Highly Hydrophilic TiO2 Nanotubes Network by Alkaline Hydrothermal Method for Photocatalysis Degradation of Methyl Orange
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Preparation of TiO2 Nanotubes Network
2.3. Characterization
2.4. Photocatalytic Reactions of TiO2 Nanotubes Network
3. Results and Discussion
3.1. Formation and Photocatalytic Mechanism of TiO2 Nanotubes Network
3.2. Characterizations of TiO2 Nanotubes Network
3.3. Hydrophilicity of TiO2 Nanotubes Network
3.4. Photocatalytic Reaction of TiO2 Nanotubes Network
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Verlicchi, P.; Aukidy, M.A.; Zambello, E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review. Sci. Total Environ. 2012, 429, 123–155. [Google Scholar] [CrossRef]
- Polo, M.S.; Utrilla, G.P.; Pérez, R.O. Metronidazole photodegradation in aqueous solution by using photosensitizers and hydrogen peroxide. Chem. Technol. Biotechnol. 2012, 87, 1202–1208. [Google Scholar] [CrossRef]
- Martínez, C.; Canle, L.M.; Fernández, M.I.; Santaballa, J.A.; Faria, J. Aqueous degradation of diclofenac by heterogeneous photocatalysis using nanostructured materials. Appl. Catal. B-Environ. 2011, 107, 110–118. [Google Scholar] [CrossRef]
- Zhao, J.Z.; He, Y.; Zhang, L.; Lu, K. Preparation of porous TiO2 powder with mesoporous structure by freeze-drying method. J. Alloys Compd. 2016, 678, 36–41. [Google Scholar] [CrossRef]
- Yao, M.; Zhao, J.Z.; Lu, K. Preparation and hydrogenation of urchin-like titania using a one-step hydrothermal method. Ceram. Int. 2017, 43, 6925–6931. [Google Scholar] [CrossRef]
- Chen, X.B.; Liu, L.; Peter, Y.Y.; Mao, S.S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750. [Google Scholar] [CrossRef]
- Brigham, E.C.; Meyer, G.J. Ostwald isolation to determine the reaction order for TiO2(e−)|S+→ TiO2|S charge recombination at sensitized TiO2 interfaces. Phys. Chem. C 2017, 118, 7886–7893. [Google Scholar] [CrossRef]
- Meng, J.X.; Zhang, P.C.; Zhang, F.L.; Liu, H.L.; Fan, J.B.; Liu, X.L.; Yang, G.; Jiang, L.; Wang, S.T. A self-cleaning TiO2 nanosisal-like coating toward disposing nanobiochips of cancer detection. ACS Nano 2015, 9, 9284–9291. [Google Scholar] [CrossRef]
- Chong, R.F.; Li, J.; Ma, Y.; Zhang, B.; Han, H.X.; Li, C. Selective conversion of aqueous glucose to value-added sugar aldose on TiO2-based photocatalysts. J. Catal. 2014, 314, 101–108. [Google Scholar] [CrossRef]
- Aubrey, G.D.; Chen, W.T.; Andrew, C.; Sun-Waterhouse, D.X.; Geoffrey, I.N.W. Novel Au/TiO2 photocatalysts for hydrogen production in alcohol–water mixtures based on hydrogen titanate nanotube precursors. J. Catal. 2015, 330, 238–254. [Google Scholar]
- Ganesh, K.M.; Mui, H.N.; Abdulhakim, A.; Khalil, A.K.; Hany, S.A.; Manoj, G. Effects of TiO2 powder morphology on the mechanical response of pure magnesium: 1D nanofibers versus 0D nanoparticulates. J. Alloys Compd. 2016, 664, 45–48. [Google Scholar]
- Yang, Y.; Ling, Y.C.; Wang, G.M.; Liu, T.Y.; Wang, F.X.; Zhai, T.; Tong, Y.X.; Li, Y. Photohole induced corrosion of titanium dioxide: Mechanism and solutions. Nano Lett. 2015, 15, 7051–7057. [Google Scholar] [CrossRef]
- Chen, W.T.; Chan, A.; Zakiya, H.N.; Aubrey, G.D.; Muhammad, A.N.; SunWaterhouse, D.X.; Hicham, I.; Geoffrey, I.N.W. Effect of TiO2 polymorph and alcohol sacrificial agent on the activity of Au/TiO2 photocatalysts for H2 production in alcohol–water mixtures. J. Catal. 2015, 329, 499–513. [Google Scholar] [CrossRef]
- Jeong, N.C.; Farha, O.K.; Hupp, J.T. A convenient route to high area, nanoparticulate TiO2 photoelectrodes suitable for high-efficiency energy conversion in dye-sensitized solar cells. Langmuir 2011, 27, 1996–1999. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, Q.; Tian, J.; Jiang, F. TiO2 nanobelt@Co9S8 composites as promising anode materials for lithium and sodium ion batteries. Nanomaterials 2017, 7, 252. [Google Scholar] [CrossRef]
- Hwang, Y.J.; Hahn, C.; Liu, B.; Yang, P. Photoelectrochemical properties of TiO2 nanowire arrays: A study of the dependence on length and atomic layer deposition coating. ACS Nano 2012, 6, 5060–5069. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Li, Y.; Sun, Q.; Wang, Y.; Wood, B.J.; Liu, P.; Yang, D.; Zhao, H. Vertically aligned nanorod-like rutile TiO2 single crystal nanowire bundles with superior electron transport and photoelectrocatalytic properties. J. Mater. Chem. 2012, 22, 2465–2472. [Google Scholar] [CrossRef]
- Mancic, L.; Osman, R.F.M.; Costa, A.M.L.M.; d’Almeida, J.R.M.; Marinkovic, B.A.; Rizzo, F.C. Thermal and mechanical properties of polyamide 11 based composites reinforced with surface modified titanate nonutubes. Mater. Des. 2015, 83, 459–467. [Google Scholar] [CrossRef]
- Kusior, A.; Kollbek, K.; Kowalski, K.; Borysiewicz, M.; Wojciechowski, T.; Adamczyk, A.; Trenczek-Zajac, A.; Radecka, M.; Zakrzewska, K. Sn and Cu oxide nanoparticles deposited on TiO2 nanoflower 3D substrates by inert gas condensation technique. Appl. Surf. Sci. 2016, 380, 193–202. [Google Scholar] [CrossRef]
- Sreekantan, S.; Wei, L.C. Study on the formation and photocatalytic activity of titanate nanotubes synthesized via hydrothermal method. J. Alloy Compd. 2010, 490, 436–442. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Zong, Z.M.; Li, Z.K.; Wei, X.Y. Hydrothermal synthesis of TiO2 nanotubes from one-dimensional TiO2 nanowires on flexible non-metallic substrate. Ceram. Int. 2018, 44, 3501–3504. [Google Scholar] [CrossRef]
- Attar, A.S.; Mirdamadi, S.H.; Hajiesmaeilbaigi, F.; Ghamsari, M.S. Growth of TiO2 nanorods by sol-gel template process. J. Mater. Sci. Technol. 2007, 23, 611–613. [Google Scholar]
- Dong, S.; Wang, H.; Gu, L.; Zhou, X.; Liu, Z.; Han, P.; Wang, Y.; Chen, X.; Cui, G.; Chen, L. Rutile TiO2 nanorod arrays directly grown on Ti foil substrates towards lithium-ion micro-batteries. Thin Solid Films 2011, 519, 5978–5982. [Google Scholar] [CrossRef]
- Qin, L.J.; Chen, Q.J.; Lan, R.J.; Jiang, R.Q.; Quan, X.; Xu, B. Effect of Anodization Parameters on Morphology and Photocatalysis Properties of TiO2 Nanotube Arrays. J. Mater. Sci. Technol. 2015, 31, 1059–1064. [Google Scholar] [CrossRef]
- Liu, Z.H.; Su, X.J.; Hou, G.H.; Xiao, Z.; Jia, H.P. Hierarchical TiO2 nanorod array for dye-sensitized solar cells. Mater. Lett. 2012, 89, 309–311. [Google Scholar] [CrossRef]
- Li, M.; Zhang, X.M.; Liu, Y.; Yang, Y. Pr3+ doped biphasic TiO2 (rutile-brookite) nanorod arrays grown on activated carbon fibers: Hydrothermal synthesis and photocatalytic properties. Appl. Surf. Sci. 2018, 440, 1172–1180. [Google Scholar] [CrossRef]
- Barton, I.; Matejec, V.; Matousek, J. Photocatalytic activity of nanostructured TiO2 coating on glass slides and optical fibers for methylene blue or methyl orange decomposition under different light excitation. J. Photochem. Photobiol. A 2016, 317, 72–80. [Google Scholar] [CrossRef]
- Li, W.; Shah, S.I.; Huang, C.P.; Jung, O.; Ni, C. Metallorganic chemical vapor deposition and characterization of TiO2 nanoparticles. Mater. Sci. Eng. B 2002, 96, 247–257. [Google Scholar] [CrossRef]
- Du, J.; Qi, W.Q.; Zuo, J.J.; Li, X.Y.; Gu, X.; Li, K.; Zhang, K.; Gong, C.; Zou, J.G. Hydrophilic TiO2 nanowires prepared on Ti5Si3 layer by chemical vapor deposition. J. Chem. Res. 2017, 5, 304–308. [Google Scholar] [CrossRef]
- Natarajan, T.S.; Lee, J.Y.; Bajaj, H.C.; Jo, W.K.; Tayade, R.J. Synthesis of multiwall carbon nanotubes/TiO2 nanotube composites with enhanced photocatalytic decomposition efficiency. Catal. Today 2017, 282, 13–23. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Du, J.; Li, X.; Liu, Y.; Jiang, C.; Qi, W.; Zhang, K.; Gong, C.; Li, R.; Luo, M.; et al. Highly Hydrophilic TiO2 Nanotubes Network by Alkaline Hydrothermal Method for Photocatalysis Degradation of Methyl Orange. Nanomaterials 2019, 9, 526. https://doi.org/10.3390/nano9040526
Yang J, Du J, Li X, Liu Y, Jiang C, Qi W, Zhang K, Gong C, Li R, Luo M, et al. Highly Hydrophilic TiO2 Nanotubes Network by Alkaline Hydrothermal Method for Photocatalysis Degradation of Methyl Orange. Nanomaterials. 2019; 9(4):526. https://doi.org/10.3390/nano9040526
Chicago/Turabian StyleYang, Jin, Jun Du, Xiuyun Li, Yilin Liu, Chang Jiang, Wenqian Qi, Kai Zhang, Cheng Gong, Rui Li, Mei Luo, and et al. 2019. "Highly Hydrophilic TiO2 Nanotubes Network by Alkaline Hydrothermal Method for Photocatalysis Degradation of Methyl Orange" Nanomaterials 9, no. 4: 526. https://doi.org/10.3390/nano9040526
APA StyleYang, J., Du, J., Li, X., Liu, Y., Jiang, C., Qi, W., Zhang, K., Gong, C., Li, R., Luo, M., & Peng, H. (2019). Highly Hydrophilic TiO2 Nanotubes Network by Alkaline Hydrothermal Method for Photocatalysis Degradation of Methyl Orange. Nanomaterials, 9(4), 526. https://doi.org/10.3390/nano9040526