Prediction of Gold Nanoparticle and Microwave-Induced Hyperthermia Effects on Tumor Control via a Simulation Approach

Nikolaos M. Dimitriou ^{1,2}, Athanasia Pavlopoulou ³, Ioanna Tremi ¹, Vassilis Kouloulias ⁴, Georgios Tsigaridas ¹, and Alexandros G. Georgakilas ^{1,*}

- ¹ Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece. nikolaos.dimitriou@mail.mcgill.ca (N.M.D.); ioannatremi@mail.ntua.gr (I.T.); gtsig@mail.ntua.gr (G.T.)
- ² Department of Bioengineering, McGill University, Montreal, H3A 0E9, Quebec, Canada
- ³ Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340, Turkey; athanasia.pavlopoulou@deu.edu.tr
- ⁴ Radiation Oncology Unit, 2nd Department of Radiology, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; vkouloul@ece.ntua.gr
- * Correspondence: alexg@mail.ntua.gr

Figure S1. HSP90 interactome; confidence score of interactions more than 90%. The nodes represent genes/proteins and the lines indicate connection between nodes. The molecular action visualization mode was used.