Research on Creeping Flashover Characteristics of Nanofluid-Impregnated Pressboard Modified Based on Fe3O4 Nanoparticles under Lightning Impulse Voltages
Abstract
:1. Introduction
2. Experiment
2.1. Samples Preparation
2.2. Impulse Creeping Flashover Test
2.3. Relative Permittivity Test
2.4. Measurement of Trap Distribution Characteristics
2.5. Measurement of Surface Charge Density
3. Results and Discussion
3.1. Lightning Impulse Creeping Flashover Characteristics
3.2. Effect of Change in Relative Permittivities
3.3. Effect of Shallow Trap Characteristics
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liao, R.; Cheng, L.; Yang, L.; Zhang, Y.; Wu, W.; Chao, T. The insulation properties of oil-impregnated insulation paper reinforced with nano-TiO2. J. Nanomater. 2013, 1, 373959. [Google Scholar] [CrossRef]
- Qi, B.; Zhao, X.; Li, C.; Wu, H. Transient electric field characteristics in oil-pressboard composite insulation under voltage polarity reversal. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2148–2155. [Google Scholar] [CrossRef]
- Huang, B.; Hao, M.; Hao, J.; Fu, J.; Wang, Q.; Chen, G. Space charge characteristics in oil and oil-impregnated pressboard and electric field distortion after polarity reversal. IEEE Trans. Dielectr. Electr. Insul. 2015, 23, 881–891. [Google Scholar] [CrossRef]
- Dai, J.; Wang, Z.; Jarman, P. Creepage discharge on insulation barriers in aged power transformers. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 1327–1335. [Google Scholar] [CrossRef]
- Qi, B.; Wei, Z.; Li, C. Creepage discharge of oil-pressboard insulation in ac-dc composite field: Phenomenon and characteristics. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 237–245. [Google Scholar] [CrossRef]
- Ueno, H.; Watabe, K.; Tada, K.; Nakayama, M. Negative creeping discharge characteristics of a gas/solid composite insulation system under pulse voltages. Appl. Phys. 1998, 37, 6595–6600. [Google Scholar] [CrossRef]
- Lv, Y.; You, Z.; Li, C.; Yang, G.; Bo, Q. Creeping discharge characteristics of nanofluid-impregnated pressboards under ac stress. IEEE Trans. Plasma Sci. 2016, 44, 2589–2593. [Google Scholar] [CrossRef]
- Primo, V.A.; Garcia, B.; Albarracin, R. Improvement of transformer liquid insulation using nanodielectric fluids: A review. IEEE Electr. Insul. Mag. 2018, 34, 13–26. [Google Scholar] [CrossRef]
- Zhou, Y.; Sui, S.; Li, J.; Ouyang, Z.; Lv, Y.; Li, C. The effects of shallow traps on the positive streamer electrodynamics in transformer oil based nanofluids. J. Phys. D Appl. Phys. 2018, 51, 105304. [Google Scholar] [CrossRef] [Green Version]
- Sima, W.; Cao, X.; Yang, Q.; Song, H.; Shi, J. Preparation of three transformer oil-based nanofluids and comparison of their impulse breakdown characteristics. Nanosci. Nanotechnol. Lett. 2014, 6, 250–256. [Google Scholar] [CrossRef]
- Lee, J.C.; Seo, H.S.; Kim, Y.J. The increased dielectric breakdown voltage of transformer oil-based nanofluids by an external magnetic field. Int. J. Therm. Sci. 2012, 62, 29–33. [Google Scholar] [CrossRef]
- Du, Y.F.; Lv, Y.Z.; Li, C.R.; Zhong, Y.X.; Chen, T.M.; Zhang, S.N.; Zhou, Y.; Chen, Z.Q. Effect of water adsorption at nanoparticle-oil interface on charge transport in high humidity transformer-oil based nanofluid. Colloid Surf. A Physicochem. Eng. Asp. 2012, 415, 153–158. [Google Scholar] [CrossRef]
- Hanai, M.; Hosomi, S.; Kojima, H.; Hayakawa, N.; Okubo, H. Dependence of TiO2 and ZnO nanoparticle concentration on electrical insulation characteristics of insulating oil. Electrical Insulation & Dielectric Phenomena. In Proceedings of the 2013 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Shenzhen, China, 20–23 October 2013; pp. 781–783. [Google Scholar]
- Jin, H.; Andritsch, T.; Morshuis, P.H.F.; Smit, J.J. AC breakdown voltage and viscosity of mineral oil based SiO2 nanofluids. In Proceedings of the 2012 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Montreal, QC, Canada, 14–17 October 2012; pp. 902–905. [Google Scholar]
- Kopčanský, P.; Tomčo, L.; Marton, K.; Koneracká, M.; Potočová, I.; Timko, M. The experimental study of the dc dielectric breakdown strength in magnetic fluids. J. Magn. Magn. Mater. 2004, 272, 2377–2378. [Google Scholar] [CrossRef]
- Kudelcik, J.; Bury, P.; Kopcansky, P.; Timko, M. Dielectric breakdown in mineral oil ITO 100 based magnetic fluid. Phys. Procedia 2010, 9, 78–81. [Google Scholar] [CrossRef] [Green Version]
- Segal, V.; Hjortsberg, A.; Rabinovich, A.; Nattrass, D.; Raj, K. AC (60 Hz) and impulse breakdown strength of a colloidal fluid based on transformer oil and magnetite nanoparticles. IEEE Int. Sympos. Electr. Insul. 1998, 2, 619–622. [Google Scholar]
- Lv, Y.; Wang, J.; Yi, K.; Wang, W.; Li, C. Effect of oleic acid surface modification on dispersion stability and breakdown strength of vegetable oil-based Fe3O4 nanofluids. Integr. Ferroelectr. 2015, 163, 8. [Google Scholar] [CrossRef]
- Segal, V.; Rabinovich, A.; Nattrass, D.; Raj, K.; Nunes, A. Experimental study of magnetic colloidal fluids behavior in power transformers. J. Magn. Magn. Mater. 2000, 513–515. [Google Scholar] [CrossRef]
- CIGRE. Effect of Particles on Transformer Dielectric Strength. Working Group 17 of Study Committee 12; CIGRE: Paris, France, 2000. [Google Scholar]
- Fabiani, D.; Simoni, L. Discussion on application of the weibull distribution to electrical breakdown of insulating materials. IEEE Trans. Dielectr. Electr. Insul. 2015, 12, 11–16. [Google Scholar] [CrossRef]
- Lv, Y.; Wang, Q.; Zhou, Y.; Li, C.; Ge, Y.; Qi, B. Effect of Fe3O4 nanoparticles on positive streamer propagation in transformer oil. AIP Adv. 2016, 6, 035110. [Google Scholar] [CrossRef]
- Li, J.; Si, W.; Yao, X.; Li, Y. Partial discharge characteristics over differently aged oil/pressboard interfaces. IEEE Trans. Dielectr. Electr. Insul. 2009, 16, 1640–1647. [Google Scholar] [CrossRef]
- Sun, P.; Sima, W.; Zhang, D.; Jiang, X.; Zhang, H.; Yin, Z. Failure characteristics and mechanism of nano-modified oil-impregnated paper subjected to repeated impulse voltage. Nanomaterials 2018, 8, 504. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Wang, T.; Li, J.; Guo, C.; Ni, H. Degradation characteristics of oil-immersed pressboard samples induced by partial discharges under dc voltage. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1110–1117. [Google Scholar] [CrossRef]
- Cho, S.; Lee, Y.; Kim, Y. DC field distribution in HVDC transformer considering the effects of space charge and temperature due to presence of oil immersed pressboard. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 866–872. [Google Scholar] [CrossRef]
- Du, B.; Li, X.; Li, J. Thermal conductivity and dielectric characteristics of transformer oil filled with BN and Fe3O4 nanoparticles. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2530–2536. [Google Scholar] [CrossRef]
- Lv, Y.; Rafiq, M.; Li, C. Study of Dielectric Breakdown Performance of Transformer Oil Based Magnetic Nanofluids. Energies 2017, 10, 1025. [Google Scholar] [Green Version]
- Huang, M.; Wang, L.; Ge, Y.; Lv, Y.; Qi, B.; Li, C. Creeping flashover characteristics improvement of nanofluid/pressboard system with TiO2 nanoparticles. AIP Adv. 2018, 8, 035205. [Google Scholar] [CrossRef]
- Lv, Y.; Ge, Y.; Sun, Z.; Sun, Q.; Huang, M.; Li, C. Effect of nanoparticle morphology on pre-breakdown and breakdown properties of insulating oil-based nanofluids. Nanomaterials 2018, 8, 476. [Google Scholar] [CrossRef]
- Lv, Y.; Zhou, Y.; Li, C.; Ma, K.; Wang, Q.; Wang, W.; Zhang, S.; Jin, Z. Nanoparticle effects on creeping flashover characteristics of oil/pressboard interface. IEEE Trans. Dielectr. Electr. Insul. 2013, 21, 556–562. [Google Scholar] [CrossRef]
- Tian, F.; Bu, W.; Shi, L.; Yang, C.; Yi, W.; Lei, Q. Theory of modified thermally stimulated current and direct determination of trap level distribution. J. Electrost. 2011, 69, 7–10. [Google Scholar] [CrossRef]
- Lei, Q.; Tian, F.; Yang, C.; He, L.; Yi, W. Modified isothermal discharge current theory and its application in the determination of trap level distribution in polyimide films. J. Electrost. 2010, 68, 243–248. [Google Scholar]
Electrode Gap Distance (mm) | OIP | NIP | Increase Rate | ||
---|---|---|---|---|---|
AVG (μs) | SD (μs) | AVG (μs) | SD (μs) | (%) | |
20 | 12.5 | 1.5 | 21.6 | 0.7 | 72.8 |
30 | 17.3 | 1.0 | 28.8 | 0.7 | 66.5 |
40 | 22.1 | 1.4 | 36.0 | 1.5 | 62.9 |
Electrode Gap Distance (mm) | OIP | NIP | Increase Rate | ||
---|---|---|---|---|---|
AVG (μs) | SD (μs) | AVG (μs) | SD (μs) | (%) | |
20 | 25.0 | 2.8 | 27.1 | 4.6 | 8.4 |
30 | 30.1 | 4.6 | 30.3 | 5.6 | 0.6 |
Sample | Relative Permittivity | Permittivity Ratio of Oil to Oil-Impregnated Pressboard | |
---|---|---|---|
Oil (εoil) | Oil-Impregnated Pressboard (εboard) | ||
OIP | 2.2 | 4.2 | 0.52 |
NIP | 3.0 | 4.4 | 0.68 |
Samples | Quantity of Trapped Charges (nC) | Trap Energy Level (eV) |
---|---|---|
OIP | 101.04 | 0.49 |
NIP | 159.64 | 0.48 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, B.; Huang, M.; Ying, Y.; Niu, M.; Sun, Q.; Lv, Y.; Li, C.; Qi, B.; Xing, Z. Research on Creeping Flashover Characteristics of Nanofluid-Impregnated Pressboard Modified Based on Fe3O4 Nanoparticles under Lightning Impulse Voltages. Nanomaterials 2019, 9, 524. https://doi.org/10.3390/nano9040524
Shan B, Huang M, Ying Y, Niu M, Sun Q, Lv Y, Li C, Qi B, Xing Z. Research on Creeping Flashover Characteristics of Nanofluid-Impregnated Pressboard Modified Based on Fe3O4 Nanoparticles under Lightning Impulse Voltages. Nanomaterials. 2019; 9(4):524. https://doi.org/10.3390/nano9040524
Chicago/Turabian StyleShan, Bingliang, Meng Huang, Yupeng Ying, Mingkang Niu, Qian Sun, Yuzhen Lv, Chengrong Li, Bo Qi, and Zhaoliang Xing. 2019. "Research on Creeping Flashover Characteristics of Nanofluid-Impregnated Pressboard Modified Based on Fe3O4 Nanoparticles under Lightning Impulse Voltages" Nanomaterials 9, no. 4: 524. https://doi.org/10.3390/nano9040524
APA StyleShan, B., Huang, M., Ying, Y., Niu, M., Sun, Q., Lv, Y., Li, C., Qi, B., & Xing, Z. (2019). Research on Creeping Flashover Characteristics of Nanofluid-Impregnated Pressboard Modified Based on Fe3O4 Nanoparticles under Lightning Impulse Voltages. Nanomaterials, 9(4), 524. https://doi.org/10.3390/nano9040524