Enhanced N-doped Porous Carbon Derived from KOH-Activated Waste Wool: A Promising Material for Selective Adsorption of CO2/CH4 and CH4/N2
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Sample Preparation
2.3. Material Characterizations
2.4. Adsorption Measurements
3. Results and Discussions
3.1. Characterizations of the As-Prepared Samples
3.2. Gas Adsorption and Separation Studies
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Ben-Mansour, R.; Habib, M.A.; Bamidele, O.E.; Basha, M.; Qasem, N.A.A.; Peedikakkal, A.; Laoui, T.; Ali, M. Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations-A review. Appl. Energ. 2016, 161, 225–255. [Google Scholar] [CrossRef]
- Li, X.F.; Guo, T.C.; Zhu, L.; Ling, C.C.; Xue, Q.Z.; Xing, W. Charge-modulated CO2 capture of C3N nanosheet: Insights from DFT calculations. Chem. Eng. J. 2018, 338, 92–98. [Google Scholar] [CrossRef]
- Byamba-Ochir, N.; Shim, W.G.; Balathanigaimani, M.S.; Moon, M. High density mongolian anthracite based porous carbon monoliths for methane storage by adsorption. Appl. Energy 2017, 190, 257–265. [Google Scholar] [CrossRef]
- Song, W.H.; Yao, J.; Ma, J.S.; Li, A.F.; Li, Y.; Sun, H.; Zhang, L. Grand canonical Monte Carlo simulations of pore structure influence on methane adsorption in micro-porous carbons with applications to coal andshale systems. Fuel 2018, 215, 196–203. [Google Scholar] [CrossRef]
- Im, J.S.; Jung, M.J.; Lee, Y.S. Effects of fluorination modification on pore size controlled electrospun activated carbon fibers for high capacity methane storage. J. Colloid Interf. Sci. 2009, 339, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Wu, X.F.; Chen, Y.X.; Huang, J.H.; Luo, H.M.; Deng, S.G. Adsorption of CO2, CH4, and N2 on ordered mesoporous carbon: Approach for greenhouse gases capture and biogas upgrading. Environ. Sci. Technol. 2013, 47, 5474–5480. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.H.; Li, F.R.; Ning, P.; Tang, X.L.; Peng, J.H.; Li, Y.D.; Deng, H. Adsorption separation of CO2, CH4, and N2 on microwave activated carbon. Chem. Eng. J. 2013, 215, 635–642. [Google Scholar] [CrossRef]
- Shao, X.H.; Feng, Z.H.; Xue, R.S.; Ma, C.C.; Wang, W.C.; Peng, X.; Cao, D.P. Adsorption of CO2, CH4, CO2/N2 and CO2/CH4 in novel activated carbon beads: Preparation, measurements and simulation. AIChE J. 2011, 57, 3042–3051. [Google Scholar] [CrossRef]
- Wang, J.; Krishna, R.; Yang, J.F.; Deng, S.G. Hydroquinone and quinone-grafted porous carbons for highly selective CO2 capture from flue gases and natural gas upgrading. Environ. Sci. Technol. 2015, 49, 9364–9373. [Google Scholar] [CrossRef]
- Liu, C.M.; Zhou, Y.P.; Sun, Y.; Su, W.; Zhou, L. Enrichment of coal-bed methane by PSA complemented with CO2 displacement. AIChE J. 2011, 57, 645–654. [Google Scholar] [CrossRef]
- Bae, Y.S.; Mulfort, K.L.; Frost, H.; Ryan, P.; Punnathanam, S.; Broadbelt, L.J.; Hupp, J.T.; Snurr, R.Q. Separation of CO2 from CH4 using mixed-ligand metal-organic frameworks. Langmuir 2008, 24, 8592–8598. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.; Mekala, S.; Dreisbach, F.; Mandal, B.; Gumma, S. Adsorption of CO2, CO, CH4 and N2 on a zinc based metal organic framework. Sep. Purif. Techinol. 2012, 94, 124–130. [Google Scholar] [CrossRef]
- Liu, B.; Smit, B. Molecular simulation studies of separation of CO2/N2, CO2/CH4, and CH4/N2 by ZIFs. J. Phys. Chem. C 2010, 114, 8515–8522. [Google Scholar] [CrossRef]
- Saham, D.; Bao, Z.; Jia, F.; Deng, S.G. Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and Zeolite 5A. Environ. Sci. Technol. 2010, 44, 1820–1826. [Google Scholar]
- Jensen, N.K.; Rufford, T.E.; Watson, G.; Zhang, D.K.; Ida Chan, K.; May, E.F. Screening zeolites for gas separation applications involving methane, nitrogen, and carbon dioxide. J. Chem. Eng. Data 2012, 57, 106–113. [Google Scholar] [CrossRef]
- Harlick, P.J.E.; Tezel, F.H. Adsorption of carbon dioxide, methane and nitrogen: Pure and binary mixture adsorption for ZSM-5 with SiO2/Al2O3 ratio of 280. Sep. Purif. Techinol. 2003, 33, 199–210. [Google Scholar] [CrossRef]
- İslamoğlu, T.; Rabbani, M.G.; El-Kaderi, H.M. Impact of post-synthesis modification of nanoporous organic frameworks on small gas uptake and selective CO2 capture. J. Mater. Chem. A 2013, 1, 10259–10266. [Google Scholar] [CrossRef]
- Djeridi, W.; Mansour, N.B.; Ouederni, A.; Llewellyn, P.L.; El Mir, L. Study of methane and carbon dioxide adsorption capacity by synthetic nanoporous carbon based on pyrogallol-formaldehyde. Int. J. Hydrogen Energy 2017, 42, 8905–8913. [Google Scholar] [CrossRef]
- Djeridi, W.; Mansour, N.B.; Ouederni, A.; Llewellyn, P.L.; El Mir, L. Influence of the raw material and nickel oxide on the CH4 capture capacity behaviors of microporous carbon. Int. J. Hydrogen Energy 2015, 40, 13690–13701. [Google Scholar] [CrossRef]
- Wang, J.C.; Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 2012, 22, 23710–23725. [Google Scholar] [CrossRef]
- Ashourirad, B.; Sekizkardes, A.K.; Altarawneh, S.; El-Kaderi, H.M. Exceptional gas adsorption properties by nitrogen-doped porous carbons derived from benzimidazole-linked polymers. Chem. Mater. 2015, 27, 1349–1358. [Google Scholar] [CrossRef]
- Li, D.; Li, W.B.; Shi, J.S.; Xin, F.W. Influence of doping nitrogen, sulfur, and phosphorus on activated carbons for gas adsorption of H2, CH4 and CO2. RSC Adv. 2016, 6, 50138–50143. [Google Scholar] [CrossRef]
- Alcañiz-Monge, J.; Lozano-Castelló, D.; Cazorla-Amorós, D.; Linares-Solano, A. Fundamentals of methane adsorption in microporous carbons. Microporous Mesoporous Mater. 2009, 124, 110–116. [Google Scholar] [CrossRef]
- Drage, T.C.; Arenillas, A.; Smith, K.M.; Pevida, C.; Piippo, S.; Snape, C.E. Preparation of carbon dioxide adsorbents from the chemical activation of urea-formaldehyde and melamine-formaldehyde resins. Fuel 2007, 86, 22–31. [Google Scholar] [CrossRef]
- Far, H.M.; Rewatkar, P.M.; Donthula, S.; Taghvaee, T.; Saeed, A.M.; Sotiriou-Leventis, C.; Leventis, N. Exceptionally high CO2 adsorption at 273 K by microporous carbons from phenolic aerogels: The role of heteroatoms in comparison with carbons from polybenzoxazine and other organic aerogels. Macromol. Chem. Phys. 2019, 220, 1800333. [Google Scholar] [CrossRef]
- Saeed, A.M.; Rewatkar, P.M.; Far, H.M.; Taghvaee, T.; Donthula, S.; Mandal, C.; Sotiriou-Leventis, C.; Leventis, N. Selective CO2 sequestration with monolithic bimodal micro/macroporous carbon aerogels derived from stepwise pyrolytic decomposition of polyamide-polyimide-polyurea random copolymers. ACS Appl. Mater. Interfaces 2017, 9, 13520–13536. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.W.; Lin, Y.C.; Yue, Q.F.; Tao, K.; Kong, C.L.; Chen, L. N-rich porous carbon with high CO2 capture capacity derived from polyamine-incorporated metal-organic framework materials. RSC Adv. 2016, 6, 53017–53024. [Google Scholar] [CrossRef]
- Saleh, M.; Chandra, V.; Kemp, K.C.; Kim, K.S. Synthesis of N-doped microporous carbon via chemical activation of polyindole-modified graphene oxide sheets for selective carbon dioxide adsorption. Nanotechnology 2013, 24, 255702. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Hu, G.S.; Hu, X.; Li, Z.M.; Shen, S.W.; Radosz, M.; Fan, M.H. Enhanced CO2 capture capacity of nitrogen-doped biomass-derived porous carbons. ACS Sustain. Chem. Eng. 2016, 4, 1439–1445. [Google Scholar] [CrossRef]
- Wang, P.; Guo, Y.F.; Zhao, C.W.; Yan, J.J.; Lu, P. Biomass derived wood ash with amine modification for post-combustion CO2 capture. Appl. Energ. 2017, 201, 34–44. [Google Scholar] [CrossRef]
- Li, Y.; Li, D.W.; Rao, Y.; Zhao, X.B.; Wu, M.B. Superior CO2, CH4, and H2 uptakes over ultrahigh-surface-area carbon spheres prepared from sustainable biomass-derived char by CO2 activation. Carbon 2016, 105, 454–462. [Google Scholar] [CrossRef]
- Arami-Niya, A.; Rufford, T.E.; Zhu, Z.H. Nitrogen-doped carbon foams synthesized from banana peel and zinc complex template for adsorption of CO2, CH4, and N2. Energy Fuel. 2016, 30, 7298–7309. [Google Scholar] [CrossRef]
- Zhou, L.; Cao, H.; Zhu, S.Q.; Hou, L.R.; Yuan, C.Z. Hierarchical micro-/mesoporous N- and O-enriched carbon derived from disposable cashmere: A competitive cost-effective material for high-performance electrochemical capacitors. Green Chem. 2015, 17, 2373–2382. [Google Scholar] [CrossRef]
- Li, Y.; Xu, R.; Wang, X.; Wang, B.B.; Cao, J.L.; Yang, J.; Wei, J.P. Waste wool derived nitrogen-doped hierarchical porous carbon for selective CO2 capture. RSC Adv. 2018, 8, 19818–19826. [Google Scholar] [CrossRef]
- Yang, M.L.; Guo, L.P.; Hu, G.S.; Hu, X.; Xu, L.Q.; Chen, J.; Dai, W.; Fan, M.H. Highly cost-effective nitrogen-doped porous coconut shell-based CO2 sorbent synthesized by combining ammoxidation with KOH activation. Environ. Sci. Technol. 2015, 49, 7063–7070. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zou, B.; Hu, C.W.; Cao, M.H. Nitrogen-doped porous carbon nanofiber webs for efficient CO2 capture and conversion. Carbon 2016, 99, 79–89. [Google Scholar] [CrossRef]
- Lin, Z.Y.; Waller, G.; Liu, Y.; Liu, M.L.; Wong, C.P. Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction. Adv. Energy Mater. 2012, 2, 884–888. [Google Scholar] [CrossRef]
- Zhang, J.R.; Wang, X.; Qi, G.C.; Li, B.H.; Song, Z.H.; Jiang, H.B.; Zhang, X.H.; Qiao, J.L. A novel N-doped porous carbon microsphere composed of hollow carbon nanospheres. Carbon 2016, 96, 864–870. [Google Scholar] [CrossRef]
- Wei, T.Y.; Wei, X.L.; Gao, Y.; Li, H.M. Large scale production of biomass-derived nitrogen-doped porous carbon materials for supercapacitors. Electrochim. Acta 2015, 169, 186–194. [Google Scholar] [CrossRef]
- Cheng, P.; Li, T.; Yu, H.; Zhi, L.; Liu, Z.H.; Lei, Z.B. Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors. J. Phys. Chem. C 2016, 120, 2079–2086. [Google Scholar] [CrossRef]
- Alabadi, A.; Razzaque, S.; Yang, Y.W.; Chen, S.; Tan, B. Highly porous activated carbon materials from carbonized biomass with high CO2 capturing capacity. Chem. Eng. J. 2015, 281, 606–612. [Google Scholar] [CrossRef]
- Fan, X.Q.; Zhang, L.X.; Zhang, G.B.; Shu, Z.; Shi, J.L. Chitosan derived nitrogen-doped microporous carbons for high performance CO2 capture. Carbon 2013, 61, 423–430. [Google Scholar] [CrossRef]
- Sevilla, M.; Valle-Vigón, P.; Fuertes, A.B. N-doped polypyrrole-based porous carbons for CO2 capture. Adv. Funct. Mater. 2011, 21, 2781–2787. [Google Scholar] [CrossRef]
- Fu, N.; Wei, H.M.; Lin, H.L.; Li, L.; Ji, C.H.; Yu, N.B.; Chen, H.J.; Han, S.; Xiao, G.Y. Iron nanoclusters as template/activator for the synthesis of nitrogen doped porous carbon and its CO2 adsorption application. ACS Appl. Mater. Interfaces 2017, 9, 9955–9963. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.M.; Song, W.; Ma, Q.L.; Xie, L.J.; Zhang, X.C.; Guo, H. Enhancement of CO2 capture on biomass-based carbon from black locust by KOH activation and ammonia modification. Energy Fuels 2016, 30, 4181–4190. [Google Scholar] [CrossRef]
- Yang, M.L.; Guo, L.P.; Hu, G.S.; Hu, X.; Chen, J.; Shen, S.W.; Dai, W.; Fan, M.H. Adsorption of CO2 by petroleum coke nitrogen-doped porous carbons synthesized by combining ammoxidation with KOH activation. Ind. Eng. Chem. Res. 2016, 55, 757–765. [Google Scholar] [CrossRef]
- Ma, X.Y.; Zou, B.; Cao, M.H.; Chen, S.L.; Hu, C.W. Nitrogen-doped porous carbon monolith as a highly efficient catalyst for CO2 conversion. J. Mater. Chem. A 2014, 2, 18360–18366. [Google Scholar] [CrossRef]
- Chen, C.; Xu, G.B.; Wei, X.L.; Yang, L.W. A macroscopic three-dimensional tetrapodseparated graphene-like oxygenated N-doped carbon nanosheet architecture for use in supercapacitors. J. Mater. Chem. A 2016, 4, 9900–9909. [Google Scholar] [CrossRef]
- Wang, Z.H.; Qie, L.; Yuan, L.X.; Zhang, W.X.; Hu, X.L.; Huang, Y.H. Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 2013, 55, 328–334. [Google Scholar] [CrossRef]
- Gao, Z.Y.; Liu, X.; Chang, J.L.; Wu, D.P.; Xu, F.; Zhang, L.C.; Du, W.M.; Jiang, K. Graphene incorporated, N doped activated carbon as catalytic electrode in redox active electrolyte mediated supercapacitor. J. Power Sources 2017, 337, 25–35. [Google Scholar] [CrossRef]
- Li, Y.; Cao, M.H. Synthesis of high-surface-area nitrogen-doped porous carbon microflowers and their efficient carbon dioxide capture performance. Chem. Asian J. 2015, 10, 1496–1504. [Google Scholar] [CrossRef] [PubMed]
- Bae, Y.S.; Farha, O.K.; Hupp, J.T.; Snurr, R.Q. Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification. J. Mater. Chem. 2009, 19, 2131–2134. [Google Scholar] [CrossRef]
- Liu, R.L.; Ji, W.J.; He, T.; Zhang, Z.Q.; Zhang, J.; Dang, F.Q. Fabrication of nitrogen-doped hierarchically porous carbons through a hybrid dual-template route or CO2 capture and haemoperfusion. Carbon 2014, 76, 84–95. [Google Scholar] [CrossRef]
- Peng, X.; Cao, D.P.; Wang, W.C. Adsorption and separation of CH4/CO2/N2/H2/CO mixtures in hexagonally ordered carbon nanopipes CMK-5. Chem. Eng. Sci. 2011, 66, 2266–2276. [Google Scholar] [CrossRef]
- Belmabkhout, Y.; Sayari, A. Adsorption of CO2 from dry gases on MCM-41 silica at ambient temperature and high pressure. 2: Adsorption of CO2/N2, CO2/CH4 and CO2/H2 binary mixtures. Chem. Eng. Sci. 2009, 64, 3729–3735. [Google Scholar] [CrossRef]
- Saini, V.K.; Andrade, M.; Pinto, M.L.; Carvalho, A.P.; Pires, J. How the adsorption properties get changed when going from SBA-15 to its CMK-3 carbon replica. Sep. Purif. Technol. 2010, 75, 366–376. [Google Scholar] [CrossRef]
- Yao, K.X.; Chen, Y.L.; Lu, Y.; Zhao, Y.F.; Ding, Y. Ultramicroporous carbon with extremely narrow pore distribution and very high nitrogen doping for efficient methane mixture gases upgrading. Carbon 2017, 122, 258–265. [Google Scholar] [CrossRef]
- Li, G.Y.; Qin, L.; Yao, C.; Xu, Y.H. Controlled synthesis of conjugated polycarbazole polymers via structure tuning for gas storage and separation applications. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Anil, A.G.; James, A.; Patra, A. Multifunctional porous organic polymers: Tuning of porosity, CO2, and H2 storage and visible-light-driven photocatalysis. ACS Appl. Mater. Interfaces 2016, 8, 27669–27678. [Google Scholar] [CrossRef]
- Mahurin, S.M.; Górka, J.; Nelson, K.M.; Mayes, R.T.; Dai, S. Enhanced CO2/N2 selectivity in amidoxime-modified porous carbon. Carbon 2014, 67, 457–464. [Google Scholar] [CrossRef]
- Dincă, M.; Long, J.R. Strong H2 binding and selective gas adsorption within the microporous coordination solid Mg3(O2C-C10H6-CO2)3. J. Am. Chem. Soc. 2005, 127, 9376–9377. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.J.; Yuan, D.Q. Mesoporous carbon originated from non-permanent porous MOFs for gas storage and CO2/CH4 separation. Sci. Rep. 2014, 4. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Q.; Ben, T.; Zhang, B.Y.; Fu, Y.; Qiu, S.L. Ultrahigh gas storage both at low and high pressures in KOH-activated carbonized porous aromatic frameworks. Sci. Rep. 2013, 3. [Google Scholar] [CrossRef] [PubMed]
Sample | Elemental Composition (wt %) | Relative Percentages of Nitrogen Species [b] (%) | ||||||
---|---|---|---|---|---|---|---|---|
C | N | H | O [a] | N-6 | N-5 | N-Q | N-x | |
WAPC | 69.65 | 4.14 | 1.42 | 24.79 | 25 | 33 | 25 | 17 |
N-WAPC | 71.98 | 14.48 | 1.10 | 12.44 | 40 | 44 | 12 | 4 |
Samples | Textural Characteristics | Gas Uptakes [c] (mmol g−1) | ||||||
---|---|---|---|---|---|---|---|---|
SBET [a] (m2g−1) | Vtot [b] (cm3g−1) | CO2 | CH4 | N2 | ||||
0 °C | 25 °C | 0 °C | 25 °C | 0 °C | 25 °C | |||
WAPC | 1352 | 0.74 | 3.73 | 2.81 | 1.18 | 0.64 | 0.37 | 0.35 |
N-WAPC | 862 | 0.50 | 4.50 | 2.91 | 1.70 | 1.01 | 0.67 | 0.13 |
Temp. | CO2/CH4 | CH4/N2 | ||||
---|---|---|---|---|---|---|
50/50 | 15/85 | 5/95 | 50/50 | 15/85 | 5/95 | |
0 °C | 3.03 | 6.91 | 12.26 | 3.04 | 4.66 | 5.73 |
25 °C | 3.19 | 5.98 | 8.66 | 7.62 | 11.76 | 13.71 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Xu, R.; Wang, B.; Wei, J.; Wang, L.; Shen, M.; Yang, J. Enhanced N-doped Porous Carbon Derived from KOH-Activated Waste Wool: A Promising Material for Selective Adsorption of CO2/CH4 and CH4/N2. Nanomaterials 2019, 9, 266. https://doi.org/10.3390/nano9020266
Li Y, Xu R, Wang B, Wei J, Wang L, Shen M, Yang J. Enhanced N-doped Porous Carbon Derived from KOH-Activated Waste Wool: A Promising Material for Selective Adsorption of CO2/CH4 and CH4/N2. Nanomaterials. 2019; 9(2):266. https://doi.org/10.3390/nano9020266
Chicago/Turabian StyleLi, Yao, Ran Xu, Binbin Wang, Jianping Wei, Lanyun Wang, Mengqi Shen, and Juan Yang. 2019. "Enhanced N-doped Porous Carbon Derived from KOH-Activated Waste Wool: A Promising Material for Selective Adsorption of CO2/CH4 and CH4/N2" Nanomaterials 9, no. 2: 266. https://doi.org/10.3390/nano9020266
APA StyleLi, Y., Xu, R., Wang, B., Wei, J., Wang, L., Shen, M., & Yang, J. (2019). Enhanced N-doped Porous Carbon Derived from KOH-Activated Waste Wool: A Promising Material for Selective Adsorption of CO2/CH4 and CH4/N2. Nanomaterials, 9(2), 266. https://doi.org/10.3390/nano9020266