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Abstract: This article aims to investigate free vibration and buckling of functionally graded (FG)
nanoporous metal foam (NPMF) nanoshells. The first-order shear deformation (FSD) shell theory is
adopted and the theoretical model is formulated by using Mindlin’s most general strain gradient
theory, which can derive several well-known simplified models. The symmetric and unsymmetric
nanoporosity distributions are considered for the structural composition. Hamilton’s principle is
employed to deduce the governing equations as well as the boundary conditions. Then, via the Navier
solution technique, an analytical solution for the free vibration and buckling of FG NPMF nanoshells
is presented. Afterwards, a detailed parametric analysis is conducted to highlight the effects of
the nanoporosity coefficient, nanoporosity distribution, length scale parameter, and geometrical
parameters on the mechanical behaviors of FG NPMF nanoshells.

Keywords: nanoporous metal foam; nanoshell; buckling; free vibration; strain gradient theory;
first-order shear deformation theory

1. Introduction

Functionally graded materials (FGMs) have a continuous and smooth graded distribution of
material properties in the spatial field. Due to their superior properties and advantages, FGMs have
been successfully extended to various engineering applications and received much attention [1–24].
Recently, a breakthrough made it possible to realize desired structural properties by adjusting the local
density of structures, thereby developing novel functionally graded (FG) porous structures composed
of metal foams having graded density [25–28]. The application of nanoporous metal foams (NPMFs)
has been extended to some advanced engineering fields due to their extremely high specific surface
area [29–32]. This kind of material has a combination of properties that is not achievable for ceramics,
metals, or dense polymers.

Micro/nanostructures have been successfully used in shape memory alloys [33] and micro- and
nano-electro-mechanical systems (MEMS and NEMS) [34,35]. The small-scale effects on the mechanical
behaviors of micro/nanostructures have been experimentally observed in their applications [36,37].
It was revealed that the mechanical behaviors of micro/nanostructures were different from their
macro counterparts due to the size effect [38,39]. Due to the lack of intrinsic material length scale
parameters, the classical continuum theory has no ability to predict the mechanical characteristics of
micro/nanostructures. Therefore, several size-dependent continuum theories have been proposed to
compensate for the drawbacks of the classical continuum theory for micro/nanostructures. One of the
size-dependent continuum theories is Mindlin’s strain gradient theory (SGT) [40], which is known as
the general form of the SGT containing five additional material length scale parameters compared to the
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classical continuum theory. Later, several special forms of Mindlin’s SGT were proposed. For instance,
one of the most popular forms is the modified strain gradient theory (MSGT) [37]. In fact, this theory
is a more useful form of Mindlin’s SGT including three material length scale parameters related to
symmetric rotation gradients, deviatoric stretch gradients, and dilatation gradients. Several successful
applications of the MSGT in dynamic and static analyses of micro/nanobeams [41–44], plates [45–47],
and shells [48–50] have been reported. It should be noticed that the modified couple stress theory
(MCST) [51] can be achieved by ignoring two of the three material length scale parameters in the
MSGT. Moreover, the MSGT can be simplified to the classical theory (CT) by neglecting all of the three
material length scale parameters.

Recently, the structural performance of NPMF micro/nanobeams has been investigated by
several researchers. Post-buckling analysis for nanobeams made of NPMFs is presented by Barati
and Zenkour [52] via the nonlocal elasticity theory (NET). By using the nonlocal strain gradient
theory together with the third-order shear deformation beam theory, nonlinear bending of FG
NPMF micro/nanobeams reinforced by graphene platelets has been analyzed by Sahmani et al. [53].
Wang et al. [54] utilized the sinusoidal beam theory and the MSGT to study the vibration and bending
of NPMF microbeams.

Shell-type structures have excellent mechanical properties [55–61], and thus, nanoshells are
important components in various MEMS and NEMS [62–64]. Complete knowledge of the mechanical
properties of nanoshells encourages researchers to use them more efficiently. Therefore, some research
has been made to illustrate the buckling and vibration characteristics of nanoshells. For example,
by using the NET, Hoseinzadeh and Khadem [65] investigated the thermoelastic vibration of
double-walled carbon nanotubes (CNTs). By employing the classical shell theory together with
the Gurtin-Murdoch elasticity theory, Sahmani et al. [66] analyzed the postbuckling and nonlinear
buckling of cylindrical nanoshells subjected to radial and axial compressive loads. Implementing the
NET in the first-order shear deformation (FSD) shell theory, Ansari et al. [67] explored the buckling
behavior of multi-walled CNTs including the effect of the thermal environment. Wang et al. [68]
studied the nonlinear vibration of nanoshells conveying fluid based on the surface stress elasticity
theory as well as the classical shell theory.

In the present study, we aim to make an attempt to investigate the vibration and buckling of
circular cylindrical nanoshells made from FG NPMFs. In order to accommodate the size dependency of
the nanostructure, the general SGT is used to develop the size-dependent first-order shear deformable
nanoporous nanoshell model. The governing equations, as well as the related boundary conditions,
are obtained simultaneously by utilizing Hamilton’s principle. The free vibration and axial buckling
of simply supported nanoporous circular cylindrical nanoshells are solved analytically by means of
the Navier solution technique. Moreover, the influence of some key parameters on the vibration and
buckling properties of the system is shown.

2. FG NPMF Circular Cylindrical Nanoshells

An FG NPMF circular cylindrical nanoshell of middle-surface radius R, thickness h, and length L
is shown in Figure 1. Two kinds of nanoporosity distribution in the thickness direction are considered,
namely, nanoporosity-1 and nanoporosity-2. Additionally, the nanoshell is subjected to axial loads N0

xx.
Owing to non-uniform nanoporosity distribution, mass densities ρ(z), Young’s modulus E(z), and

shear modulus µ(z) of the nanoshell are functions of position and can be written as [69–74]:
Nanoporosity-1:

E(z) = E∗1 [1− e0 cos(πζ)] (1)

ρ(z) = ρ∗1 [1− em cos(πζ)] (2)

µ(z) = µ∗1 [1− e0 cos(πζ)] (3)
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Nanoporosity-2:

E(z) = E∗1

[
1− e0 cos

(
πζ

2
+

π

4

)]
(4)

ρ(z) = ρ∗1

[
1− em cos

(
πζ

2
+

π

4

)]
(5)

µ(z) = µ∗1

[
1− e0 cos

(
πζ

2
+

π

4

)]
(6)

where ζ = z/h, the nanoporosity coefficients are e0= 1− E∗0/E∗1 (0 ≤ e0 < 1) and em= 1− ρ∗0/ρ∗1 (0 ≤
em < 1), ρ∗0 and ρ∗1 are the minimum and maximum values of the mass density, respectively. The

minimum Young’s modulus E∗0 and the maximum value E∗1 are related to the minimum shear
modulus µ∗0 and the maximum value µ∗1 according to µ∗i = E∗i /[2(1+ν)] (i = 0, 1), in which ν indicates
Poisson’s ratio.

For an open-cell metal foam, we have [75,76]:

E∗0
E∗1

=

(
ρ∗0
ρ∗1

)2
(7)

Thus, the relation between e0 and em is obtained as:

em = 1−
√

1− e0 (8)

Nanomaterials 2019, 9, x FOR PEER REVIEW  3 of 30 

 

 (3) 

Nanoporosity-2: 

  (4) 

 (5) 

 (6) 

where ζ=z/h, the nanoporosity coefficients are e0=1-E0
* /E1

*  (0 ≤ e0 <1) and em=1 െ ρ0
* /ρ1

*  (0 ≤ em < 1), ρ0
*  

and ρ1
*  are the minimum and maximum values of the mass density, respectively. The minimum 

Young’s modulus E0
*  and the maximum value E1

*  are related to the minimum shear modulus µ0
*  

and the maximum value µ1
*  according to µi

*=Ei
*/[2(1+)] (i=0, 1), in which ν indicates Poisson’s ratio. 

For an open-cell metal foam, we have [75,76]:  

 (7) 

Thus, the relation between e0 and em is obtained as:  

 (8) 

                               

 
 

(a) 

( )1 0( ) 1 cosz eμ μ πζ∗= −  

1 0( ) 1 cos
2 4

E z E e π ζ π∗   = − +    

1( ) 1 cos
2 4mz e π ζ πρ ρ∗   = − +    

1 0( ) 1 cos
2 4

z e π ζ πμ μ∗   = − +    

2

0 0

1 1

E
E

ρ
ρ

∗ ∗

∗ ∗

 
=  
 

01 1me e= − −

Nanomaterials 2019, 9, x FOR PEER REVIEW  4 of 30 

 

 

 

nanoporosity-1 

 

 

nanoporosity-2 
(b) (c) 

Figure 1. Schematic of a functionally graded (FG) nanoporous metal foam (NPMF) cylindrical 
nanoshell. (a) Coordinate system; (b) nanoporosity-1; (c) nanoporosity-2. 
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on the middle surface (z = 0) of the nanoshell; while the maximum values are on the outer (z = h/2) 
and inner (z = −h/2) surfaces which are equal to the values of the nanoshell that consisted of solid 
metal. For the nanoporosity-2, mass density and elasticity modulus have the minimum values on the 
inner surface and gradually increase to the maximum values on the outer surface of the shell. 
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Figure 1. Schematic of a functionally graded (FG) nanoporous metal foam (NPMF) cylindrical nanoshell.
(a) Coordinate system; (b) nanoporosity-1; (c) nanoporosity-2.
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Figures 2 and 3 give the variations of mass density and Young’s modulus, respectively, of the
FG NPMF nanoshell along the thickness direction. Note that both kinds of nanoporosity distribution
have the same minimum and maximum values of mass density and elasticity modulus. For the
nanoporosity-1 nanoshell, it possesses the minimum values of mass density and Young’s modulus on
the middle surface (z = 0) of the nanoshell; while the maximum values are on the outer (z = h/2) and
inner (z = −h/2) surfaces which are equal to the values of the nanoshell that consisted of solid metal.
For the nanoporosity-2, mass density and elasticity modulus have the minimum values on the inner
surface and gradually increase to the maximum values on the outer surface of the shell.
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Figure 2. Variation of mass density of FG NPMF nanoshell: (a) nanoporosity-1; (b) nanoporosity-2.
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Figure 3. Variation of Young’s modulus of FG NPMF nanoshell: (a) nanoporosity-1; (b) nanoporosity-2.

3. Theory and Formulation

3.1. General SGT

As we know, the strain energy density in the CT is described as the function of the strain tensor ε.
The strain energy density in Mindlin’s SGT, however, also incorporates the third-order strain gradient
tensor ξ. Therefore, the strain energy density W has the most general form [40,77]:

W(ε,ξ) =
1
2

λεiiε jj + µεijεij + a1ξikkξijj + a2ξkjjξiik + a3ξ jjkξiik + a4ξijkξijk + a5ξkjiξijk (9)
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in which ai (i = 1, 2, . . . , 5) are additional constants which can accommodate the small-scale effect of
micro/nanostructures, and λ is Lame’s first parameter defined as [78,79]:

λ =
Eν

(1 + ν)(1− 2ν)
(10)

In Equation (9), the third-order strain gradient tensor ξ and infinitesimal strain tensor ε are
defined as [40]:

ε = 1
2

(
∇u + (∇u)T

)
, εij = ε ji =

1
2
(
ui,j + uj,i

)
(11)

ξ = ∇ε, ξijk = ξikj = ε jk,i =
1
2

(
uj,k + uk,j

)
,i

(12)

in which u represents the displacement vector and ∇ is gradient operator.
The double stress tensor τijk and Cauchy stress tensor σij are written as [80]:

σij = σji =
∂W
∂εij

= λ εkk δij + 2µ εij (13)

τijk = τikj =
∂W
∂ξijk

= a1
2

(
ξ jppδik + 2ξppiδjk + ξkppδij

)
+ 2a2ξippδjk + a3

(
ξppjδik + ξppkδij

)
+2a4ξijk + a5

(
ξkji + ξ jki

) (14)

where δij represent the Kronecker delta.

3.2. Constitutive Relations and Strain Energy

The displacement field for the FG NPMF cylindrical nanoshell according to the FSD shell theory
can be defined as [81–85]:

ux(x, y, z, t)
uy(x, y, z, t)
uz(x, y, z, t)

 =


u(x, y, t)
v(x, y, t)
w(x, y, t)

+ z


ψx(x, y, t)
ψy(x, y, t)

0

 (15)

In Equation (15), ux, uy, and uz stand for the displacements of any point in the nanoshell along the
x, y, and z directions, respectively; u, v, and w denote displacement components of a point at the middle
surface; ψx and ψy are the rotations of the transverse normals about the y and x axes, respectively; and
t denotes time.

The nonzero constituents of strain tensor ε are given by: [86,87]

εxx = φ0 + zφ1,
εyy = ϕ0 + zϕ1,
εxy = εyx = (k0 + zk1)/2,
εyz = εzy = γ2/2,
εxz = εzx = γ1/2.

(16)

where φ0, ϕ0, and k0 are the middle surface strains, φ1, ϕ1, and k1 are changes in the curvature and
torsion of the middle surface, and γ1 and γ2 are the transverse shear strains. They are given by: φ0 = ∂u

∂x , φ1 = ∂ψx
∂x , ϕ0 = w

R + ∂v
∂y , ϕ1 =

∂ψy
∂y , k0 = ∂v

∂x + ∂u
∂y ,

k1 =
∂ψy
∂x + ∂ψx

∂y , γ1 = ∂w
∂x + ψx, γ2 = ψy − v

R + ∂w
∂y .

(17)
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According to Equation (12), the following nonzero constituents of strain gradient tensor ξ are
obtained: 

ξxxx = ∂φ0
∂x + z ∂φ1

∂x , ξyyy = ∂ϕ0
∂y + z ∂ϕ1

∂y , ξxyy = ∂ϕ0
∂x + z ∂ϕ1

∂x ,

ξzyy = ϕ1, ξyxx = ∂φ0
∂y + z ∂φ1

∂y , ξxxy = ξxyx = 1
2

(
∂k0
∂x + z ∂k1

∂x

)
, ξzxx = φ1,

ξyxy = ξyyx = 1
2

(
∂k0
∂y + z ∂k1

∂y

)
, ξzxy = ξzyx = k1

2 , ξxxz = ξxzx = 1
2

∂γ1
∂x ,

ξyxz = ξyzx = 1
2

∂γ1
∂y , ξxyz = ξxzy = 1

2
∂γ2
∂x , ξyyz = ξyzy = 1

2
∂γ2
∂y .

(18)

By inserting Equations (16) and (18) into Equations (13) and (14), one can get the nonzero
constituents of σ and τ as follows:

σxx = (λ + 2µ)(φ0 + zφ1) + λ(ϕ0 + zϕ1),
σyy = (λ + 2µ)(ϕ0 + zϕ1) + λ(φ0 + zφ1),
σxy = σyx = µ(k0 + zk1),
σxz = σzx = µγ1,
σyz = σzy = µγ2.

(19)



τxxx = β1ξxxx + β2ξxyy + β3ξyxy,
τyxx = β2ξyyy + β5ξyxx + β4ξxxy,
τzxx = β5ξzxx + β4ξxxz + a1ξyyz + 2a2ξzyy,
τxyy = β4ξyxy + β2ξxxx + β5ξxyy,
τyyy = β2ξyxx + β3ξxxy + β1ξyyy,
τzyy = a1ξxxz + 2a2ξzxx + β5ξzyy + β4ξyyz,
τyzz = a1ξxxy + 2a2ξyxx + β2ξyyy,
τxxy = τxyx = β3

2 ξyyy + β6ξxxy +
β4
2 ξyxx,

τyxy = τyyx = β4
2 ξxyy +

β3
2 ξxxx + β6ξyxy,

τzxy = τzyx = 2a4ξzxy + a5
(
ξxyz + ξyxz

)
,

τxxz = τxzx = a1
2 ξzyy + a3ξyyz + β6ξxxz +

β4
2 ξzxx,

τyxz = τyzx = 2a4ξyxz + a5
(
ξxyz + ξzxy

)
,

τxyz = τxzy = 2a4ξxyz + a5
(
ξyxz + ξzxy

)
,

τyyz = τyzy = a1
2 ξzxx + a3ξxxz + β6ξyyz +

β4
2 ξzyy.

(20)

in which 
β1 = 2(a1 + a2 + a3 + a4 + a5), β2 = a1 + 2a2,
β3 = a1 + 2a3, β4 = a1 + 2a5,
β5 = 2(a2 + a4), β6 = a3 + 2a4 + a5.

(21)

Based on the general SGT, the stored strain energy, ΠS, in a linear elastic material occupying
volume V can be given by [77]:

ΠS =
1
2

∫
V

(
σijεij + τijkξijk

)
dV (22)

If the strain energy is symbolized by classical part ΠC and non-classical part ΠNC, the total strain
energy is expressed as:

ΠS = ΠNC + ΠC (23)

in which,

ΠC =
1
2

∫
A

(
Nxxφ0 + Mxxφ1 + Nxyk0 + Mxyk1 + Nyy ϕ0 + Myy ϕ1 + Qxγ1 + Qyγ2

)
dA (24)
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ΠNC = 1
2

∫
A

(
Txxx

∂φ0
∂x + Mxxx

∂φ1
∂x + Tyxx

∂φ0
∂y + Myxx

∂φ1
∂y + Tzxxφ1

+Txyy
∂ϕ0
∂x + Mxyy

∂ϕ1
∂x + Tyyy

∂ϕ0
∂y + Myyy

∂ϕ1
∂y

+Tzyy ϕ1 + Txxy
∂k0
∂x + Mxxy

∂k1
∂x + Tyyx

∂k0
∂y

+Myyx
∂k1
∂y + Tzxyk1 + Txxz

∂γ1
∂x + Tyxz

∂γ1
∂y

+Txyz
∂γ2
∂x +Tyyz

∂γ2
∂y

)
dA

(25)

In Equations (24) and (25), the non-classical and classical resultant moments and forces are
expressed as follows:

Nij =
∫ h

2
− h

2
σijdz, Mij =

∫ h
2
− h

2
σijzdz, Qi = KS

∫ h
2
− h

2
σizdz,

Tijk =
∫ h

2
− h

2
τijkdz, Mijk =

∫ h
2
− h

2
τijkzdz.

(26)

where KS = 5/6 denotes the shear correction factor [88–91]; the non-classical and classical resultant
moments and forces are given in Appendix A in detail.

3.3. Kinetic Energy and External Work

According to the FSD shell theory, the kinetic energy of the FG NPMF nanoshell, ΠT , is written as:

ΠT = 1
2

∫
A

∫ h
2
− h

2
ρ(z)

[(
∂u
∂t + z ∂ψx

∂t

)2
+
(

∂v
∂t + z ∂ψy

∂t

)2
+
(

∂w
∂t

)2
]

dzdA

= 1
2

∫
A

[
I0

(
∂u
∂t

)2
+ 2I1

(
∂u
∂t

)(
∂ψx
∂t

)
+ I0

(
∂v
∂t

)2
+ I0

(
∂w
∂t

)2

+2I1

(
∂v
∂t

)(
∂ψy
∂t

)
+ I2

(
∂ψx
∂t

)2
+I2

(
∂ψy
∂t

)2
]

dA

(27)

in which

I0 =
∫ h

2
− h

2
ρ(z)dz, I1 =

∫ h
2
− h

2
ρ(z)zdz, I2 =

∫ h
2

− h
2

ρ(z)z2dz. (28)

Furthermore, the work ΠP carried out by axial loads N0
xx can be written as:

Πp =
1
2

∫
A

[
N0

xx

(
∂w
∂x

)2
]

dA (29)

3.4. Variational Formulation

Using Hamilton’s principle,

δ

t∫
0

(ΠT −ΠS −ΠP)dt = 0 (30)

Inserting Equations (23), (27) and (29) into Equation (30) yields the following governing equations:

δu :
∂Nxx

∂x
+

∂Nxy

∂y
= I0

∂2u
∂t2 + I1

∂2ψx

∂t2 (31)

δv :
∂Nxy

∂x
+

∂Nyy

∂y
+

Qy

R
= I0

∂2v
∂t2 + I1

∂2ψy

∂t2 (32)

δw :
∂Qx
∂x

+
∂Qy

∂y
−

Nyy

R
+ N0

xx
∂2w
∂x2 = I0

∂2w
∂t2 (33)



Nanomaterials 2019, 9, 271 8 of 25

δψx :
∂Mxx

∂x
+

∂Mxy

∂y
−Qx = I2

∂2ψx

∂t2 + I1
∂2u
∂t2 (34)

δψy :
∂Mxy

∂x
+

∂Myy

∂y
−Qy = I2

∂2ψy

∂t2 + I1
∂2v
∂t2 (35)

where, 

Nxx = Nxx −
∂Tyxx

∂y −
∂Txxx

∂x ,

Nxy = Nxy −
∂Tyyx

∂y −
∂Txxy

∂x ,

Nyy = Nyy −
∂Tyyy

∂y −
∂Txyy

∂x −
Tyyz

R ,

Mxx = Mxx + Tzxx −
∂Myxx

∂y − ∂Mxxx
∂x ,

Myy = Myy + Tzyy −
∂Myyy

∂y − ∂Mxyy
∂x ,

Mxy = Mxy + Tzxy −
∂Myyx

∂y − ∂Mxxy
∂x ,

Qx = Qx −
∂Tyxz

∂y −
∂Txxz

∂x ,

Qy = Qy −
∂Tyyz

∂y −
∂Txyz

∂x .

(36)

Simultaneously, boundary conditions are derived as:

δu = 0 or
(

Nxx
)
nx +

(
Nxy

)
ny = 0,

δu,x = 0 or (Txxx)nx +
(
Tyxx

)
ny = 0,

δu,y = 0 or
(
Txxy

)
nx +

(
Tyyx

)
ny = 0.

(37)

δv = 0 or
(

Nxy −
Txyz

R

)
nx +

(
Nyy −

Tyyz
R

)
ny = 0,

δv,x = 0 or
(
Txxy

)
nx +

(
Tyyx

)
ny = 0,

δv,y = 0 or
(
Txyy

)
nx +

(
Tyyy

)
ny = 0.

(38)

δw = 0 or
(

Qx +
Txyy

R

)
nx +

(
Qy +

Tyyy
R

)
ny = 0,

δw,x = 0 or (Txxz)nx +
(
Tyxz

)
ny = 0,

δw,y = 0 or
(
Txyz

)
nx +

(
Tyyz

)
ny = 0.

(39)

δψx = 0 or
(

Mxx + Txxz
)
nx +

(
Mxy + Tyxz

)
ny = 0,

δψx,x = 0 or (Mxxx)nx +
(

Myxx
)
ny = 0,

δψx,y = 0 or
(

Mxxy
)
nx +

(
Myyx

)
ny = 0.

(40)

δψy = 0 or
(

Mxy + Txyz
)
nx +

(
Myy + Tyyz

)
ny = 0,

δψy,x = 0 or
(

Mxxy
)
nx +

(
Myyx

)
ny = 0,

δψy,y = 0 or
(

Mxyy
)
nx +

(
Myyy

)
ny = 0.

(41)

where nx as well as ny indicate the direction cosines of the outward unit normal to the boundary of
the mid-plane.

Substituting Equation (36) into Equations (31)–(35) and considering Equation (17) and Appendix A,
it yields the governing equations in terms of u, v, w, ψx, and ψy:

A11
∂2u
∂x2 + A55

(
∂2u
∂y2 + ∂2v

∂x∂y

)
− E1

∂4u
∂x4 − E6

2
∂4u
∂y4

−
(

E3 + E4 + E5 +
E6
2

)
∂4u

∂y2∂x2 −
(2E2+E3+E4+E6)

2

(
∂4v

∂y∂x3 +
∂4v

∂y3∂x

)
+(A12 + A55)

∂2v
∂y∂x + A12

R
∂w
∂x −

2E2+E3+E4
2R

∂3w
∂y2∂x

− E2
R

∂3w
∂x3 + B11

∂2ψx
∂x2 + B55

∂2ψx
∂y2 −

(
F3 + F4 + F5 +

F6
2

)
∂4ψx

∂y2∂x2 − F1
∂4ψx
∂x4

− F6
2

∂4ψx
∂y4 − 2F2+F3+F4+F6

2

(
∂4ψy
∂y∂x3 +

∂4ψy
∂y3∂x

)
+(B12 + B55)

∂2ψy
∂y∂x = I0

∂2u
∂t2 + I1

∂2ψx
∂t2

(42)
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− 2E2+E3+E4+E6
2

(
∂4u

∂y∂x3 +
∂4u

∂y3∂x

)
+ (A12 + A55)

∂2u
∂y∂x

−
(

E3 + E4 + E5 +
E6
2

)
∂4v

∂y2∂x2 − E6
2

∂4v
∂x4 − E1

∂4v
∂y4 + A55

∂2v
∂x2 + A11

∂2v
∂y2 − KS A55

R2 v

+ 1
R (A11 + KS A55)

∂w
∂y −

1
R

(
E3+E4+2E5

2 + A3 + A4 +
A5
2

)
∂3w

∂y∂x2

+ E1+E6
R

∂3w
∂y3 −

[
1

2R (2A1 + 2A3 + 2A5) + B12 + B55

]
∂2ψx
∂y∂x

− 2F2+F3+F4+F6
2

(
∂4ψx
∂y3∂x + ∂4ψx

∂y∂x3

)
+
[

B55 +
1

2R (2A4 + A5)
]

∂2ψy
∂x2

+
(

B11 − E4+E6
R

)
∂2ψy
∂y2 − F1

∂4ψy
∂y4 − F6

2
∂4ψy
∂x4

−
(

F3 + F4 + F5 +
F6
2

)
∂4ψy

∂y2∂x2 +
KS A55

R ψy = I0
∂2v
∂t2 + I1

∂2ψy
∂t2

(43)

− A12
R

∂u
∂x −

1
2R (2E2 + E3 + E4)

∂3u
∂y2∂x + E2

2R
∂3u
∂x3

− 1
R

(
A11 + KS A55 +

E6
2R2

)
∂v
∂y + 1

R

(
E3+E4+2E5

2 + A3+2A4+A5
2

)
∂3v

∂y∂x2

+ 1
R

(
2E1+E6

2

)
∂3v
∂y3 − (A3 + 2A4 + A5)

∂4w
∂y2∂x2

− E6
2

(
∂4w
∂x4 + ∂4w

∂y4

)
+
(

A55KS +
2E5+A3

2R2

)
∂2w
∂x2

+
(

A55KS +
2E1+E6

R2

)
∂2w
∂y2 − A11

R2 w−
(

A1−A3−2A4−3A5
2

)
∂3ψx
∂y2∂x

−
(

E4+E6
2 − F2

R

)
∂3ψx
∂x3 +

(
KS A55 − B12

R + A1+A3
R2

)
∂ψx
∂x

−
(

A1+A3+2A4+3A5
2 + F3+F4+2F5

R

)
∂3ψy
∂y∂x2 −

(
E4+E6

2 + −2F1
R

)
∂3ψy
∂y3

+
(

KS A55 − B11
R + E4+E6

2R2

)
∂ψy
∂y + N0

xx
∂2w
∂x2 = I0

∂2w
∂t2

(44)

B11
∂2u
∂x2 + B55

∂2u
∂y2 −

(
F3 + F4 + F5 +

F6
2

)
∂4u

∂y2∂x2

−F1
∂4u
∂x4 − F6

2
∂4u
∂y4 +

[
B12 + B55 − 1

2R (A1 + A3 + 2A5)
]

∂2v
∂y∂x

− 2F2+F3+F4+F6
2

(
∂4v

∂y3∂x + ∂4v
∂y∂x3

)
−
(

KS A55 − B12
R

)
∂w
∂x

+
(

A1+A3+2A4+3A5
2

)
∂3w

∂y2∂x +
(

E4+E6
2 − F2

R

)
∂3w
∂x3

−G1
∂4ψx
∂x4 − G6

2
∂4ψx
∂y4 − (G3 + G4 + G5 + G6)

∂4ψx
∂y2∂x2

+
(

D11 + E4 + E5 +
E6
2

)
∂2ψx
∂x2 + (D55 + 2A4 + A5)

∂2ψx
∂y2

−A55KSψx − G2+G3+G4+G6
2

(
∂4ψy
∂y∂x3 +

∂4ψy
∂y3∂x

)
+
(

D12 + D55 + A1 + 2A2 +
A3
2 + A4 +

A5
2

)
∂2ψy
∂y∂x = I2

∂2ψx
∂t2 + I1

∂2u
∂t2

(45)

(B12 + B55)
∂2u

∂y∂x −
2F2+F3+F4+F6

2

(
∂4u

∂y∂x3 +
∂4u

∂y3∂x

)
+
[

B55 +
1

2R (−2A4 − A5)
]

∂2v
∂x2 +

(
B11 − E4+E6

2R

)
∂2v
∂y2

−F1
∂4v
∂y4 − F6

2
∂4v
∂x4 −

(
F3 + F4 + F5 +

F6
2

)
∂4v

∂y2∂x2 +
KS A55

R v

+
(

A1+A3+2A4−3A5−F3−F4−2F5
2

)
∂3w

∂y∂x2 +
(

E4+E6
2 − F1

R

)
∂3w
∂y3

−
(

KS A55 − B11
R

)
∂w
∂y −

2G2+G3+G4+G6
2

(
∂4ψx
∂y∂x3 +

∂4ψx
∂y3∂x

)
− G6

2
∂4ψy
∂x4 − G1

∂4ψy
∂y4

−
(

G3 + G4 + G5 +
G6
2

)
∂4ψy

∂y2∂x2 + (D55 + 2A4 + A5)
∂2ψy
∂x2 +

(
D11 + E4 + E5 +

E6
2

)
∂2ψy
∂y2

+
(

D12 + D55 + A1 + 2A2 +
A3
2 + A4 +

3A5
2

)
∂2ψx
∂y∂x − KS A55ψy = I2

∂2ψy
∂t2 + I1

∂2v
∂t2

(46)

in which Aij, Bij, Dij, Ai, Bi, Ei, Fi, and Gi (i, j = 1, 2, . . . , 6) are given in Appendix B.
It is worth mentioning that the present general strain gradient nanoshell model can reduce to

those of MCST, MSGT, and CT. The MSGT model can be achieved if ai (i = 1, 2, . . . , 5) are defined by
three material length scale parameters as follows:

a1 = µ
(

l2
2 −

4
15 l2

1

)
, a2 = µ

(
l2
0 −

1
15 l2

1 −
1
2 l2

2

)
,

a3 = −µ
(

4
15 l2

1 +
1
2 l2

2

)
, a4 = µ

(
1
3 l2

1 + l2
2

)
, a5 = µ

( 2
3 l2

1 − l2
2
)
.

(47)
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where l0, l1, and l2 are material length scale parameters corresponding to dilatation gradients, deviatoric
stretch gradients and symmetric rotation gradients, respectively. In the following discussion, we
assume that all the material length scale parameters are the same, namely, l0 = l1 = l2 = l. In addition,
by setting a1 = a2 = a3 = a4 = a5 = 0, the present nanoshell model can be simplified to the CT-based
model. Moreover, the MCST model [51] can be achieved if ai (i = 1, 2, . . . , 5) are set as:

a1 = a4 = −2a2 = −2a3 = −a5 = µl2 (48)

4. Closed-Form Solution

Herein, we employ the Navier solution technique to analyze the free vibration and axial buckling
behaviors of an FG NPMF cylindrical nanoshell. Navier’s method can obtain an analytical solution by
introducing the double trigonometric series. Note that this method is only applicable to the simply
supported boundary condition. For the other boundary conditions which are different from the
simply supported boundary condition, other numerical methods such as the finite element method,
differential quadrature method, finite difference method, meshless method, and wavelet method can
be used. As an example, the boundary condition of the FG NPMF nanoshell considered in our study is
simply supported at edges x = 0 as well as x = L, so one obtains:

v = w = ψy = Nxx = 0,
∂ψy
∂y = ∂ψx

∂x = ∂w
∂y = ∂v

∂y = ∂u
∂x = 0,

Txxy = Txxz = Mxxy = Mxx + Txxz = 0.

(49)

The Navier procedure is used by assuming the displacements as follows:

u(x, y, t)
v(x, y, t)
w(x, y, t)
ψx(x, y, t)
ψy(x, y, t)


=

∞

∑
n=1

∞

∑
m=1



umn(t) cos(αmx) sin
( ny

R
)

vmn(t) sin(αmx) cos
( ny

R
)

wmn(t) sin(αmx) sin
( ny

R
)

ψxmn(t) cos(αmx) sin
( ny

R
)

ψymn(t) sin(αmx) cos
( ny

R
)


(50)

in which αm = mπ/L, n is the circumferential wave number, and m is the axial half-wave number.
Inserting Equation (50) into Equations (42)–(46) and then eliminating the trigonometric functions,
the equations can be re-represented in the matrix form as:

M
¨
d +

(
K + N0

xxKg

)
d = 0 (51)

where the displacement vector d, mass matrix M, geometric stiffness matrix Kg, and stiffness matrix
K are:

d = [umn, vmn, wmn, ψxmn, ψymn]
T (52)

K =


K11

K21

K12

K22

K13

K23

K14 K15

K24 K25

K31 K32 K33 K34 K35

K41 K42 K43 K44 K45

K51 K52 K53 K54 K55

 (53)

M =


M11

0
0

M22

0
0

M14

0
0 0 M33 0

M41 0 0 M44

0 M52 0 0

0
M25

0
0

M55

 (54)
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Kg =


0
0

0
0

0
0

0
0

0 0 Kg33 0
0 0 0 0
0 0 0 0

0
0
0
0
0

 (55)

in which the elements in these matrices are given in Appendix C.
If the dynamic displacement is considered, the form of the displacement vector d can be written as

d = d*eiωt. Once we ignore N0
xx, the eigenvalue problem of free vibrating nanoshells can be obtained as:(

K−ω2M
)

d∗ = 0 (56)

where ω represents the natural frequency of the FG NPMF nanoshell. The non-trivial solution requires
vanishing of the determinant of the coefficient matrix in Equation (56) [92–98].

Buckling loads of the FG NPMF nanoshell can be obtained by neglecting the inertia term in
Equation (51). Letting N0

xx= −F, one can get:(
K− FKg

)
d = 0 (57)

where F denotes the buckling load. For different combinations of m and n, there exists a minimum
value which satisfies Equation (57). This minimum value is termed as the critical buckling load Fcr.

5. Validation

Some comparative studies are first undertaken to prove the reliability of the present analysis.

5.1. Example 1: Homogeneous Cylindrical Nanoshell Based on the MSGT

In Table 1, the present results for a homogeneous simply supported cylindrical nanoshell are
compared with those obtained by Zhang et al. [99]. The parameters used are: E = 1.06TPa, ν = 0.3,
ρ = 2300 kg/m3, R = 2.32 nm, and L/R = 5. The frequency parameter ω = ωR

√
ρ/E of the nanoshell

is obtained based on the MSGT. One can see that the results from the current study coincide with those
reported in Reference [99].

Table 1. Comparison of dimensionless natural frequency ω for a homogeneous nanoscale
cylindrical shell.

(m,n) h/R
l = 0 l = h

Zhang et al. [99] Present Error (%) Zhang et al. [99] Present Error (%)

(1, 1) 0.02 0.19536 0.19536 0.00 0.19595 0.19561 0.10
0.05 0.19542 0.19542 0.00 0.19908 0.19694 0.20
0.1 0.19561 0.19564 0.01 0.20386 0.20148 1.17

(2, 2) 0.02 0.25285 0.25271 0.05 0.27108 0.27004 0.30
0.05 0.25969 0.25885 0.30 0.35606 0.34641 0.96
0.1 0.28080 0.27931 0.50 0.50626 0.50145 0.90

(3, 3) 0.02 0.27627 0.27580 0.16 0.37783 0.37382 1.39
0.05 0.31667 0.31413 0.80 0.71543 0.69918 2.27
0.1 0.40671 0.41916 2.97 1.08810 1.07892 0.84

5.2. Example 2: Homogeneous Cylindrical Nanoshells Based on the MCST

In Table 2, the comparison study is conducted for natural frequency Ω = ωR
√

ρ/E of a
homogeneous nanoscale cylindrical shell with a simply supported boundary condition by using
the MCST. The adopted material properties are: E = 1.06 TPa, ν = 0.3, ρ = 2300 kg/m3. It is observed
that the obtained results have a reasonable accordance with those reported [100].
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Table 2. Comparison of dimensionless natural frequency Ω for a homogeneous cylindrical nanoshell
(R = 2.32 nm and L/R = 5).

h/R (m, n)
l = 0 l = h

Ghadiri et al. [100] Present Error (%) Ghadiri et al. [100] Present Error (%)

0.02 m = n = 1 0.19536215 0.19536215 0.00 0.19543206 0.19548050 0.01
m = n = 2 0.25271274 0.25271274 0.00 0.25731258 0.25785715 0.09
m = n = 3 0.27580092 0.27580092 0.00 0.30621690 0.30717244 0.10

0.05 m = n = 1 0.19542305 0.19542305 0.00 0.19585782 0.19618570 0.16
m = n = 2 0.25884786 0.25884786 0.00 0.28543902 0.28780026 0.80
m = n = 3 0.31407326 0.31407326 0.00 0.45457555 0.46000081 1.10

5.3. Example 3: FG Cylindrical Shell

Herein, a comparison study is conducted for a simply supported FG cylindrical shell without
considering the size effect, as given in Table 3. The FG shell is made of the mixture of Stainless Steel
(SS) and Nickel (Ni) with the following material parameters: ESS = 207.788 GPa, ρSS = 8166 kg/m3 and
νSS = 0.317756 for SS, and ENi = 205.098 GPa, ρNi = 8900 kg/m3 and νNI = 0.31 for Ni. Our study yields
an excellent agreement with Reference [101], bespeaking the correctness of the current research.

Table 3. Comparison of natural frequencies (Hz) for a simply supported FG cylindrical shell (n = 1,
R = 1 m and L/R = 20).

h/R N
Loy et al. [101] Present

m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

0.002 0 13.548 4.5920 4.2633 13.548 4.5920 4.2633
0.5 13.321 4.5168 4.1911 13.321 4.5168 4.1911
1 13.211 4.4800 4.1569 13.211 4.4800 4.1569
2 13.103 4.4435 4.1235 13.103 4.4434 4.1234
5 12.998 4.4068 4.0891 12.998 4.4068 4.0891

0.05 0 13.572 33.296 93.001 13.572 33.242 92.634
0.5 13.345 32.702 91.319 13.345 32.645 90.943
1 13.235 32.430 90.553 13.235 32.370 90.172
2 13.127 32.170 89.828 13.127 32.111 89.451
5 13.021 31.910 89.109 13.021 31.854 88.743

6. Results and Discussion

In this section, size-dependent free vibration and axial buckling of an FG NPMF nanoshell simply
supported at both ends are studied. The material properties of the nanoshell are E∗1 = 200 GPa,
ρ∗1 = 7850 kg/m3, and ν = 1/3. The dimensionless natural frequency is defined as Ω = ωR

√
ρ∗1/E∗1

and the dimensionless buckling load is F= F/A110, where A110 is the specific value of A11 for the
homogeneous nanoshell made of solid metal.

6.1. Free Vibration Analysis

Table 4 shows the variation of dimensionless natural frequency with the circumferential wave
number for various length scale parameters. It is found that by increasing the dimensionless length
scale parameter, the natural frequencies of the system decrease. Moreover, the fundamental natural
frequency occurs at n = 2, independent of the length scale parameter. In the following studies, the mode
(1, 2) is chosen as a representative mode.

Table 4. Effect of length scale parameter on dimensionless natural frequencies Ω based on the MSGT
(nanoporosity-1, m = 1, h = 10 nm, R = 20h, L/R = 4, e0 = 0.5).

h/l = 1 h/l = 1.5 h/l = 2 h/l = 3 h/l = 4 h/l = 5 h/l = 10

n = 1 0.25824 0.25723 0.25687 0.25662 0.25653 0.25649 0.25643
n = 2 0.20493 0.16730 0.15125 0.13840 0.13356 0.13125 0.12809
n = 3 0.42938 0.31512 0.25919 0.20833 0.18683 0.17591 0.16009
n = 4 0.76650 0.56684 0.46542 0.37079 0.32994 0.30894 0.27818
n = 5 1.17537 0.88269 0.72927 0.58336 0.51961 0.48665 0.43816
n = 6 1.64107 1.25206 1.04209 0.83851 0.74844 0.70162 0.63245
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The dimensionless natural frequency versus nanoporosity coefficient for different theories and
nanoporosity distributions is illustrated in Figure 4. Results show that the natural frequency decreases
by increasing the nanoporosity coefficient, indicating that the nano-pores decrease the effective stiffness
of the nanoshell. Furthermore, the nanoporosity-2 nanoshell has a lower natural frequency than its
nanoporosity-1 counterpart. It is observed that the natural frequencies predicted by the MCST and
MSGT are greater than the natural frequency predicted by the CT. In other words, the additional length
scale parameter makes the FG NPMF nanoshell stiffer. This is due to the extra stiffness introduced in
the MCST and MSGT.
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Figure 4. Dimensionless natural frequency versus nanoporosity coefficient with different theories and
nanoporosity distributions (m = 1, n = 2, h = 10 nm, R = 20 h, h = 2l, L = 4R).

Depicted in Figure 5 is the variation of the dimensionless natural frequency against the
dimensionless length scale parameter. It is seen that the size effect on natural frequency is more
pronounced when the thickness of the nanoshell is comparable to the length scale parameter.
The dimensionless natural frequencies from the MCST and MSGT converge to the results from the CT
for a large value of the dimensionless length scale parameter, indicating that the larger dimensionless
length scale parameter diminishes the size effect on the natural frequency of the FG NPMF nanoshell.
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Figure 5. Dimensionless natural frequency versus dimensionless length scale parameter with different
theories and nanoporosity distributions (m = 1, n = 2, h = 10 nm, R = 20 h, L = 4R, e0 = 0.5).
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Figure 6 plots the dimensionless natural frequency versus length-to-radius ratio with different
theories and nanoporosity distributions. One can see that as the length-to-radius ratio increases,
the dimensionless natural frequency decreases gradually. Compared to the MCST, the MSGT leads to
more reasonable results due to the introduction of an additional deviatoric stretch gradient tensor and
the dilatation gradient tensor in addition to the symmetric rotation gradient tensor.
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Figure 6. Dimensionless natural frequency versus length-to-radius ratio with different theories and
nanoporosity distributions (m = 1, n = 2, h = 10 nm, R = 20 h, h = 2l, e0 = 0.5).

Figure 7 illustrates the effect of the thickness-to-radius ratio on the dimensionless natural
frequency of the FG NPMF nanoshell. As expected, the natural frequency of the FG NPMF nanoshell
increases with the rise of thickness-to-radius. This is because the larger thickness-to-radius ratio results
in the enhancement of the nanoshell stiffness. Moreover, the difference among the results obtained
from the MCST, MSGT, and CT becomes more and more notable as the ratio of thickness-to-radius
increases, indicating that the size effect is more significant at the larger thickness-to-radius ratio.
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Figure 7. Dimensionless natural frequency versus thickness-to-radius ratio with different theories and
nanoporosity distributions (m = 1, n = 2, h = 10 nm, L = 4R, h = 2l, e0 = 0.5).
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6.2. Buckling Analysis

The effect of the length scale parameter on the dimensionless buckling load is shown in Table 5.
It is revealed that by increasing the dimensionless length scale parameter, the buckling load of the
system decreases. Additionally, with the increase of circumferential wave number, the buckling load
first decreases and then increases. It is noted that the critical buckling load occurs at n = 2.

Table 5. Effect of the length scale parameter on dimensionless buckling load F based on the MSGT
(nanoporosity-1, m = 1, h = 10 nm, R = 20h, L/R = 4, e0 = 0.5).

h/l = 1 h/l = 1.5 h/l = 2 h/l = 3 h/l = 4 h/l = 5 h/l = 10

n = 1 0.12274 0.12167 0.12129 0.12101 0.12092 0.12087 0.12081
n = 2 0.04801 0.03188 0.02603 0.02177 0.02027 0.01957 0.01864
n = 3 0.18358 0.09853 0.06657 0.04297 0.03455 0.03062 0.02536
n = 4 0.55614 0.30326 0.20422 0.12951 0.10252 0.08987 0.07285
n = 5 1.27769 0.71906 0.49043 0.31364 0.24878 0.21820 0.17686
n = 6 2.45989 1.43011 0.99029 0.64101 0.51065 0.44875 0.36462

Figure 8 plots the dimensionless critical buckling load versus nanoporosity coefficient for both
nanoporosity distributions based on the MCST, MSGT, and CT. As can be observed, the larger nanoporosity
coefficient results in a lower dimensionless critical buckling load. Moreover, the nanoporosity-1 nanoshell
has a higher critical buckling load than its nanoporosity-2 counterpart. The difference between them
tends to be significant with the increase of the nanoporosity coefficient. Furthermore, compared to the
MCST, the MSGT leads to a more reasonable buckling load due to the introduction of an additional
deviatoric stretch gradient tensor and dilatation gradient tensor in addition to the symmetric rotation
gradient tensor.
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Figure 8. Dimensionless critical buckling load versus nanoporosity coefficient (m = 1, n = 2, h = 10 nm,
R = 20 h, L = 4R, h = 2l).

Figure 9 compares the variation of the dimensionless critical buckling load with the dimensionless
length scale parameter based on classical and non-classical shell models. It is noted that the critical
buckling load decreases with the increasing dimensionless length scale parameter. In addition,
the difference among the results from the three models (MCST, MSGT, and CT) is diminishing when
the dimensionless length scale parameter tends to large, indicating that the size effect is only significant
when the thickness of the nanoshell is comparable to the length scale parameter. This phenomenon
was also found in microplates and microbeams [41,47,102].
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Figure 9. Dimensionless critical buckling load versus dimensionless length scale parameter (m = 1,
n = 2, h = 10 nm, R = 20 h, L = 4R, e0 = 0.5).

Depicted in Figure 10 is the variation of the dimensionless buckling load with the length-to-radius
ratio for both kinds of nanoporosity distribution. It can be seen that with the increase of the
length-to-radius ratio, the dimensionless buckling load first decreases and then increases. Moreover,
the dimensionless buckling load obtained through the MSGT is greater than those predicted via the CT
and MCST. The difference between the results obtained by the MCST, MSGT, and CT becomes more
and more significant as the length-to-radius ratio rises.
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Figure 10. Dimensionless buckling load versus length-to-radius ratio (m = 1, n = 2, h = 10 nm, R = 20 h,
h = 2l, e0 = 0.5).

Figure 11 plots the dimensionless buckling load with respect to the thickness-to-radius ratio for
both kinds of nanoporosity distribution. As can be seen, the increase in the thickness-to-radius ratio
contributes to the higher buckling load of the FG NPMF nanoshell. This is due to the fact that the
larger thickness-to-radius ratio enhances the stiffness of the FG NPMF nanoshell.
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Figure 11. Dimensionless buckling load versus thickness-to-radius ratio (m = 1, n = 2, h = 10 nm, L = 4R,
h = 2l, e0 = 0.5).

7. Conclusions

In this paper, size-dependent free vibration and buckling of FG NPMF cylindrical nanoshells
are investigated based upon the FSD shell theory and general SGT. The symmetric and unsymmetric
nanoporosity distributions are considered for the structural composition. Governing equations, as well
as corresponding boundary conditions, are derived via Hamilton’s principle. Moreover, the Navier
solution technique is employed to derive the analytical solutions for FG NPMF nanoshells with a
simply supported boundary condition. The conclusions can be summarized as follows:

(1) Nanoporosity distribution has a significant influence on the vibration and buckling characteristics
of FG NPMF nanoshells. Natural frequencies and buckling loads of the nanoporosity-2 nanoshell
are lower than those of the nanoporosity-1 nanoshell. As the nanoporosity coefficient increases,
natural frequencies and buckling loads of the nanoshell decrease.

(2) Natural frequencies of the FG NPMF nanoshells decrease with the increasing length-to-radius
ratio. Additionally, the larger thickness-to-radius ratio leads to the higher natural frequency of
the FG NPMF nanoshell.

(3) Buckling loads decrease first and then increase with the increase of the length-to-radius
ratio. Furthermore, buckling loads increase with the increasing thickness-to-radius ratio of
the nanoshell.

(4) When the nanoshell thickness is approximately equal to the length scale parameter, the MSGT
is more appropriate than the CT and MCST for free vibration and buckling analysis of FG
NPMF nanoshells.
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Appendix A

The non-classical and classical resultant moments and forces in Equation (26) are:

Nxx = B11φ1 + A11φ0 + B12 ϕ1 + A12 ϕ0 (A1)
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Nyy = B11 ϕ1 + A11 ϕ0 + B12φ1 + A12φ0 (A2)

Nxy = B55k1 + A55k0 (A3)

Qx = KS A55γ1, Qy = KS A55γ2 (A4)

Mxx = D11φ1 + B11φ0 + D12 ϕ1 + B12 ϕ0 (A5)

Myy = D11 ϕ1 + B11 ϕ0 + D12φ1 + B12φ0 (A6)

Mxy = D55k1 + B55k0 (A7)

Txxx = E1
∂φ0

∂x
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+
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2
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Appendix B

The parameters in Equations (42)–(46) are given by:

A11 =
∫ h
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Appendix C

The nonzero components in Equations (53)–(55) are:
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K15 = K51 =

(
2F2 + F3 + F4 + F6

2

)(
α3

mn
R

+
αmn3

R3

)
+ (B12 + B55)

αmn
R

(A43)

K22 = E6α4
m

2 +
(

E6+2E3+2E4+2E5
2

)
α2

mn2

R2 + E1n4

R4

+
(

A11 +
E6
R2

)
n2

R2 + α2
m

(
A55 +

A4
R2

)
+ KS A55

R2

(A44)

K23 = K32 = − (2A3+2A4+A5+E3+E4+2E5)α
2
mn

2R2

− (E1+E6)n3

R4 − n
R2 (A11 + KS A55)

(A45)

K24 = K42 = − αmn
R2 (A1 + A3 + A5)

+
[(

2F2+F3+F4+F6
2

)(
α3

mn
R + αmn3

R3

)
+ (B12 + B55)

αmn
R

] (A46)

K25 = K52 = − 1
2R

[
(2A4 + A5)α

2
m + (E4 + E6)

n2

R2

]
− KS A55

R

+
[

F6α4
m

2 + F1n4

R4 +
(

2F3+2F4+2F5+F6
2

)
α2

mn2

R2

]
+ B55α2

m + B11n2

R2

(A47)

K33 = (A3 + 2A4 + A5)
α2

mn2

R2 + (2E1+E6)n2

2R4 + (2E5+A3)α
2
m

2R2

+KS A55

(
α2

m + n2

R2

)
+ E6

2

(
α4

m + n4

R4

)
+ A11

R2

(A48)

K34 = K43 = αm(A1+A3)
2R2 + αm

(
KS A55 − 2F2+F3+F4

2R
n2

R2 +
E6+E4

2 α2
m

)
+ 1

2 (A1 + A3 + 2A4 + 3A5)
αmn2

R2 + α3
m F2
R − B12αm

R

(A49)

K35 = K53 = 1
2

[
(A1 + A3 + 2A4 + 3A5)α

2
m + (E4 + E6)

n2

R2

]
n
R

− F3−F4−2F5
2R

α2
mn
R −

F1
R

n3

R3 −
(

B11
R − KS A55

)
n
R

(A50)

K44 = G1α4
m +

[(
2G3+2G4+2G5+G6

2

)
n2

R2 + D11 +
2E4+2E5+E6

2

]
α2

m

+G6n4

2R4 + n2

R2 (D55 + 2A4 + A5) + KS A55

(A51)

K45 = K54 = αm
R

[
2G2+G3+G4+G6

2

(
α2

m + n2

R2

)]
+ αm

R

(
D12 + D55 +

2A1+4A2+A3+2A4+3A5
2

) (A52)

K55 = G1n4

R4 + α4
mG6
2 +

(
2G3+2G4+2G5+G6

2

)
α2

mn2

R2

+ n2

R2

(
D11 +

2E4+2E5+E6
2

)
+ α2

m(D55 + 2A4 + A5) + KS A55
(A53)
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M11 = M22 = M33 = I0, M44 = M55 = I2, M14 = M25 = M41 = M52 = I1 (A55)
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