Selected Organometallic Compounds for Third Order Nonlinear Optical Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Thin Films
2.2. UV-Vis Absorption Spectra
2.3. Atomic Force Microscopy (AFM)
2.4. NLO Measurements
2.5. Computational Details
3. Results
3.1. Topography and Structural Properties
3.2. Optical Properties
3.3. THG Measurements
3.4. Theoretical Simulations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morrall, J.P.; Dalton, G.T.; Humphrey, M.G.; Samoc, M. Organotransition Metal Complexes for Nonlinear Optics. In Advances in Organometallic Chemistry; Elsevier: New York, NY, USA, 2007; Volume 55, pp. 61–136. ISBN 978-0-12-373978-0. [Google Scholar]
- Zhang, P.; Sadler, P.J. Advances in the design of organometallic anticancer complexes. J. Organomet. Chem. 2017, 839, 5–14. [Google Scholar] [CrossRef]
- Humbs, W.; van Veldhoven, E.; Zhang, H.; Glasbeek, M. Sub-picosecond fluorescence dynamics of organic light-emitting diode tris(8-hydroxyquinoline) metal complexes. Chem. Phys. Lett. 1999, 304, 10–18. [Google Scholar] [CrossRef]
- Muhammad, F.F.; Sulaiman, K. Optical and morphological modifications in post-thermally treated tris(8-hydroxyquinoline) gallium films deposited on quartz substrates. Mat. Chem. Phys. 2014, 148, 473–477. [Google Scholar] [CrossRef]
- Kido, J.; Okamoto, Y. Organo Lanthanide Metal Complexes for Electroluminescent Materials. Chem. Rev. 2002, 102, 2357–2368. [Google Scholar] [CrossRef]
- Arroudj, S.; Aamoum, A.; Messaadia, L.; Bouraiou, A.; Bouacida, S.; Bouchouit, K.; Sahraoui, B. Effect of the complexation on the NLO electronic contribution in film based conjugated quinoline ligand. Physica B 2017, 516, 1–6. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics, 3rd ed.; Academic Press: Amsterdam, The Netherlands; Boston, MA, USA, 2008; ISBN 978-0-12-369470-6. [Google Scholar]
- Qian, Y.; Cai, M.; Wang, S.; Yi, Y.; Shuai, Z.; Yang, G. Synthesis and third-order optical nonlinearities of nickel complexes of 8-hydroxyquinoline derivatives. Opt. Commun. 2010, 283, 2228–2233. [Google Scholar] [CrossRef]
- Thangaraj, M.; Vinitha, G.; Sabari Girisun, T.C.; Anandan, P.; Ravi, G. Third order nonlinear optical properties and optical limiting behavior of alkali metal complexes of p-nitrophenol. Opt. Laser Technol. 2015, 73, 130–134. [Google Scholar] [CrossRef]
- Durand, R.J.; Gauthier, S.; Achelle, S.; Kahlal, S.; Saillard, J.-Y.; Barsella, A.; Wojcik, L.; Le Poul, N.; Robin-Le Guen, F. Incorporation of a platinum center in the pi-conjugated core of push–pull chromophores for nonlinear optics (NLO). D. Trans. 2017, 46, 3059–3069. [Google Scholar] [CrossRef] [Green Version]
- Nisic, F.; Colombo, A.; Dragonetti, C.; Garoni, E.; Marinotto, D.; Righetto, S.; De Angelis, F.; Lobello, M.G.; Salvatori, P.; Biagini, P.; et al. Functionalized Ruthenium Dialkynyl Complexes with High Second-Order Nonlinear Optical Properties and Good Potential as Dye Sensitizers for Solar Cells. Organometallics 2015, 34, 94–104. [Google Scholar] [CrossRef]
- Wang, R.; Cao, Y.; Jia, D.; Liu, L.; Li, F. New approach to synthesize 8-hydroxyquinoline-based complexes with Zn2+ and their luminescent properties. Opt. Mat. 2013, 36, 232–237. [Google Scholar] [CrossRef]
- Chavan, S.S.; Lolage, S.R.; Pawal, S.B. Synthesis, characterization and luminescence properties of azobenzene based heterobimetallic Ru(II)/M(II) (M = Ni and Zn) hybrid complexes composed of organometallic and coordination sites. J. Organomet. Chem. 2016, 815–816, 65–73. [Google Scholar] [CrossRef]
- Núñez-Zarur, F.; Vivas-Reyes, R. Ab initio study of luminescent substituted 8-hydroxyquinoline metal complexes with application in organic light emitting diodes. J. Mol. Struct. 2008, 850, 127–134. [Google Scholar] [CrossRef]
- Secu, M.; Polosan, S. Charge carrier traps in tris-(8-hydroxyquinoline) aluminum. J. Lumin. 2018, 194, 91–95. [Google Scholar] [CrossRef]
- Zawadzka, A.; Płóciennik, P.; Strzelecki, J.; Łukasiak, Z.; Sahraoui, B. Photophysical properties of Alq3 thin films. Opt. Mat. 2013, 36, 91–97. [Google Scholar] [CrossRef]
- Selvakumar, S.; Kumar, S.M.R.; Rajarajan, K.; Pragasam, A.J.A.; Rajasekar, S.A.; Thamizharasan, K.; Sagayaraj, P. Growth and Characterization of a Novel Organometallic Nonlinear Optical Crystal: Bis(Thiourea) Cadmium Formate. Cryst. Growth Des. 2006, 6, 2607–2610. [Google Scholar] [CrossRef]
- Balakrishnan, C.; Sivaraman, S.; Manonmani, M.; Markkandan, R.; Meenakshisundaram, S.P.; Sockalingam, R.M. Synthesis, crystal growth, structural characterization and theoretical investigations of bis(benzene-1,2-dicarboxylato)bis(thiourea)zinc. Mol. Cryst. Liq. Cryst. 2018, 664, 182–194. [Google Scholar] [CrossRef]
- Wan, X.Q.; Cheng, X.F.; Zhang, S.J.; Xu, D.; Zhang, G.H.; Sun, Z.H.; Yu, F.P.; Liu, X.J.; Liu, W.L.; Chen, C.L. Single crystal growth, structural characterization, thermal and optical properties of a novel organometallic nonlinear optical crystal: MnHg(SCN)4(C2H5NO)2. Physica B 2010, 405, 1071–1080. [Google Scholar]
- Long, N.J. Organometallic Compounds for Nonlinear Optics—The Search for En-light-enment! Angew. Chem. Int. Ed. 1995, 34, 21–38. [Google Scholar] [CrossRef]
- Wang, X.Q.; Ren, Q.; Sun, J.; Fan, H.L.; Li, T.B.; Liu, X.T.; Zhang, G.H.; Zhu, L.Y.; Xu, D. Preparation, crystal growth, characterization, thermal and third-order nonlinear optical properties of ethyltriphenylphosphonium bis(2-thioxo-1,3-dithiole-4,5-dithiolato)aurate(III) for all-optical switching. J. Cryst. Growth 2011, 324, 124–129. [Google Scholar] [CrossRef]
- Huang, T.; Hao, Z.; Gong, H.; Liu, Z.; Xiao, S.; Li, S.; Zhai, Y.; You, S.; Wang, Q.; Qin, J. Third-order nonlinear optical properties of a new copper coordination compound: A promising candidate for all-optical switching. Chem. Phys. Lett. 2008, 451, 213–217. [Google Scholar] [CrossRef]
- Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. 8-Hydroxyquinolines: a review of their metal chelating properties and medicinal applications. Drug Des. Devel. Ther. 2013, 7, 1157–1178. [Google Scholar] [CrossRef] [PubMed]
- Abed, S.; Aida, M.S.; Bouchouit, K.; Arbaoui, A.; Iliopoulos, K.; Sahraoui, B. Non-linear optical and electrical properties of ZnO doped Ni Thin Films obtained using spray ultrasonic technique. Opt. Mat. 2011, 33, 968–972. [Google Scholar] [CrossRef] [Green Version]
- Zawadzka, A.; Karakas, A.; Płóciennik, P.; Szatkowski, J.; Łukasiak, Z.; Kapceoglu, A.; Ceylan, Y.; Sahraoui, B. Optical and structural characterization of thin films containing metallophthalocyanine chlorides. Dyes Pigments 2015, 112, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Papagiannouli, I.; Szukalski, A.; Iliopoulos, K.; Mysliwiec, J.; Couris, S.; Sahraoui, B. Pyrazoline derivatives with a tailored third order nonlinear optical response. RSC Adv. 2015, 5, 48363–48367. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, S.K.; Perry, T.T. A Powder Technique for the Evaluation of Nonlinear Optical Materials. J. Appl. Phys. 1968, 39, 3798–3813. [Google Scholar] [CrossRef]
- Lee, G.J.; Cha, S.W.; Jeon, S.J.; Jin, J.-I.; Yoon, J.S. Second-order nonlinear optical properties of unpoled bent molecules in powder and in vacuum-deposited film. J. Korean Phys. Soc. 2001, 39, 912–915. [Google Scholar]
- Reintjes, J.F. Nonlinear Optical Parametric Processes in Liquids and Gases, Quantum Electronics--Principles and Applications; Academic Press: New York, NY, USA, 1984; ISBN 978-0-12-585980-6. [Google Scholar]
- Kubodera, K.; Kobayashi, H. Determination of Third-Order Nonlinear Optical Susceptibilities for Organic Materials by Third-Harmonic Generation. Mol. Cryst. Liquid Cryst. Inc. Nonlinear Opt. 1990, 182, 103–113. [Google Scholar] [CrossRef]
- Rau, I.; Kajzar, F.; Luc, J.; Sahraoui, B.; Boudebs, G. Comparison of Z-scan and THG derived nonlinear index of refraction in selected organic solvents. J. Opt. Soc. Am. B 2008, 25, 1738. [Google Scholar] [CrossRef]
- List, N.H.; Zaleśny, R.; Murugan, N.A.; Kongsted, J.; Bartkowiak, W.; Ågren, H. Relation between Nonlinear Optical Properties of Push–Pull Molecules and Metric of Charge Transfer Excitations. J. Chem. Theory Comput. 2015, 11, 4182–4188. [Google Scholar] [CrossRef]
- Ulrich, G.; Barsella, A.; Boeglin, A.; Niu, S.; Ziessel, R. BODIPY-Bridged Push–Pull Chromophores for Nonlinear Optical Applications. ChemPhysChem 2014, 15, 2693–2700. [Google Scholar] [CrossRef]
- Papagiannouli, I.; Iliopoulos, K.; Gindre, D.; Sahraoui, B.; Krupka, O.; Smokal, V.; Kolendo, A.; Couris, S. Third-order nonlinear optical response of push–pull azobenzene polymers. Chem. Phys. Lett. 2012, 554, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Bouchouit, K.; Essaidi, Z.; Abed, S.; Migalska-Zalas, A.; Derkowska, B.; Benali-cherif, N.; Mihaly, M.; Meghea, A.; Sahraoui, B. Experimental and theoretical studies of NLO properties of organic–inorganic materials base on p-nitroaniline. Chem. Phys. Lett. 2008, 455, 270–274. [Google Scholar] [CrossRef] [Green Version]
- Kulyk, B.; Taboukhat, S.; Akdas-Kilig, H.; Fillaut, J.-L.; Karpierz, M.; Sahraoui, B. Tuning the nonlinear optical properties of BODIPYs by functionalization with dimethylaminostyryl substituents. Dyes Pigments 2017, 137, 507–511. [Google Scholar] [CrossRef] [Green Version]
- Kouissa, B.; Bouchouit, K.; Abed, S.; Essaidi, Z.; Derkowska, B.; Sahraoui, B. Investigation study on the nonlinear optical properties of natural dyes: Chlorophyll a and b. Opt. Commun. 2013, 293, 75–79. [Google Scholar] [CrossRef] [Green Version]
- Bouchouit, K.; Bendeif, E.E.; EL Ouazzani, H.; Dahaoui, S.; Lecomte, C.; Benali-cherif, N.; Sahraoui, B. Correlation between structural studies and third order NLO properties of selected new quinolinium semi-organic compounds. Chem. Phys. 2010, 375, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Zawadzka, A.; Płóciennik, P.; Strzelecki, J.; Sahraoui, B. Transparent amorphous zinc oxide thin films for NLO applications. Opt. Mat. 2014, 37, 327–337. [Google Scholar] [CrossRef] [Green Version]
- Płóciennik, P.; Guichaoua, D.; Korcala, A.; Zawadzka, A. Studies of aluminum oxide thin films deposited by laser ablation technique. Opt. Mat. 2016, 56, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Bosshard, C.; Gubler, U.; Kaatz, P.; Mazerant, W.; Meier, U. Non-phase-matched optical third-harmonic generation in noncentrosymmetric media: Cascaded second-order contributions for the calibration of third-order nonlinearities. Phys. Rev. B 2000, 61, 10688–10701. [Google Scholar] [CrossRef]
- Gubler, U.; Bosshard, C. Optical third-harmonic generation of fused silica in gas atmosphere: Absolute value of the third-order nonlinear optical susceptibility χ(3). Phys. Rev. B 2000, 61, 10702. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2009.
- Niu, J.; Luo, M.; Liu, Q.H. Enhancement of graphene’s third-harmonic generation with localized surface plasmon resonance under optical/electro-optic Kerr effects. J. Opt. Soc. Am. B 2016, 33, 615. [Google Scholar] [CrossRef]
- Jassim, N.; Wang, K.; Lu, P. A Review: Optical Second—Harmonic Generation Enhancement via Plasmonic Surface—Theory and Applications. Adv. Res. 2016, 7, 1–17. [Google Scholar] [CrossRef]
- Shcherbakov, M.R.; Neshev, D.N.; Hopkins, B.; Shorokhov, A.S.; Staude, I.; Melik-Gaykazyan, E.V.; Decker, M.; Ezhov, A.A.; Miroshnichenko, A.E.; Brener, I.; et al. Enhanced Third-Harmonic Generation in Silicon Nanoparticles Driven by Magnetic Response. Nano Lett. 2014, 14, 6488–6492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scherbak, S.A.; Lipovskii, A.A. Understanding the Second-Harmonic Generation Enhancement and Behavior in Metal Core–Dielectric Shell Nanoparticles. J. Phys. Chem. C 2018, 122, 15635–15645. [Google Scholar] [CrossRef]
- Zhang, Y.; Grady, N.K.; Ayala-Orozco, C.; Halas, N.J. Three-Dimensional Nanostructures as Highly Efficient Generators of Second Harmonic Light. Nano Lett. 2011, 11, 5519–5523. [Google Scholar] [CrossRef] [PubMed]
- Zawadzka, A.; Waszkowska, K.; Karakas, A.; Płóciennik, P.; Korcala, A.; Wisniewski, K.; Karakaya, M.; Sahraoui, B. Diagnostic and control of linear and nonlinear optical effects in selected self-assembled metallophthalocyanine chlorides nanostructures. Dyes Pigments 2018, 157, 151–162. [Google Scholar] [CrossRef]
- Diaz-Garcia, M.A.; Ledoux, I.; Fernandez-Lazaro, F.; Sastre, A.; Torres, T.; Agullo-Lopez, F.; Zyss, J. Third-Order Nonlinear Optical Properties of Soluble Metallotriazolylhemiporphyrazines. J. Phys. Chem. 1994, 98, 4495–4497. [Google Scholar] [CrossRef]
- Frazier, C.C.; Guha, S.; Chen, W.P.; Cockerham, M.P.; Porter, P.L.; Chauchard, E.A.; Lee, C.H. Third-order optical non-linearity in metal-containing organic polymers. Polymer 1987, 28, 553–555. [Google Scholar] [CrossRef]
- Le Bozec, H.; Guerchais, V.; Bian, Z. (Eds.) Molecular Organometallic Materials for Optics; Springer: Berlin, Germany, 2010; ISBN 978-3-642-01866-4. [Google Scholar]
- Mydlova, L.; Taboukhat, S.; Ayadi, A.; Migalska-Zalas, A.; El-Ghayoury, A.; Zawadzka, A.; Makowska-Janusik, M.; Sahraoui, B. Theoretical and experimental investigation of multifunctional highly conjugated organic push-pull ligands for NLO applications. Opt. Mat. 2018, 86, 304–310. [Google Scholar] [CrossRef]
- Cojan, C.; Agrawal, G.P.; Flytzanis, C. Optical properties of one-dimensional semiconductors and conjugated polymers. Phys. Rev. B 1977, 15, 909–925. [Google Scholar] [CrossRef]
- Bogaard, M.P.; Orr, B.J. Molecular structure and properties. In MTP International Review of Science, Physical Chemistry Series Two; Butterworths: London, UK, 1975; Volume 2, p. 149. [Google Scholar]
- Leupacher, W.; Penzkofer, A. Third-order nonlinear susceptibilities of dye solutions determined by third-harmonic generation. Appl. Phys. B 1985, 36, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Abbas, H. First principle calculation of the photophysical properties of silylated coumarins 120 and 151. Comput. Theor. Chem. 2012, 992, 55–58. [Google Scholar] [CrossRef]
Polarisation S | Polarisation P | ||||||
---|---|---|---|---|---|---|---|
d [nm] | α [106 m−1] | χ(3) [10−20 m2/V2] | χ(3) [10−12 esu] | χ(3) [10−20 m2/V2] | χ(3) [10−12 esu] | χ(3)/α [10−19 esu·m] | |
Znq2 | 173 | 4.19 | 1.62 | 1.16 | 1.76 | 1.27 | 3.03 |
Cuq2 | 166 | 3.65 | 1.85 | 1.32 | 1.78 | 1.27 | 3.62 |
Alq3 | 223 | 3.81 | 1.32 | 0.96 | 1.33 | 0.96 | 2.51 |
Silica | - | - | 0.02 | 0.16 | 0.02 | 0.16 |
Sample | HOMO [eV] | LUMO [eV] | (Eg)HOMO–LUMO [eV] |
---|---|---|---|
Alq3 | −5.25 | −2.19 | 3.06 |
Znq2 | −5.42 | −2.06 | 3.36 |
Cuq2 | −5.13 | −2.16 | 2.97 |
Sample | γxxxx × 10−36 esu | γyyyy × 10−36 esu | γzzzz × 10−36 esu | γxxyy × 10−36 esu | γxxzz × 10−36 esu | γyyzz × 10−36 esu | γtot × 10−36 esu |
---|---|---|---|---|---|---|---|
Alq3 | 626 | 623 | 14 | 211 | 28 | 28 | 359 |
Znq2 | 213 | 13 | 6 | 9 | 9 | 10 | 57 |
Cuq2 | 1751 | 406 | 25653 | 222 | 6369 | 1417 | 8765 |
Sample | HOMO | LUMO |
---|---|---|
Alq3 | ||
Znq2 | ||
Cuq2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popczyk, A.; Aamoum, A.; Migalska-Zalas, A.; Płóciennik, P.; Zawadzka, A.; Mysliwiec, J.; Sahraoui, B. Selected Organometallic Compounds for Third Order Nonlinear Optical Application. Nanomaterials 2019, 9, 254. https://doi.org/10.3390/nano9020254
Popczyk A, Aamoum A, Migalska-Zalas A, Płóciennik P, Zawadzka A, Mysliwiec J, Sahraoui B. Selected Organometallic Compounds for Third Order Nonlinear Optical Application. Nanomaterials. 2019; 9(2):254. https://doi.org/10.3390/nano9020254
Chicago/Turabian StylePopczyk, Anna, Aouatif Aamoum, Anna Migalska-Zalas, Przemyslaw Płóciennik, Anna Zawadzka, Jaroslaw Mysliwiec, and Bouchta Sahraoui. 2019. "Selected Organometallic Compounds for Third Order Nonlinear Optical Application" Nanomaterials 9, no. 2: 254. https://doi.org/10.3390/nano9020254
APA StylePopczyk, A., Aamoum, A., Migalska-Zalas, A., Płóciennik, P., Zawadzka, A., Mysliwiec, J., & Sahraoui, B. (2019). Selected Organometallic Compounds for Third Order Nonlinear Optical Application. Nanomaterials, 9(2), 254. https://doi.org/10.3390/nano9020254