Supplementary information

Enhanced N-doped porous carbon derived from KOH activated waste wool: a promising material for selective adsorption of CO₂/CH₄ and CH₄/N₂

Yao Li 1,2,⁺, Ran Xu 1,⁺, Binbin Wang 3,*, Jianping Wei 1,2,*, Lanyun Wang 1, Mengqi Shen 1 and Juan Yang 1,*

- ¹ School of Safety Science and Engineering, Henan Polytechnic University, Henan 454000, China; leayao35@aliyun.com (Y.L.); xuran950204@163.com (R.X.); lanyun.wang@gmail.com (L.W.); 13733838236@163.com (M.S.)
- ² State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Henan Polytechnic University, Henan 454000, China.
- ³ School of Materials Science and Engineering, Henan Polytechnic University, Henan 454000, China.
- ⁺ These authors contributed equally
- * Corresponding authors: wangbb@hpu.edu.cn (B.W); weijianping@hpu.edu.cn (J.W.); yangjuan@hpu.edu.c<u>n</u> (J.Y.); Tel.: +86-391-398-6901 (B.W.); +86-391-398-7885 (J.W.); +86-391-398-7881 (J.Y.)

Figure S1. SEM image of the pre-carbonized waste wool.

Figure S2. High-resolution XPS spectra of (a) C1s and (b) O1s for WAPC and N-WAPC.

Figure S3. (a) SEM image for N-WAPC and the corresponding EDS element mappings of (b) N, (c) C and (d) O.

Fitting of pure component isotherms

The experimentally measured uptakes for CO₂, CH₄, and N₂ are measured as a function of the absolute pressure at two different temperatures of 25 °C and 0 °C. The isotherm data for CO₂ in N-WAPC and WAPC are fitted with the Double Site Langmuir (DSL) model, as the isotherm data for CH₄ and N₂ are fitted with the Langmuir (L) model.

L model:

$$q = \frac{q_{sat,B} bp}{1 + bp}$$

DSL model:

$$q = q_A + q_B = -\frac{q_{sat,A} b_A p}{1 + b_A p} + -\frac{q_{sat,B} b_B p}{1 + b_B p}$$

Where q is the amount of gas adsorbed (mmol/g), p is the pressure (bar), q_{sat} is the saturation capacity (mmol/g), b is the Langmuir parameter (bar⁻¹). For CO₂ isotherms the DSL model (q = q_A + q_B) is employed to get a reasonable fitting. The A and B are two distinct adsorption sites.

Figure S4. CO₂ gas adsorption for N-WAPC at 0 °C (a) and 25 °C (b). The continuous solid line corresponds to the DSL fittings of the experimental data.

Figure S5. CH₄ gas adsorption for N-WAPC at 0 °C (a) and 25 °C (b). The continuous solid line corresponds to the L fittings of the experimental data.

Figure S6. N₂ gas adsorption for N-WAPC at 0 °C (a) and 25 °C (b). The continuous solid line corresponds to the L fittings of the experimental data.

Figure S7. CO₂ gas adsorption for WAPC at 0 °C (a) and 25 °C (b). The continuous solid line corresponds to the DSL fittings of the experimental data.

Figure S8. CH₄ gas adsorption for WAPC at 0 °C (a) and 25 °C (b). The continuous solid line corresponds to the L fittings of the experimental data.

Figure S9. N_2 gas adsorption for WAPC at 0 °C (a) and 25 °C (b). The continuous solid line corresponds to the L fittings of the experimental data.

The Langmuir fitting parameters are provided in Table S1, Table S2, and Table S3.

Samples	Temp.	qsat,A	b _A	q _{sat,B}	b_{B}	R ²
N-WAPC	0 °C	6.53734	0.99688	1.26705	29.25162	0.99989
	25 °C	5.96338	0.60985	0.6974	12.71415	0.99998
WAPC	0 °C	9.65753	0.44071	0.81022	26.48572	0.99896
	25 °C	10.74302	0.23779	0.84188	8.03826	0.99994

Table S1. Langmuir parameters and coefficient of determination for adsorption of CO2 in N-WAPC and WAPC.

Table S2. Langmuir parameters and coefficient of determination for adsorption of CH4 in N-WAPC and WAPC.

Samples	Temp.	qsat,	b	R ²
N WADC	0 °C	3.19979	1.09927	0.9989
N-WAPC	25 °C	2.45664	0.69263	0.99965
WADC	0 °C	2.85014	0.6995	0.99971
WAFC	25 °C	1.51941	0.72116	0.9997

Table S3. Langmuir parameters and coefficient of determination for adsorption of N₂ in N-WAPC and WAPC.

Samples	Temp.	$q_{sat,}$	b	R ²
N WADC	0 °C	3.65378	0.22187	0.99999
N-WAPC	25 °C	0.27746	0.83827	0.99966
WADO	0 °C	0.50613	2.65687	0.99926
WAPC	25 °C	14.41001	0.02517	0.98557