In-Situ Synthesized Si@C Materials for the Lithium Ion Battery: A Mini Review
Abstract
:1. Introduction
2. In-Situ Synthesis of Si@C Compound Materials
2.1. In-Situ Electrochemical Synthesis
2.2. In-Situ Solid-State Synthesis
2.3. In-Situ Carbothermal Reduction
3. The Structure and Electrochemical Properties of Si@C Compound Materials
3.1. Coated Composite
3.2. Embedded Composite
3.3. Doped Composite
4. Conclusions and Prospect
Author Contributions
Funding
Conflicts of Interest
References
- Nishi, Y. Lithium ion secondary batteries; past 10 years and the future. J. Power Sources 2001, 100, 101–106. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Kyu-Sung, P. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Boukamp, B.A.; Lesh, G.C.; Huggins, R.A. ChemInform Abstract: All-solid lithium electrodes with mixed-conductor matrix. Chem. Informationsdienst 1981, 12, 725–728. [Google Scholar] [CrossRef]
- Chan, C.K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X.F.; Huggins, R.A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31. [Google Scholar] [CrossRef] [PubMed]
- Huggins, R.A. Lithium alloy negative electrodes. J. Power Sources 1999, 81–82, 13–19. [Google Scholar] [CrossRef]
- Szczech, J.R.; Jin, S. Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 2010, 4, 56–72. [Google Scholar] [CrossRef]
- Ng, S.H.; Wang, J.; Konstantinov, K.; Wexler, D.; Chew, S.Y.; Guo, Z.P.; Liu, H.K. Spray-pyrolyzed silicon/disordered carbon nanocomposites for lithium-ion battery anodes. J. Power Sources 2007, 174, 823–827. [Google Scholar] [CrossRef]
- Ryu, J.H.; Kim, J.W.; Sung, Y.E.; Oh, S.M. Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries. Electrochem. Solid-State Lett. 2004, 7, A306–A309. [Google Scholar] [CrossRef]
- Polat, B.D.; Keles, O. Multi-layered Cu/Si nanorods and its use for lithium ion batteries. J. Alloy. Compd. 2015, 622, 418–425. [Google Scholar] [CrossRef]
- Datta, M.K.; Kumta, P.N. Silicon and carbon based composite anodes for lithium ion batteries. J. Power Sources 2006, 158, 557–563. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, W.J.; Kim, J.Y.; Lim, S.H.; Lee, S.M. Spherical silicon/graphite/carbon composites as anode material for lithium-ion batteries. J. Power Sources 2008, 176, 353–358. [Google Scholar] [CrossRef]
- Yang, X.; Wen, Z.; Xu, X.; Lin, B.; Huang, S. Nanosized silicon-based composite derived by in situ mechanochemical reduction for lithium ion batteries. J. Power Sources 2007, 164, 880–884. [Google Scholar] [CrossRef]
- Datta, M.K.; Kumta, P.N. In situ electrochemical synthesis of lithiated silicon-carbon based composites anode materials for lithium ion batteries. J. Power Sources 2009, 194, 1043–1052. [Google Scholar] [CrossRef]
- Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 353–358. [Google Scholar] [CrossRef]
- Evanoff, K.; Magasinski, A.; Yang, J.; Yushin, G. Nanosilicon-Coated Graphene Granules as Anodes for Li-Ion Batteries. Adv. Energy Mater. 2011, 1, 495–498. [Google Scholar] [CrossRef]
- Zhang, L.; Hao, W.; Wang, H.; Zhang, L.; Feng, X.; Zhang, Y.; Chen, W.; Pang, H.; Zheng, H. Porous graphene frame supported silicon@graphitic carbon via in situ solid-state synthesis for high-performance lithium-ion anodes. J. Mater. Chem. A 2013, 1, 7601–7611. [Google Scholar] [CrossRef]
- Yang, X.-L.; Zhang, L.-L.; You, M.; Wen, Z.Y.; Wang, Q. Synthesis of Si/Sn binary lithium-storage host composite anode materials by in-situ mechanochemical reaction. Chin. J. Inorg. Chem. 2008, 24, 1320–1324. [Google Scholar]
- Lee, H.Y.; Lee, S.M. Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries. Electrochem. Commun. 2004, 6, 465–469. [Google Scholar] [CrossRef]
- Zhang, P.C.; Yang, X.; Yu, D.-X.; Shi, C.-C.; Wen, Z.-Y. Synthesis of Silicon/Carbon Composite Anode Prepared by in-situ Carbothermal Reduction for Lithium Ion Batteries. Chin. J. Inorg. Chem. 2011, 27, 898–902. [Google Scholar]
- Liu, D.; Zhang, W.; Lin, H.; Li, Y.; Lu, H.; Wang, Y. Hierarchical porous carbon based on the self-template structure of rice husk for high-performance supercapacitors. RSC Adv. 2015, 5, 19294–19300. [Google Scholar] [CrossRef]
- Wang, L.; Schnepp, Z.; Titirici, M. Rice husk-derived carbon anodes for lithium ion batteries. J. Mater. Chem. A 2013, 1, 5269–5273. [Google Scholar] [CrossRef]
- Xing, A.; Tian, S.; Tang, H.; Losic, D.; Bao, Z. Mesoporous silicon engineered by the reduction of biosilica from rice husk as a high-performance anode for lithium-ion batteries. RSC Adv. 2013, 3, 10145–10149. [Google Scholar] [CrossRef]
- Jung, D.S.; Ryou, M.H.; Sung, Y.J.; Park, S.B.; Choi, J.W. Recycling rice husks for high-capacity lithium battery anodes. Proc. Natl. Acad. Sci. USA 2013, 110, 12229–12234. [Google Scholar] [CrossRef] [Green Version]
- Ju, Y.; Tang, J.A.; Zhu, K.; Meng, Y.; Wang, C.; Chen, G.; Wei, Y.; Gao, Y. SiOx/C composite from rice husks as an anode material for lithium-ion batteries. Electrochim. Acta 2016, 191, 411–416. [Google Scholar] [CrossRef]
- Holzapfel, M.; Buqa, H.; Scheifele, W.; Novák, P.; Petrat, F.M. A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion. Chem. Commun. 2005, 12, 1566–1568. [Google Scholar] [CrossRef] [PubMed]
- Holzapfel, M.; Buqa, H.; Krumeich, F.; Novák, P.; Petrat, F.M.; Veit, C. Chemical vapor deposited silicon/graphite compound material as negative electrode for lithium-ion batteries. Electrochem. Solid-State Lett. 2005, 8, A516–A520. [Google Scholar] [CrossRef]
- Feng, X.; Yang, J.; Lu, Q.; Wang, J.; Nuli, Y. Facile approach to SiOx/Si/C composite anode material from bulk SiO for lithium ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 14420–14426. [Google Scholar] [CrossRef]
- Lavoie, N.; Courtel, F.M.; Malenfant, P.R.L. Graphene-Based Composite Anodes for Lithium-Ion Batteries. Nanostruct. Sci. Technol. 2012, 117–162. [Google Scholar]
- Gao, P.; Fu, J.; Yang, J.; Lv, R.; Wang, J.; Nuli, Y.; Tang, X. Microporous carbon coated silicon core/shell nanocomposite via in situ polymerization for advanced Li-ion battery anode material. Phys. Chem. Chem. Phys. 2009, 11, 11101–11105. [Google Scholar] [CrossRef]
- Wang, D.; Gao, M.; Pan, H.; Wang, J.; Liu, Y. High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization. J. Power Sources 2014, 256, 190–199. [Google Scholar] [CrossRef]
- Zhou, R.; Guo, H.; Yang, Y.; Wang, Z.; Li, X.; Zhou, Y. N-doped carbon layer derived from polydopamine to improve the electrochemical performance of spray-dried Si/graphite composite anode material for lithium ion batteries. J. Alloy. Compd. 2016, 689, 130–137. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Y.X.; Chou, S.L.; Zhang, R.; Xu, Y.; Fan, J.; Zhang, W.-X.; Liu, H.K.; Zhao, D.; Dou, S.X. Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. Nano Energy 2015, 18, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.X.; Xin, S.; Wan, L.J.; Li, C.J.; Guo, Y.G. Electrospray Synthesis of Silicon/Carbon Nanoporous Microspheres as Improved Anode Materials for Lithium-Ion Batteries. J. Phys. Chem. C 2011, 115, 14148–14154. [Google Scholar] [CrossRef]
- Wei, W.; Kumta, P.N. Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible high-capacity lithium-ion anodes. ACS Nano 2010, 4, 2233–2241. [Google Scholar]
- Lee, S.J.; Kim, H.J.; Hwang, T.H.; Choi, S.; Park, S.H.; Deniz, E.; Jung, D.S.; Choi, J.W. Delicate Structural Control of Si-SiOx-C Composite via High Speed Spray Pyrolysis for Li-Ion Battery Anodes. Nano Lett. 2017, 17, 1870–1876. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yang, J.; Wang, J.; NuLi, Y. Nano-porous Si/C composites for anode material of lithium-ion batteries. Electrochim. Acta 2007, 52, 5863–5867. [Google Scholar] [CrossRef]
- Zuo, P.; Yin, G.; Ma, Y. Electrochemical stability of silicon/carbon composite anode for lithium ion batteries. Electrochim. Acta 2007, 52, 4878–4883. [Google Scholar] [CrossRef]
- Wang, H.; Xie, J.; Zhang, S.; Cao, G.; Zhao, X. Scalable preparation of silicon@graphite/carbon microspheres as high-performance lithium-ion battery anode materials. RSC Adv. 2016, 6, 69882–69888. [Google Scholar] [CrossRef]
- Wu, J.; Qin, X.; Zhang, H.; He, Y.B.; Li, B.; Ke, L.; Lv, W.; Du, H.; Yang, Q.-H.; Kang, F. Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode. Carbon 2015, 84, 434–443. [Google Scholar] [CrossRef]
- Agyeman, D.A.; Song, K.; Lee, G.H.; Park, M.; Kang, Y.M. Carbon-Coated Si Nanoparticles Anchored between Reduced Graphene Oxides as an Extremely Reversible Anode Material for High Energy-Density Li-Ion Battery. Adv. Energy Mater. 2016, 6, 1600904–1600913. [Google Scholar] [CrossRef]
Alloys | Composition | Phases | Specific Capacity (mAhg−1) | Capacity Loss per Cycle (%) | Charge Potential (V) |
---|---|---|---|---|---|
Si/C | 82.6 at.% C, 18.4 at.% Si | Si + C | 1000 | 0.34 | 1.2 |
Li-Si/C(0.6 V) | 69 at.% C, 15.5 at.% Si, 15.5 at.% Li | Li-Si + C | 800 | 0.21 | 0.6 |
Li-Si/C(0.5 V) | 64 at.% C, 21.6 at.% Si, 14.4 at.% Li | Li-Si + Li7Si3 + C | 700 | 0.13 | 0.5 |
Li-Si/C(0.4 V) | 57.1 at.% C, 30 at.% Si, 12.9 at.% Li | Li7Si3 + C | 440 | 3.6 | 0.4 |
C | - | C | 320 | 0% | 1.2 |
Si | - | Si | 4000 | - | 1.2 |
Anodes | Specific Capacity (mAhg−1) | Cycling Stability (mAhg−1) | Rate Capacity (mAhg−1) | Structure | Method | Ref |
---|---|---|---|---|---|---|
Li-Si/C | 1019 | 821 after 30 cycles at 160 mAg−1 | - | Li-Si alloys in carbon matrix | In-situ electrochemical | [20] |
Si@graphitic | 1479 | 1065 after 200 cycles at 280 mAg−1 | 1042 at 28 Ag−1 | Nanosilicon-coated graphene granule | In-situ solid-state | [23] |
Si@amorphous C | 1291 | 650 after 100 cycles at 200 mAhg−1 | - | Nanosilicon amorphous carbon core-shell | In-situ carbothermal reduction | [27] |
LRP-Si@C | 2110 | 1633 after 70 cycles at 0.5 Ag−1 | 580 at 8 Ag−1 | Lotus root-like porous | Magnesiothermic reduction and CVD | [28] |
Microporous Si@C | 1887 | 1210 after 40 cycles at 0.5 C | - | Nano core-shell | In-situ polymerization | [29] |
Si@SiOx@C | 1980 | 1450 after 100 cycles at 0.1 Ag−1 | 1230 after 100 cycles (500 mAg−1) | Double-walled core-shell | Ball-milling and carbonization | [30] |
Si/C | 741.2 | 611.3 after 100 cycles at 0.3 Ag−1 | 480.3 at 4 Ag−1 | Si/graphit@N-doped carbon core-shell | Spray-dying and carbonization | [31] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, W.; Bai, Z.; Deng, Z.; Zhang, H.; Tang, H. In-Situ Synthesized Si@C Materials for the Lithium Ion Battery: A Mini Review. Nanomaterials 2019, 9, 432. https://doi.org/10.3390/nano9030432
Tu W, Bai Z, Deng Z, Zhang H, Tang H. In-Situ Synthesized Si@C Materials for the Lithium Ion Battery: A Mini Review. Nanomaterials. 2019; 9(3):432. https://doi.org/10.3390/nano9030432
Chicago/Turabian StyleTu, Wenmao, Ziyu Bai, Zhao Deng, Haining Zhang, and Haolin Tang. 2019. "In-Situ Synthesized Si@C Materials for the Lithium Ion Battery: A Mini Review" Nanomaterials 9, no. 3: 432. https://doi.org/10.3390/nano9030432
APA StyleTu, W., Bai, Z., Deng, Z., Zhang, H., & Tang, H. (2019). In-Situ Synthesized Si@C Materials for the Lithium Ion Battery: A Mini Review. Nanomaterials, 9(3), 432. https://doi.org/10.3390/nano9030432