Incorporating N Atoms into SnO2 Nanostructure as an Approach to Enhance Gas Sensing Property for Acetone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Sample Characterization
2.3. Sensor Fabrication and Test
3. Results and Discussion
3.1. Morphology and Structural Characterization
3.2. Gas sensing Properties
3.3. Gas-Sensing Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mirzaei, A.; Leonardi, S.G.; Neri, G. Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceram. Int. 2016, 42, 15119–15141. [Google Scholar] [CrossRef]
- Gupta, P.; Sharma, S.K. A study of oxygen gas sensing in Zn-doped SnO2 nanostructures. Mater. Res. Exp. 2017, 4, 065010. [Google Scholar] [CrossRef]
- Yin, M.L.; Yao, Y.; Fan, H.B.; Liu, S.Z. WO3-SnO2 nanosheet composites: Hydrothermal synthesis and gas sensing mechanism. J. Alloy. Compd. 2018, 736, 322–331. [Google Scholar] [CrossRef]
- Bian, H.Q.; Ma, S.Y.; Sun, A.M.; Xu, X.L.; Yang, G.J.; Yan, S.H.; Gao, J.M.; Zhang, Z.M.; Zhu, H.B. Improvement of acetone gas sensing performance of ZnO nanoparticles. J. Alloys Compd. 2016, 658, 629–635. [Google Scholar] [CrossRef]
- Mansha, M.; Qurashi, A.; Ullah, N.; Bakare, F.O.; Khan, I.; Yamani, Z.H. Synthesis of In2O3/graphene heterostructure and their hydrogen gas sensing properties. Ceram. Int. 2016, 42, 11490–11495. [Google Scholar] [CrossRef]
- Wang, H.K.; Rogach, A.L. Hierarchical SnO2 nanostructures: Recent advances in design, synthesis, and applications. Chem. Mater. 2014, 26, 123–133. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Zhang, W.L.; Yang, B.; Liu, J.Q.; Chen, X.; Wang, X.L.; Yang, C.S. Gas-sensing enhancement methods for hydrothermal synthesized SnO2-based sensors. Nanotechnology 2017, 28, 452002. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, Y.; Zhang, Z.Y.; Cao, J.L. Highly sensitive acetone gas sensor based on g-C3N4 decorated MgFe2O4 porous microspheres composites. Sensors 2018, 18, 2211. [Google Scholar] [CrossRef]
- Righettoni, M.; Tricoli, A.; Pratsinis, S.E. Si:WO3 Sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Anal. Chem. 2010, 82, 3581–3587. [Google Scholar] [CrossRef]
- Neri, G. First fifty years of chemoresistive gas sensors. Chemosensors 2015, 3, 1–20. [Google Scholar] [CrossRef]
- Xue, D.P.; Zhang, S.S.; Zhang, Z.Y. Hydrothermally prepared porous 3D SnO2 microstructures for methane sensing at lower operating temperature. Mater. Lett. 2019, 237, 336–339. [Google Scholar] [CrossRef]
- Wan, W.J.; Li, Y.H.; Zhang, J.H.; Ren, X.P.; Zhao, Y.P.; Zhao, H.Y. Template-free synthesis of nanoarrays SnO2 hollow microcubes with high gas-sensing performance to ether. Mater. Lett. 2019, 236, 46–50. [Google Scholar] [CrossRef]
- Ma, J.W.; Fan, H.Q.; Ren, X.H.; Wang, C.; Tian, H.L.; Dong, G.Z.; Wang, W.J. A simple absorbent cotton biotemplate to fabricate SnO2 porous microtubules and their gas-sensing properties for chlorine. ACS Sustian. Chem. Eng. 2019, 7, 147–155. [Google Scholar] [CrossRef]
- Sharma, A.P.; Dhakal, P.; Pradhan, D.K.; Behera, M.K.; Xiao, B.; Bahoura, M. Fabrication and characterization of SnO2 nanorods for room temperature gas sensors. AIP Adv. 2018, 8, 095219. [Google Scholar] [CrossRef]
- Amin, M.; Akhtar, M.S.; Ahmad, K.S.; Alghamdi, Y.; Revaprasadu, N.; Malik, M.A.; Shah, N.A. Optical and gas sensing properties of SnO2 nanowires grown by vapor-liquid-solid mechanism. J. Mater. Sci. Mater. Electron. 2017, 28, 17993–18002. [Google Scholar] [CrossRef]
- Yu, H.; Yang, T.Y.; Wang, Z.Y.; Li, Z.F.; Xiao, B.X.; Zhao, Q.; Zhang, M.Z. Facile synthesis cedar-like SnO2 hierarchical micro-nanostructures with improved formaldehyde gas sensing characteristics. J. Alloys Compd. 2017, 724, 121–129. [Google Scholar] [CrossRef]
- Mohanta, D.; Ahmaruzzaman, M. Tin oxide nanostructured materials: An overview of recent developments in synthesis, modifications and potential applications. RSC Adv. 2016, 6, 110996–111015. [Google Scholar] [CrossRef]
- Singh, G.; Virpal; Singh, R.C. Highly sensitive gas sensor based on Er-doped SnO2 nanostructures and its temperature dependent selectivity towards hydrogen and ethanol. Sens. Actuators B Chem. 2019, 282, 373–383. [Google Scholar] [CrossRef]
- Singh, G.; Singh, R.C. Synthesis and characterization of Gd-doped SnO2 nanostructures and their enhanced gas sensing properties. Ceram. Int. 2017, 43, 2350–2360. [Google Scholar] [CrossRef]
- Wang, D.; Jin, J.; Xia, D.G.; Ye, Q.; Long, J. The effect of oxygen vacancies concentration to the gas-sensing properties of tin dioxide-doped Sm. Sens. Actuators B Chem. 2000, 66, 260–262. [Google Scholar] [CrossRef]
- Li, W.Q.; Ma, S.Y.; Li, Y.F.; Li, X.B.; Wang, C.Y.; Yang, X.H.; Cheng, L.; Mao, Y.Z.; Luo, J.; Gengzang, D.J.; et al. Preparation of Pr-doped SnO2 hollow nanofibers by electrospinning method and their gas sensing properties. J. Alloys Compd. 2014, 605, 80–88. [Google Scholar] [CrossRef]
- Gao, F.; Qin, G.H.; Li, Y.H.; Jiang, Q.P.; Luo, L.; Zhao, K.; Liu, Y.J.; Zhao, H.Y. One-pot synthesis of La-doped SnO2 layered nanoarrays with an enhanced gas-sensing performance toward acetone. RSC Adv. 2016, 13, 10298–10310. [Google Scholar] [CrossRef]
- Patil, S.B.; Patil, P.P.; More, M.A. Acetone vapour sensing characteristics of cobalt-doped SnO2 thin films. Sens. Actuators B Chem. 2007, 125, 126–130. [Google Scholar] [CrossRef]
- Guo, X.Y.; Zhan, Q.R.; Jin, G.X.; Li, G.W.; Zhan, Z.L. Hot-wire semiconductor metal oxide gas sensor based on F-doped SnO2. J. Mater. Sci. Mater. Electron. 2015, 26, 860–866. [Google Scholar] [CrossRef]
- Basu, S.; Wang, Y.H.; Ghanshyam, C.; Kapur, P. Fast response time alcohol gas sensor using nanocrystalline F-doped SnO2 films derived via sol-gel method. Bull. Mater. Sci. 2013, 36, 521–533. [Google Scholar] [CrossRef]
- Luan, V.H.; Tien, H.N.; Hur, S.H.; Han, J.H.; Lee, W. Three-dimensional porous nitrogen-doped NiO nanostructures as highly sensitive NO2 sensors. Nanomaterials 2017, 7, 313. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Li, F.; Wang, D.W.; Tang, D.M.; Liu, C.; Ma, X.; Lu, G.Q.; Cheng, H.M. Electron field emission of a nitrogen-doped TiO2 nanotube array. Nanotechnology 2008, 19, 025606–025611. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.Q.; Long, R.; Cheng, X.F.; Zhao, X.; Dai, Y.; Huang, B.B. Structural, electronic, and optical properties of N-doped SnO2. J. Phys. Chem. C 2008, 112, 9861–9864. [Google Scholar] [CrossRef]
- Fang, F.; Zhang, Y.Y.; Wu, X.Q.; Shao, Q.Y.; Xie, Z.H. Electrical and optical properties of nitrogen doped SnO2 thin films deposited on flexible substrates by magnetron sputtering. Mater. Res. Bull. 2015, 68, 240–244. [Google Scholar] [CrossRef]
- Yao, M.S.; Hu, P.; Cao, Y.B.; Xiang, W.C.; Zhang, X.; Yuan, F.L.; Chen, Y.F. Morphology-controlled ZnO spherical nanobelt-flower arrays and their sensing properties. Sens. Actuators B Chem. 2013, 177, 562–569. [Google Scholar] [CrossRef]
- Guan, X.F.; Li, G.S.; Zhou, L.H.; Li, L.P.; Qiu, X.Q. Template-free approach to core-shell-structured Co3O4 microspheres. Chem. Lett. 2009, 38, 280–281. [Google Scholar] [CrossRef]
- Wang, L.P.; Leconte, Y.; Feng, Z.X.; Wei, C.; Zhao, Y.; Ma, Q.; Xu, W.Q.; Bourrioux, S.; Azais, P.; Srinivasan, M. Novel preparation of N-doped SnO2 nanoparticles via laser-assisted pyrolysis: Demonstration of exceptional lithium storage properties. Adv. Mater. 2017, 29, 1603286. [Google Scholar] [CrossRef]
- Wang, X.K.; Li, Z.Q.; Li, Q.; Wang, C.B.; Chen, A.L.; Zhang, Z.W.; Fan, R.H.; Yin, L.W. Ordered mesoporous SnO2 with a highly crystalline state as an anode material for lithium ion batteries with enhanced electrochemical performance. CrystEngComm 2013, 15, 3696–3704. [Google Scholar] [CrossRef]
- Pan, S.S.; Ye, C.; Teng, X.M.; Fan, H.T.; Li, G.H. Preparation and characterization of nitrogen-incorporated SnO2 films. Appl. Phys. A 2006, 85, 21–24. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, X.; Luo, Y.L.; Shi, X.F.; Asiri, A.M.; Li, T.S.; Sun, X.P. Ambient NH3 synthesis via electrochemical reduction of N2 over cubic sub-micron SnO2 particles. Chem. Commun. 2018, 54, 12966–12969. [Google Scholar] [CrossRef]
- Li, L.L.; Zhang, W.M.; Yuan, Q.; Li, Z.X.; Fang, C.J.; Sun, L.D.; Wang, L.J.; Yan, C.H. Room temperature ionic liquids assisted green synthesis of nanocrystalline porous SnO2 and their gas sensor behaviors. Cryst. Growth Des. 2008, 8, 4165–4172. [Google Scholar] [CrossRef]
- Jiang, J.; Lu, Y.M.; Kramm, B.; Michel, F.; Reindl, C.T.; Kracht, M.E.; Klar, P.J.; Meyer, B.K.; Eickhoff, M. Nitrogen incorporation in SnO2 thin films grown by chemical vapor deposition. Phys. Status Solidi B 2016, 253, 1087–1092. [Google Scholar] [CrossRef]
- Dong, W.J.; Xu, J.J.; Wang, C.; Lu, Y.; Liu, X.Y.; Wang, X.; Yuan, X.T.; Wang, Z.; Lin, T.Q.; Sui, M.L.; et al. A robust and conductive black tin oxide nanostructure makes efficient lithium-ion batteries possible. Adv. Mater. 2017, 29, 1700136. [Google Scholar] [CrossRef]
- Di Valentin, C.; Pacchioni, G.; Selloni, A.; Livraghi, S.; Giamello, E. Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. J. Phys. Chem. B 2005, 109, 11414–11419. [Google Scholar] [CrossRef]
- Xu, C.K.; Xu, G.D.; Liu, Y.K.; Zhao, X.L.; Wang, G.H. Preparation and characterization of SnO2 nanorods by thermal decomposition of SnC2O4 precursor. Scr. Mater. 2002, 46, 789–794. [Google Scholar] [CrossRef]
- Wang, X.L.; Wang, X.; Di, Q.Y.; Zhao, H.L.; Liang, B.; Yang, J.K. Mutual effects of fluorine dopant and oxygen vacancies on structural and luminescenece characteristics of F doped SnO2 nanoparticles. Materials 2017, 10, 1398. [Google Scholar] [CrossRef]
- Liu, L.Z.; Wu, X.L.; Gao, F.; Shen, J.C.; Li, T.H.; Chu, P.K. Determination of surface oxygen vacancy position in SnO2 nanocrystals by Raman spectroscopy. Solid State Commun. 2011, 151, 811–814. [Google Scholar] [CrossRef]
- Liu, L.Z.; Li, T.H.; Wu, X.L.; Shen, J.C.; Chu, P.K. Identification of oxygen vacancy types from Raman spectra of SnO2 nanocrystals. J. Raman Spec. 2012, 43, 1423–1426. [Google Scholar] [CrossRef]
- Fröhlich, D.; Kenklies, R.; Helbig, R. Bandgap assignment in SnO2 by two-photon spectroscopy. Phys. Rev. Lett. 1978, 41, 1750. [Google Scholar] [CrossRef]
- Li, L.P.; Liu, J.J.; Su, Y.G.; Li, G.S.; Chen, X.B.; Qiu, X.Q.; Yan, T.J. Surface doping for photocatalytic purposes: Relations between particle size, surface modifications, and photoactivity of SnO2:Zn2+ nanocrystals. Nanotechnology 2009, 20, 155706. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Velásquez, C.; Ojeda, M.L.; Campero, A.; Esparza, J.M.; Rojas, F. Surfactantless synthesis and textural properties of self-assembled mesoporous SnO2. Nanotechnology 2006, 17, 3347–3358. [Google Scholar] [CrossRef]
- Toussaint, G.; Rodriguez, M.A.; Cloots, R.; Rubio, J.; Rubio, F.; Vertruyen, B.; Henrist, C. Characterization of surface and porous properties of synthetic hybrid lamellar silica. J. Non-Cryst. Solids 2011, 357, 951–957. [Google Scholar] [CrossRef]
- Yao, M.S.; Tang, W.X.; Wang, G.E.; Nath, B.; Xu, G. MOF thin film-coated metal oxide nanowire array: Significantly improved chemiresistor sensor performance. Adv. Mater. 2016, 28, 5229–5234. [Google Scholar] [CrossRef]
- Zhang, D.Z.; Liu, A.M.; Chang, H.Y.; Xia, B.K. Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2-reduced graphene oxide hybrid composite. RSC Adv. 2015, 5, 3016–3022. [Google Scholar] [CrossRef]
- Reddeppa, M.; Park, B.G.; Kim, M.D.; Peta, K.R.; Chinh, N.D.; Kim, D.; Kim, S.G.; Murali, G. H2, H2S gas sensing properties of rGO/GaN nanorods at room temperature: Effect of UV illumination. Sens. Actuators B Chem. 2018, 264, 353–362. [Google Scholar] [CrossRef]
- Reddeppa, M.; Mitta, S.B.; Park, B.G.; Kim, S.G.; Park, S.H.; Kim, M.D. DNA-CTMA functionalized GaN surfaces for NO2 gas sensor at room temperature under UV illumination. Organ. Electron. 2019, 65, 334–340. [Google Scholar] [CrossRef]
- Reddeppa, M.; Park, B.G.; Chinh, N.D.; Kim, D.; Oh, J.E.; Kim, T.G.; Kim, M.D. A novel low-temperature resistive NO gas sensor based on InGaN/GaN multi-quantum well-embedded p-i-n GaN nanorods. Dalton Trans. 2019, 48, 1367–1375. [Google Scholar] [CrossRef]
- Li, L.; Lin, H.M.; Qu, F.Y. Synthesis of mesoporous SnO2 nanomaterials with selective gas-sensing properties. J. Sol-Gel Sci. Technol. 2013, 67, 545–555. [Google Scholar] [CrossRef]
- Li, J.; Tang, P.G.; Zhang, J.J.; Feng, Y.J.; Luo, R.X.; Chen, A.F.; Li, D.Q. Facile synthesis and acetone sensing performance of hierarchical SnO2 hollow microspheres with controllable size and shell thickness. Ind. Eng. Chem. Res. 2016, 55, 3588–3595. [Google Scholar] [CrossRef]
- Chen, D.; Xu, J.; Xie, Z.; Shen, G. Nanowires assembled SnO2 nanopolyhedrons with enhanced gas sensing properties. ACS Appl. Mater. Interfaces 2011, 3, 2112–2117. [Google Scholar] [CrossRef]
- Sun, P.; Cai, Y.X.; Du, S.S.; Xu, X.M.; You, L.; Ma, J.; Liu, F.M.; Liang, X.S.; Sun, Y.F.; Lu, G.Y. Hierarchical α-Fe2O3/SnO2 semiconductor composites: Hydrothermal synthesis and gas sensing properties. Sens. Actuators B Chem. 2013, 182, 336–343. [Google Scholar] [CrossRef]
- Zhang, S.F.; Ren, F.; Wu, W.; Zhou, J.; Xiao, X.H.; Sun, L.L.; Liu, Y.; Jiang, C.Z. Controllable synthesis of recyclable core-shell γ-Fe2O3@SnO2 hollow nanoparticles with enhanced photocatalytic and gas sensing properties. Phys. Chem. Chem. Phys. 2013, 15, 8228–8236. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Y.; Wang, W.D.; Xue, Y.; Li, P.W.; Lian, K.; Chen, L.; Zhang, W.D.; Zhuiykov, S. Enhancement of the acetone sensing capabilities to ppb detection level by Fe-doped three-dimensional SnO2 hierarchical microstructures fabricated via a hydrothermal method. J. Mater. Sci. 2017, 52, 11554–11568. [Google Scholar] [CrossRef]
- Jiang, Z.Q.; Zhao, R.; Sun, B.; Nie, G.D.; Ji, H.; Lei, J.Y.; Wang, C. Highly sensitive acetone sensor based on Eu-doped SnO2 electrospun nanofibers. Ceram. Int. 2016, 42, 15881–15888. [Google Scholar] [CrossRef]
- Jiang, Z.Q.; Yin, M.Y.; Wang, C. Facile synthesis of Ca2+/Au co-doped SnO2 nanofibers and their application in acetone sensor. Mater. Lett. 2017, 194, 209–212. [Google Scholar] [CrossRef]
- Li, Y.X.; Guo, Z.; Su, Y.; Jin, X.B.; Tang, X.H.; Huang, J.R.; Huang, X.J.; Li, M.Q.; Liu, J.H. Hierarchical morphology-dependent gas-sensing performances of three-dimensional SnO2 nanostructures. ACS Sens. 2017, 2, 102–110. [Google Scholar] [CrossRef]
- Lian, X.X.; Li, Y.; Tong, X.Q.; Zou, Y.L.; Liu, X.L.; An, D.M.; Wang, Q. Synthesis of Ce-doped SnO2 nanoparticles and their acetone gas sensing properties. Appl. Surf. Sci. 2017, 407, 447–455. [Google Scholar] [CrossRef]
- Shaikh, F.I.; Chikhale, L.P.; Mulla, I.S.; Suryavanshi, S.S. Synthesis, characterization and enhanced acetone sensing performance of Pd loaded Sm doped SnO2 nanoparticles. Ceram. Int. 2017, 43, 10307–10315. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.S.; Huang, H.T.; Zhu, Y.G.; Wang, Z.R.; Xie, Z.; Wang, X.F.; Chen, D.; Shen, G.Z. Synthesis, characterizations and improved gas-sensing performance of SnO2 nanospike arrays. J. Mater. Chem. 2011, 21, 19086–19092. [Google Scholar] [CrossRef]
- Ma, X.C.; Song, H.Y.; Guan, C.S. Interfacial oxidation-dehydration induced formation of porous SnO2 hollow nanospheres and their gas sensing properties. Sens. Actuators B Chem. 2013, 177, 196–204. [Google Scholar] [CrossRef]
- Kou, X.Y.; Xie, N.; Chen, F.; Wang, T.S.; Guo, L.L.; Wang, C.; Wang, Q.J.; Ma, J.; Sun, Y.F.; Zhang, H. Superior acetone gas sensor based on electrospun SnO2 nanofibers by Rh doping. Sens. Actuators B Chem. 2018, 256, 861–869. [Google Scholar] [CrossRef]
- Hu, J.; Zou, C.; Su, Y.J.; Li, M.; Yang, Z.; Ge, M.Y.; Zhang, Y.F. One-step synthesis of 2D C3N4-tin oxide gas sensors for enhanced acetone vapor detection. Sens. Actuators B Chem. 2017, 253, 641–651. [Google Scholar] [CrossRef]
- Tomer, V.K.; Singh, K.; Kaur, H.; Shorie, M.; Sabherwal, P. Rapid acetone detection using indium loaded WO3/SnO2 nanohybrid sensor. Sens. Actuators B Chem. 2017, 253, 703–713. [Google Scholar] [CrossRef]
- Li, F.; Zhang, T.; Gao, X.; Wang, R.; Li, B.H. Coaxial electrospinning heterojunction SnO2/Au-doped In2O3 core-shell nanofibers for acetone gas sensor. Sens. Actuators B Chem. 2017, 252, 822–830. [Google Scholar] [CrossRef]
- Xu, X.L.; Chen, Y.; Zhang, G.H.; Ma, S.Y.; Lu, Y.; Bian, H.Q.; Chen, Q. Highly sensitive VOCs-acetone sensor based on Ag-decorated SnO2 hollow nanofibers. J. Alloys Compd. 2017, 703, 572–579. [Google Scholar] [CrossRef]
- Tang, W.; Wang, J.; Qiao, Q.; Liu, Z.H.; Li, X.G. Mechanism for acetone sensing property of Pd-loaded SnO2 nanofibers prepared by electrospinning: Fermi-level effects. J. Mater. Sci. 2015, 50, 2605–2615. [Google Scholar] [CrossRef]
- Wongrat, E.; Hongsith, N.; Wongratanaphisan, D.; Gardchareon, A.; Choopun, S. Control of depletion layer width via amount of AuNPs for sensor response enhancement in ZnO nanostructure sensor. Sens. Actuators B Chem. 2012, 171–172, 230–237. [Google Scholar] [CrossRef]
- Li, X.M.; Liu, Y.K.; Li, S.H.; Huang, J.Q.; Wu, Y.M.; Yu, D.P. The sensing properties of single Y-doped SnO2 nanobelt device to acetone. Nanoscale Res. Lett. 2016, 11, 470. [Google Scholar] [CrossRef]
- An, W.; Wu, X.; Zeng, X.C. Adsorption of O2, H2, CO, NH3, and NO2 on ZnO nanotube: A density functional theory study. J. Phys. Chem. C 2008, 112, 5747–5755. [Google Scholar] [CrossRef]
Sensing Materials | Acetone Concentration (ppm) | Working Temperature (°C) | Sensor Response (Rair/Rgas − 1) | LOD | Ref. |
---|---|---|---|---|---|
SnO2 nanoparticles | 100 | 240 | 17 | 0.2 ppm E | [54] |
SnO2 hollow microspheres | 160 | 200 | 30 | 5 ppm E | [55] |
SnO2 nanoployhedrons | 100 | 370 | 29 | 1 ppm E | [56] |
α-Fe2O3/SnO2 composites | 100 | 250 | 15.8 | 10 ppm E | [57] |
γ-Fe2O3@SnO2 nanoparticles | 100 | 370 | 5 | 10 ppm E | [58] |
Fe-incorporated SnO2 | 100 | 200 | 29 | 0.1 ppm E | [59] |
Eu-incorporated SnO2 nanofibers | 100 | 280 | 31.2 | 0.3 ppm E | [60] |
Ca2+/Au co-incorporated SnO2 | 100 | 200 | 61 | NM | [61] |
cone-shaped SnO2 | 100 | 325 | 174 | NM | [62] |
Ce-incorporated SnO2 | 100 | 270 | 99 | NM | [63] |
Pd loaded Sm incorporated SnO2 | 100 | 200 | 15.7 | NM | [64] |
SnO2 nanospike arrays | 100 | 320 | 39 | 0.5 ppm E | [65] |
SnO2 Hollow nanospheres | 100 | 400 | 7.5 | NM | [66] |
Rh-incorporated SnO2 nanofibers | 100 | 200 | 132 | NM | [67] |
C3N4-SnO2 | 100 | 380 | 28 a | 0.067 ppm C | [68] |
In loaded WO3/SnO2 | 100 | 200 | 129 | NM | [69] |
SnO2/Au-incorporated In2O3 | 100 | 280 | 11.4 | NM | [70] |
Ag/SnO2 hollow nano fibers | 100 | 200 | 74 | NM | [71] |
Nanofibrous Pd-loaded SnO2 | 100 | 275 | 97.8 | NM | [72] |
N-incorporated SnO2 | 100 | 300 | 357 | 0.007 ppm C | TW |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, X.; Wang, Y.; Luo, P.; Yu, Y.; Chen, D.; Li, X. Incorporating N Atoms into SnO2 Nanostructure as an Approach to Enhance Gas Sensing Property for Acetone. Nanomaterials 2019, 9, 445. https://doi.org/10.3390/nano9030445
Guan X, Wang Y, Luo P, Yu Y, Chen D, Li X. Incorporating N Atoms into SnO2 Nanostructure as an Approach to Enhance Gas Sensing Property for Acetone. Nanomaterials. 2019; 9(3):445. https://doi.org/10.3390/nano9030445
Chicago/Turabian StyleGuan, Xiangfeng, Yongjing Wang, Peihui Luo, Yunlong Yu, Dagui Chen, and Xiaoyan Li. 2019. "Incorporating N Atoms into SnO2 Nanostructure as an Approach to Enhance Gas Sensing Property for Acetone" Nanomaterials 9, no. 3: 445. https://doi.org/10.3390/nano9030445
APA StyleGuan, X., Wang, Y., Luo, P., Yu, Y., Chen, D., & Li, X. (2019). Incorporating N Atoms into SnO2 Nanostructure as an Approach to Enhance Gas Sensing Property for Acetone. Nanomaterials, 9(3), 445. https://doi.org/10.3390/nano9030445