mL·min−1 to obtain CeO2@C nanosheets
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(called CeO2@C-1). With the above process, CeO2@C composites with varying carbon contents were
obtained with different mass ratios of CeO2/glucose. CeO2@C-2 and CeO2@C-3 were obtained via the
addition of glucose contents of 0.4 g and 0.6 g, respectively.

Ag QDs anchored in CeO2@C (Ag/CeO2@C) nanosheets were reduced in situ with the addition
of sodium borohydride (NaBH4). In a typical process, 0.1 g CeO2@C bulks and 0.02 g AgNO3 were
dispersed into 50 mL deionized water and then stirred at room temperature for 2.0 h. NaBH4 bulks
of 0.05 g were added to the above solution through serious stirring at room temperature for 1.0 h.
After the suspension was filtered, washed, and dried at 333 K for 6.0 h, Ag/CeO2@C nanosheets were
obtained and called 1-Ag/CeO2@C. X-Ag/CeO2@C (X = 2, 3, and 4) nanosheets were respectively
obtained via the addition of 0.03 g, 0.04 g, and 0.05 g AgNO3 in accordance with the above process.

2.2. Characterization of Catalysts

CeO2-based nanosheets were evaluated by X-ray diffraction (XRD, Bruker D8, Karlsruhe,
Germany), inductively coupled plasma optical emission spectrometry (ICP-OES, Varian 710-ES,
PaloAlto, CA, USA), X-ray photoelectron spectroscopy (XPS, Escalab 250, Waltham, MA, USA),
physical adsorption (Quantochrome NOVA-2020, Boynton Beach, FL, USA), scanning electron
microscopy (SEM, Hitachi S-3400, Tokyo, Japan), transmission electron microscopy (TEM, JEM-2010,
Tokyo, Japan), high-resolution transmission electron microscopy (HRTEM, JEM-2100, Tokyo, Japan),
Fourier-transform infrared spectra (FT-IR, Bruke Tensor 27, Karlsruhe, Germany), and UV–Vis diffuse
reflectance spectra (UV-Vis DRS, Hitachi U-4100, Tokyo, Japan) (with BaSO4 as the reflectance
standard and an integrated sphere attachment, Photoluminescence (PL, FLSP 920, Edinburgh,
UK), with an excitation wavelength of 325 nm at room temperature and electron spin resonance
(ESR, JES-FA200, Tokyo, Japan) with 5,5-Dimethyl-1-pyrroline N-oxide (DMPO) as spin trapping agent.
In addition, photocurrents, Mott–Schottky curves, and the electrochemical impedance spectroscopy
(EIS) of CeO2-based composites were evaluated in a three-electrode electrochemical workstation,
which consisted of Pt film, KCl-saturated calomel, and FTO conductive glass (coated with 1 cm2 of
CeO2-based composite films) serving as electrodes and 0.2 mol L−1 Na2SO4 serving as an electrolyte.
The photoelectrochemical properties of CeO2-based composites were analyzed on a photoelectric
instrument (CEL-PECX2000, Beijing CEL Tech. Co., Ltd., Beijing, China) equipped with a Vertex. C.
EIS electrochemistry workstation (Ivium Technologies B.V., Eindhoven, Netherlands) and a visible-light
source (an Xe lamp) at room temperature.

2.3. Photocatalytic Activity

CeO2-based composites were applied for the visible-light-driven photodegradation of Cr(VI)
ions and tetracycline hydrochloride using an Xe lamp as a light source (300 W). In a typical process,
0.1 g CeO2-based bulks was dispersed into 100 mL of a potassium dichromate (K2CrO4) solution of
20 mg·L−1 (or a tetracycline hydrochloride solution of 20 mg·L−1) and stirred in a dark room to reach
an adsorption–desorption equilibrium. After irradiation at certain time intervals, the concentration
of Cr(VI) was analyzed using a UNICO UV-4802 UV-Vis spectrophotometer, and the content of
tetracycline hydrochloride was obtained by an Agilent 1100 with a 5-µm, 4.6 × 250 mm Venusil
HILIC column and an ultraviolet detector of 356 nm. The intermediate products of Cr(VI) ions and
tetracycline hydrochloride were detected by an ICP-OES (Varian 710-ES) and a UPLC-MS system
(Waters UPLC Acquity, Quattro Premier XE), respectively. The effects of carbon content, Ag content,
solution concentration, pH value, and inorganic ions on the photocatalytic activity of CeO2-based
composites were investigated using the above process. The photocatalytic durability of the obtained
samples was also obtained under the same conditions.

3. Results

The typical peaks of CeO2 phases appeared at 28.57◦, 33.08◦, 47.47◦, 56.42◦, 59.18◦, 69.42◦,
76.95◦, and 79.15◦ in XRD patterns of CeO2, CeO2@C, and Ag/CeO2@C (Figure S1 and Figure 1).
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These peaks were assigned to the (111), (200), (220), (311), (222), (400), (311), and (420) facets of
cubic CeO2 phases (JCPDS No. 34-0394), respectively [20,23,25]. The peaks of Ag/CeO2@C at 38.10◦,
44.32◦, and 64.49◦ were ascribed to the (110), (200), and (220) planes of face-centered cubic Ag phases
(JCPDS No. 04-0783) [22,23,41]. The diffraction peaks of carbon phases were not detected in the XRD
patterns of CeO2@C and Ag/CeO2@C because they had less carbon content (<5%) and weak amorphous
carbon intensity [6,53,54]. With an increase in Ag content, the diffraction peak intensities of Ag (110)
and CeO2 (111) (Figure 1) respectively increased at around 38.10◦ and 28.57◦, indicating the high
crystallinity of Ag/CeO2@C.
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Figure 1. XRD patterns of CeO2@C-2 and Ag/CeO2@C-2.

XPS was applied to investigate the surface compositions and chemical states of the obtained CeO2

composites. The Ce 3d spectrum (Figure 2A, Figures S2A and S3A) was split into eight Gaussian
peaks. The peaks at 900.7 eV (U) and 882.5 eV (V) were respectively assigned to Ce 3d3/2 and Ce 3d5/2,
indicating the formation of Ce3+ and Ce4+ [20,21]. The peaks at 902.9 eV (U′) and 884.9 eV (V′) were
ascribed to Ce3+ [23]. The peaks at 916.6 eV (U′′′), 907.7 eV (U”), 898.2 eV (V′′′), and 888.6 eV (V”)
were indexed to Ce4+ [20]. The relative content of Ce3+ could be calculated by the following equation
(listed in Table S1):

Ce3+ = Ce3+/(Ce3+ + Ce4+) = area (U′ and V′)/Total area. (1)

The surface atomic compositions of these samples were nonstoichiometric values compared
to the theoretical values due to the presence of a Ce3+ state (Table S1). The Ce3+ concentrations of
CeO2, CeO2@C-2, and 3-Ag/CeO2@C-2 were, respectively, 12.15%, 14.45%, and 16.54%. The charge
compensation may have been responsible for the increase in Ce3+ content of CeO2@C-2 and
3-Ag/CeO2@C-2. It was noticed that the Ce3+ content (5.81%) of used 3-Ag/CeO2@C-2 after five cycles
was lower than that of a fresh sample. This was attributed to the reduced charge compensation under
long-term irradiation, leading to inferior photocatalytic stability [15]. The divided Gaussian peaks
at 531.2 eV and 529.6 eV (Figure 2B, Figures S2B and S3B ) were attributed to the defect oxygen
(or oxygen vacancy) and lattice oxygen, respectively [15,20,31]. The varied ratios of defect oxygen
(or oxygen vacancy) to lattice oxygen were greatly related to the Ce3+ content in the as-obtained
samples. The concentration of the defect oxygen (or oxygen vacancy) in the O 1s XPS spectrum of
the used 3-Ag/CeO2@C-2 (Figure 2B) was higher than that of a fresh sample. This was due to the
released and adsorbed oxygen of CeO2 and the defect structure of Ce3+–Ov–Ce4+ (Ov- oxygen vacancy)
under reduction and oxidation conditions [38,42]. The C1 spectra of CeO2@C-2 (Figure 3C) and fresh
and used 3-Ag/CeO2@C-2 (Figure 2C) were divided into three Gaussian peaks at 288.4 eV, 285.3 eV,
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and 284.8 eV, which respectively belonged to C=O, C–OH, and C–C/C=C bonds. The splitting peaks at
374.2 eV and 368.19 eV in the Ag 3d XPS spectrum of fresh and used 3-Ag/CeO2@C-2 (Figure 2D) were
assigned to Ag 3d3/2 and Ag 3d5/2, respectively. Although there was no change in the microstructure of
used 3-Ag/CeO2@C-2 (Figure S4), long-term irradiation induced a difference in the C 1s and Ag 3d
XPS spectra between the fresh and used samples (Figure 3C,D), leading to inferior charge transfer and
separation [45,47].
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Figure 2. Ce 3d (A), O 1s (B), C 1s (C), and Ag 3d (D) X-ray photoelectron spectroscopy (XPS) spectra
of fresh and used 3-Ag/CeO2@C-2.

The detailed microstructure and surface morphology of CeO2, CeO2@C, and Ag/CeO2@C were
obtained by SEM and TEM. All of these samples were irregular nanosheets with thicknesses ranging
from 10 nm to 20 nm (Figures S4 and S5, and Figure 3A,B). Compared to the CeO2 precursor
(Figure S5A,B), there were many more fragments detected in the CeO2 after it was treated at high
temperature (Figure S5C,D). With the assistance of carbon coating, fewer fragments and agglomerated
nanosheets were detected in CeO2@C (Figure S5E–G) and Ag/CeO2@C (Figure S6), which was further
confirmed by the TEM images (Figure S7). With an increase in carbon content, the agglomeration of
CeO2@C gradually disappeared and even formed single nanosheets, while the specific surface area of
CeO2@C decreased (Table S2). Although the nanosheet structure of Ag/CeO2@C was not affected by
the Ag doping, the fragment content increased with increasing Ag-doped content due to the damage
effect of NaBH4 during the in situ reduction process (Figure S6). In addition, the specific surface
area of Ag-doped CeO2@C-2 deceased with increasing Ag-doped content (Table S2). As is shown in
Figure 3, 3-Ag/CeO2@C-2 had irregular and fragmented nanosheets (Figure 3A,B), and ultrafine Ag
nanoparticles with a diameter of around 3 nm (dark section in the red circle) were anchored on the
CeO2@C-2 (Figure 3C,D and Figure S7E,F), which was evidenced by the HRTEM images (Figure 3E,F).
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The spacing distances between neighboring lattice fringes of the (111) plane of cubic CeO2 and the
(111) facet of cubic Ag (Figure 3E,F) were, respectively, 0.312 nm and 0.24 nm, which agreed with the
XRD pattern of 3-Ag/CeO2@C-2. The elemental distribution of 3-Ag/CeO2@C-2 was further obtained
by the elemental mapping images. As is shown in Figure 3G–J, there were Ce, O, C, and Ag elements
existing in the obtained sample and discontinuous and monodisperse distributions of Ag elements on
the bulk surface, indicating the formation of Ag QDs anchored in CeO2@C nanosheets.
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Figure 3. SEM images (A,B), TEM images (C,D), high-resolution TEM (HRTEM) images (E,F), and
elemental mapping images (G–J) of 3-Ag/CeO2@C-2.

The molecular structures of the obtained CeO2, CeO2@C, and Ag/CeO2@C were obtained by
FT-IR, as shown in Figures S8 and S9. The peaks at 3440 and 1640 cm−1 were ascribed to the stretching
vibration and bending vibration of the O–H group of absorbed water and surface hydroxyl [9,11].
The peak at 1539 cm−1 was attributed to the H–O–H bending vibration of water molecules. The band
peaks around 2921 cm−1, 2847 cm−1, and 1377 cm−1 were due to the bending vibration of the C–H group.
The peaks at 2362 cm−1 and 2340 cm−1 could be assigned to the stretching vibrations of C=O groups of
adsorbed CO2 in the air. The peaks at 676 cm−1, 567 cm−1, and 475 cm−1 were attributed to the vibration
of metal oxygen bonds [41]. The optical properties of CeO2, CeO2@C-2, and 3-Ag/CeO2@C-2 were
obtained by UV-Vis DRS, as shown in Figure 4. Compared to CeO2 and CeO2@C-2, 3-Ag/CeO2@C-2
exhibited strong visible-light-harvesting capacity due to the SPR effect of Ag QDs [18,22,23]. According
to the plot of (αhv)1/2 versus (hv), the calculated band gap energy of 3-Ag/CeO2@C-2 (2.47 eV) was
lower than those of CeO2 (2.61 eV) and CeO2@C-2 (2.86 eV). The photoluminescence (PL) spectra
(Figure 5) indicated that the PL peak intensity of 3-Ag/CeO2@C-2 was also weaker than those of CeO2
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and CeO2@C-2 after an excitation at a 300-nm wavelength [25]. On the basis of the standard quantum
efficiency of 100% formed from the absorbance at the excitation wavelength and the photoluminescence
intensity, the estimated fluorescence efficiency of 3-Ag/CeO2@C-2 (13.21%) was higher than those
of CeO2 (5.72%) and CeO2@C-2 (8.36%), meaning a lower recombination of charge carriers over
3-Ag/CeO2@C-2. The broad emission band around 350–550 nm was responsible for Ce3+ ions and oxide
defects in CeO2. In addition, the combined effect of carbon coating and Ag QD-doping was helpful for
efficient charge transfer and high resistance to the recombination of electron–hole pairs [41,45].
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Figure 4. UV–Vis spectra of CeO2, CeO2@C-2, and 3-Ag/CeO2@C-2.
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Figure 5. Photoluminescence (PL) spectra of CeO2, CeO2@C-2, and 3-Ag/CeO2@C-2.

The separation efficiency of photocatalytic electron–hole pairs was evaluated by electrochemical
impedance spectroscopy (EIS), in which the arc radius represented the transfer rate of the photocatalyst
charge. In contrast to CeO2 and CeO2@C-2, 3-Ag/CeO2@C-2 exhibited a higher transient photocurrent
under visible-light irradiation (Figure 6A) and a smaller arc radius of electrochemical impedance
(Figure 6B). The small radius of 3-Ag/CeO2@C-2 suggested that the low resistance was suitable for
the efficient separation of charge carriers in the obtained 3-Ag/CeO2@C-2 photocatalyst. Although
a large specific surface area is favorable in reducing the diffusion length of charge carriers and
further prompting charge transfer, the SPR effect of Ag QDs and a tight interface between carbon
and CeO2 nanosheets are crucial for the enhanced separation of charge carriers and the restrained
recombination of photoexcited electron–hole pairs [47,48]. Mott–Schottky curves of the obtained
CeO2, CeO2@C-2, and 3-Ag/CeO2@C-2 were performed for an evaluation of the semiconductor type
and flat band potentials (Vfb), where the Vfb values of these samples could be obtained from the x
intercept by prolonging the linear part of the Mott–Schottky curves on the potential axis (Figure S10A).
The Vfb values of CeO2, CeO2@C-2, and 3-Ag/CeO2@C-2 were −0.83 V, −0.65 V, and −0.58 V versus
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a KCl-saturated calomel electrode, respectively. Hence, the valence band values of CeO2, CeO2@C-2,
and 3-Ag/CeO2@C-2 were −0.59 V, −0.41 V, and −0.34 V, respectively. According to the calculated band
gap energy, the conduction band values of CeO2, CeO2@C-2, and 3-Ag/CeO2@C-2 were 2.27 V, 2.20 V,
and 2.13 V, respectively. Compared to 3-Ag/CeO2@C-2 alone with a bias voltage of 1.0 V, the addition
of visible-light irradiation with a light-power intensity of 240 mW cm−2 (λ > 420 nm) could enhance
the current response (Figure S10B), indicating efficient photoinduced charge in the visible light region.
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Figure 6. Photocurrent–time response (A) and electrochemical impedance spectroscopy (EIS) Nyquist
plots (B) of 3-Ag/CeO2@C-2.

CeO2-based composites were performed for the visible-light-driven photocatalytic reduction
of Cr(VI) ions and the photodegradation of tetracycline hydrochloride (TCH). Compared to CeO2

nanosheets, carbon-coated composites exhibited better adsorption–photocatalytic activity under the
same conditions, especially CeO2@C-2 (Figure S11). The enhanced adsorption–photocatalysis behaviors
of CeO2@C were due to sufficient active sites of carbon shells and the oxygen vacancy of CeO2 cores.
In addition, this was ascribed to the trap effect of carbon shells for enhanced charge transfer and
efficient charge carrier separation [9,49,50]. With the assistance of carbon shells, the excited electrons
could efficiently escape from the conduction band (CB) of CeO2 to amorphous carbon, achieving the
separation of electron–hole pairs and restraining their recombination. The SPR effect of Ag QDs could
further strengthen the photocatalytic activity of CeO2@C-2 (Figure 7A). The photocatalytic activity
of Ag/CeO2@C-2 for Cr(VI) removal increased and then decreased with an increase in Ag-doping
content. In addition, Ag/CeO2@C-2 composites also exhibited excellent photocatalytic activity for
the visible-light-driven photodegradation of TCH compared to CeO2@C-2, as shown in Figure S12.
A similar tendency in the effects of Ag-doping content on photocatalytic activity was obtained for
the removal of TCH in the visible-light region. Among these Ag QDs doped composites, CeO2@C-2
and 3-Ag/CeO2@C-2 with an Ag-doping content of 5.41% presented the best photocatalytic activity.
Due to the limited active sites, an excess of Cr(VI) ions could not efficiently access the active sites,
leading to inferior photocatalytic efficiency. Hence, the removal efficiency of 3-Ag/CeO2@C-2 decreased
with increasing concentrations of Cr(VI) ions (ranging from 10 mg L−1 to 40 mg·L−1 (Figure 7B)).
The optimum pH value facilitated the reaction between hydroxyl (OH−) (or H+) ions and radical
species (such as e− and h+) to generate ·O2

− and ·OH radicals [20,47]. In a photocatalytic reaction
system, H+ ions can react with ·O2

− to form ·OOH radicals, and ·OOH can react with H+ ions to
generate H2O2 [3]. Subsequently, H2O2 is likely to react with e− to form ·OH and OH−, of which OH−

ions are scavenged by h+ to produce ·OH [9]. In addition, ·OH is also generated from the reaction
between H2O and h+ [15]. An excess of OH− ions can quench the above chain reactions, leading to
inferior photocatalytic activity (Figure 7C).
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Figure 7. Effect of Ag content on the photocatalytic activity of CeO2@C-2 (A) and the effects of Cr(VI)
concentration (B), pH value (C), and inorganic ions (D) on the photocatalytic activity of 3-Ag/CeO2@C-2.

Inorganic ions such as chlorine (Cl−), sulfite (SO3
2−), sulfate (SO4

2−), and phosphate (H2PO4
−)

could affect the photocatalytic activity of 3-Ag/CeO2@C-2 in Cr(VI) removal. As is shown in Figure 7D,
inorganic ions could restrain photocatalytic activity compared to 3-Ag/CeO2@C-2 alone in Cr(VI)
removal under the same conditions. The removal efficiency of Cr(VI) was remarkably inhibited by
H2PO4

− in comparison to Cl−, SO4
2−, and SO3

2−. The impeding effect of inorganic ions was due
to ·OH scavengers and reduced active sites [9,10]. On the one hand, inorganic ions served as ·OH
scavengers and competed with Cr(VI) ions for ·OH radicals. Although the ion radicals were suitable
for the oxidizing pollutants, their low oxidoreductive potential induced inferior photocatalytic rates
compared to ·OH, especially in acidic conditions [13]. On the other hand, inorganic ions could adsorb
on the surface of 3-Ag/CeO2@C-2, leading to decreased surface-active sites for Cr(VI) ions. As is shown
in Figure 8, the photocatalytic activity of 3-Ag/CeO2@C-2 remained slightly changed after five cycles.
However, the mass loss of 3-Ag/CeO2@C-2 in the sedimentation and transferring processes induced
a decrease in photocatalytic activity in each cycle test. SEM images (Figure S4) confirmed that the
structure of the used 3-Ag/CeO2@C-2 remained unchanged after five cycles of photocatalytic reactions.
However, the surface compositions and chemical states of the used 3-Ag/CeO2@C-2 (Figure 2) were
different from the fresh composites due to long-term photocorrosion.

As is shown in Figure 9, ESR signals of photoinduced radicals such as ·OH and ·O2
− were

clearly obtained, in which the intensities increased with an increase in the irradiation time of visible
light. Quenching testing (Figure S13) indicated that the photocatalytic reaction was suppressed by
tert-butyl alcohol (t-BuOH), benzoquinone (BQ), and ethylenediaminetetraacetic acid disodium salt
(EDTA-2Na), especially p-BQ and t-BuOH. It was concluded that the ·OH and ·O2

− radicals were
vital for the photocatalytic activity of 3-Ag/CeO2@C-2. The enhanced photocatalytic capacity was
due to the SPR effect of Ag QDs, an electron trapper of carbon shells, and the redox activity of
the Ce(III)/Ce(IV) coupling. In other words, the photocatalytic activity was related to the amount
of Ag+ serving as an electron acceptor (Ag2+

↔ Ag0) and/or a hole donor (Ag2+
↔ Ag +) and the



Nanomaterials 2019, 9, 1643 10 of 15

concentration of Ce3+ and oxygen vacancies, which could promote the localization of charge carriers
and prolong the separation of electron–hole pairs via trapping at energy levels close to the valance band
or conduction band [13]. Previous work has suggested that the temperature-programmed reduction
(TPR) of peaks belonging to the conversion of Ag2+ and Ag+ into Ag0 is obtained at 405 K and 421 K,
respectively [55]. Hence, a reaction between e−/h+ pairs and Ag0/Ag+/Ag2+ ions is likely to promote
the photoreduction of Cr(VI) ions. The possible photocatalytic mechanism of the 3-Ag/CeO2@C-2
heterojunction is proposed in Figure 10. Under visible-light irradiation, the photoexcited electrons
from the valance band (O2p, VB = −0.56 eV) to the conduction band (Ce4f, CB = 2.30 eV) of CeO2 were
trapped by carbon shells and then transferred to Ag QDs (Equation (1)). The SPR effect of Ag QDs
could strengthen the amount of photoexcited electron–hole pairs. The photogenerated electrons were
scavenged by O2 molecules (EO2/O·2

− = −0.33 eV/NHE, normal hydrogen electrode) in the atmosphere
and in the water solution to yield ·O2

− and •OH radicals (Equations (3)–(5)): meanwhile, h+ and ·O2
−

could react with H2O molecules to form an ·OH radical (EH2O, OH
−

/•OH = 1.99 eV/NHE) (Equations (6)
and (7)) [56,57]. In addition, OH− ions were adsorbed on the h+ of the valance band to generate an ·OH
radical. These radicals were responsible for the efficient photocatalytic reduction of Cr(VI) into Cr(III)
ions (Equations (8)–(13)), which was confirmed by the Cr 2p XPS spectrum of the used 3-Ag/CeO2@C-2
after five cycles of photocatalytic reaction (Figure S14). The splitting peaks at 588.2 eV and 579.2 eV
were indexed to Cr(VI), and the peaks at 586.2 eV and 576.4 eV were indexed to Cr(III), indicating
a conversion of Cr(VI) ions into Cr(III) ions according to the electron transfer process [56]. Under acidic
conditions, Cr(VI) ions could react with electrons and ·OH to generate Cr(III) ions (Equations (8)–(11)).
Under alkaline conditions, low H+ ions could react with Cr(VI) ions to form Cr3+ ions (Equation
(12)) and further generate Cr(OH)3 loaded on the surface of 3-Ag/CeO2@C-2 bulks (Equation (13)),
leading to inferior light adsorption capacity [58–60]. In addition, TCH could react with ·OH and
h+ to form small molecules, which was evaluated by UPLC–MS (Figure S15). Under visible-light
irradiation, TCH molecules were degraded via N–C bond cleavage and hydroxylation, and then these
intermediates could react with the ·OH radical to destroy C2–C3 double bonds and eliminate NH3:
they subsequently disintegrated into small molecules and even H2O and CO2 through demethylation,
deamination, and ·OH attack [55,56]. Ag QDs doping and carbon shells could serve as an interfacial
charge transfer medium and a recombination center, accelerating the photocatalytic reaction:

Ag/CeO2@C + hv→ h+ + e− (2)

O2 + e− → ·O−2 (3)

O2 + e− + H+
→ ·OOH (4)

·O−2 + ·OOH + H+
→ 2 ·OH + O2 (5)

H2O + h+
→ ·OH + H+ (6)

·O−2 + 2H2O + h+
→ 4·OH (7)

14H+ + Cr2O2−
7 + 6e− → 2Cr3+ + 7H2O (8)

7H+ + HCrO−4 + 3e− → Cr3+ + 4H2O (9)

·OH + HCrO−4 + 8H+ + 4e− → Cr3+ + 5H2O (10)

·OH + Cr2O2−
7 + 15H+ + 7e− → 2Cr3+ + 8H2O (11)

8H+ + CrO2−
4 + 3e− → Cr3+ + 4H2O (12)

4H2O + 2CrO2−
4 + H+

→ 2Cr(OH)3 + 3OH− (13)
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Figure 9. Electron spin resonance (ESR) spectra of 3-Ag/CeO2@C-2 for DMPO–·O2
− in methanol (A)
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Figure 10. Photocatalytic mechanism of 3-Ag/CeO2@C-2.

4. Conclusions

Ag/CeO2@C nanosheets presented better photocatalytic activity than did CeO2 and CeO2@C for
Cr(VI) removal in the visible-light region. The photocatalytic activity of Ag/CeO2@C increased and
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then decreased with an increase in carbon content, Ag doping content, and pH value. Inorganic ions
and Cr(VI) content had a negative effect on the removal efficiency of Cr(VI) under the same conditions.
The best removal efficiency and the most superior photocatalytic stability after five cycles were achieved
by 3-Ag/CeO2@C-2 in the visible-light-driven removal of Cr(VI) ions as well as TCH. The SPR effect
of Ag QDs, an electron trapper of carbon shells, and the redox activity of the Ce(III)/Ce(IV) coupling
played a vital role in the transfer and separation of charge carriers. •O2

− and •OH radicals were the
primary active species of 3-Ag/CeO2@C-2 in the photocatalytic system.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/11/1643/s1:
Figure S1: XRD patterns of CeO2 and CeO2@C; Figure S2: XPS spectra of CeO2; Figure S3: XPS spectra of
CeO2@C-2; Figure S4: SEM images of used 3-Ag/CeO2@C-2; Figure S5: SEM images of CeO2 precursor (A,B),
CeO2 (C,D), CeO2@C-1 (E,F), CeO2@C-2 (G,H), and CeO2@C-3 (I,J); Figure S6: SEM images of CeO2@C-2 (A,B),
1-Ag/CeO2@C-2 (C,D), 2-Ag/CeO2@C-2 (E,F), 3-Ag/CeO2@C-2 (G,H), and 4-Ag/CeO2@C-2 (I,J); Figure S7: TEM
images of CeO2 (A,B), CeO2@C-2 (C,D), and 3-Ag/CeO2@C-2 (E,F); Figure S8: FT-IR spectra of CeO2 and CeO2@C
composites; Figure S9: FT-IR spectra of CeO2@C-2 and Ag/CeO2@C-2 composites; Figure S10: Mott–Schottky
curves of CeO2, CeO2@C-2, and 3-Ag/CeO2-2 (A) and U–I curves of 3-Ag/CeO2-2 (B); Figure S11: Effect of carbon
content on the photocatalytic activity of CeO2@C composites in the removal of Cr(VI) in the visible-light region,
(Cr(VI) content of 20 mg·L−1, catalyst dosage of 40 mg, solution volume of 100 mL, and optical power density of
600 mW·cm−2); Figure S12: Effect of Ag content on the photocatalytic activity of Ag/CeO2@C-2 composites in the
removal of tetracycline hydrochloride in the visible-light region (tetracycline hydrochloride content of 30 mg·L−1,
catalyst dosage of 40 mg, solution volume of 100 mL, and optical power density of 600 mW cm−2); Figure S13:
Reactive species trapping experiments over Ag/CeO2@C-2; Figure S14: Cr 2p XPS spectrum of used Ag/CeO2@C-2
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