The Effects of Precursor C2H2 Fraction on Microstructure and Properties of Amorphous Carbon Composite Films Containing Si and Ag Prepared by Magnetron Sputtering Deposition
Abstract
:1. Introduction
2. Experimental Details
2.1. Sample Preparations
2.2. Microstructure Characterizations
2.3. Mechanical and Tribological Characterizations
3. Results and Discussion
3.1. Compositions and Microstructure
3.2. Raman Spectra
3.3. XPS Analyses
3.4. Mechanical and Tribological Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Robertson, J. Diamond-like amorphous carbon. Mater. Sci. Eng. R Rep. 2002, 37, 129–281. [Google Scholar] [CrossRef] [Green Version]
- Bewilogua, K.; Hofmann, D. History of diamond-like carbon films—From first experiments to worldwide applications. Surf. Coat. Technol. 2014, 242, 214–225. [Google Scholar] [CrossRef]
- Cui, J.; Qiang, L.; Zhang, B.; Ling, X.; Yang, T.; Zhang, J. Mechanical and tribological properties of Ti-DLC films with different Ti content by magnetron sputtering technique. Appl. Surf. Sci. 2012, 258, 5025–5030. [Google Scholar] [CrossRef]
- Li, L.; Guo, P.; Liu, L.-L.; Li, X.; Ke, P.; Wang, A. Structural design of Cr/GLC films for high tribological performance in artificial seawater: Cr/GLC ratio and multilayer structure. J. Mater. Sci. Technol. 2018, 34, 1273–1280. [Google Scholar] [CrossRef]
- Huang, J.; Wang, L.; Liu, B.; Wan, S.; Xue, Q. In Vitro Evaluation of the Tribological Response of Mo-Doped Graphite-like Carbon Film in Different Biological Media. ACS Appl. Mater. Interfaces 2015, 7, 2772–2783. [Google Scholar] [CrossRef]
- Baba, K.; Hatada, R.; Flege, S.; Ensinger, W.; Shibata, Y.; Nakashima, J.; Sawase, T.; Morimura, T. Preparation and antibacterial properties of Ag-containing diamond-like carbon films prepared by a combination of magnetron sputtering and plasma source ion implantation. Vacuum 2013, 89, 179–184. [Google Scholar] [CrossRef]
- Dai, W.; Wang, A. Deposition and properties of Al-containing diamond-like carbon films by a hybrid ion beam sources. J. Alloy. Compd. 2011, 509, 4626–4631. [Google Scholar] [CrossRef]
- Chan, Y.-H.; Huang, C.-F.; Ou, K.-L.; Peng, P.-W. Mechanical properties and antibacterial activity of copper doped diamond-like carbon films. Surf. Coat. Technol. 2011, 206, 1037–1040. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, J.; Li, H.; Ji, L.; Ye, Y.; Zhou, H. Preparation and properties of Ag/DLC nanocomposite films fabricated by unbalanced magnetron sputtering. Appl. Surf. Sci. 2013, 284, 165–170. [Google Scholar] [CrossRef]
- Meškinis, Š.; Čiegis, A.; Vasiliauskas, A.; Tamulevičienė, A.; Šlapikas, K.; Juškėnas, R.; Niaura, G.; Tamulevičius, S. Plasmonic properties of silver nanoparticles embedded in diamond like carbon films: Influence of structure and composition. Appl. Surf. Sci. 2014, 317, 1041–1046. [Google Scholar] [CrossRef]
- Meškinis, Š.; Vasiliauskas, A.; Šlapikas, K.; Gudaitis, R.; Andrulevičius, M.; Čiegis, A.; Niaura, G.; Kondrotas, R.; Tamulevičius, S. Bias effects on structure and piezoresistive properties of DLC:Ag thin films. Surf. Coat. Technol. 2014, 255, 84–89. [Google Scholar] [CrossRef]
- Wang, F.; Wang, L.; Xue, Q. Fluorine and sulfur co-doped amorphous carbon films to achieve ultra-low friction under high vacuum. Carbon 2016, 96, 411–420. [Google Scholar] [CrossRef]
- Kong, C.; Guo, P.; Sun, L.; Zhou, Y.; Liang, Y.; Li, X.; Ke, P.; Lee, K.-R.; Wang, A. Tribological mechanism of diamond-like carbon films induced by Ti/Al co-doping. Surf. Coat. Technol. 2018, 342, 167–177. [Google Scholar] [CrossRef]
- Li, X.; Guo, P.; Sun, L.; Zuo, X.; Zhang, D.; Ke, P.; Wang, A. Ti/Al co-doping induced residual stress reduction and bond structure evolution of amorphous carbon films: An experimental and ab initio study. Carbon 2017, 111, 467–475. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, L.; Lu, Z.; Ding, Q.; Wang, S.C.; Wood, R.J.K.; Xue, Q. Tailoring microstructure and phase segregation for low friction carbon-based nanocomposite coatings. J. Mater. Chem. 2012, 22, 15782–15792. [Google Scholar] [CrossRef]
- Sui, X.; Xu, R.; Liu, J.; Zhang, S.; Wu, Y.; Yang, J.; Hao, J. Tailoring the Tribocorrosion and Antifouling Performance of (Cr, Cu)-GLC Coatings for Marine Application. ACS Appl. Mater. Interfaces 2018, 10, 36531–36539. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Li, H.; Ji, L.; Mo, Y.; Quan, W.; Du, W.; Zhou, H.; Chen, J. Superlow friction behavior of Si-doped hydrogenated amorphous carbon film in water environment. Surf. Coat. Technol. 2009, 203, 981–985. [Google Scholar] [CrossRef]
- Zhao, F.; Li, H.X.; Ji, L.; Mo, Y.F.; Quan, W.L.; Zhou, H.D.; Chen, J.M. Structural, mechanical and tribological characterizations of a-C:H:Si films prepared by a hybrid PECVD and sputtering technique. J. Phys. D Appl. Phys. 2009, 42, 165407. [Google Scholar] [CrossRef]
- Liu, X.; Hao, J.; Yang, J.; Zheng, J.; Liang, Y.; Liu, W. Preparation of superior lubricious amorphous carbon films co-doped by silicon and aluminum. J. Appl. Phys. 2011, 110, 053507. [Google Scholar] [CrossRef]
- Laegreid, N.; Wehner, G.K. Sputtering Yields of Metals for Ar+ and Ne+ Ions with Energies from 50 to 600 ev. J. Appl. Phys. 1961, 32, 365–369. [Google Scholar] [CrossRef]
- Singh, S.V.; Zaharia, T.; Creatore, M.; Groenen, R.; Hege, K.V.; Sanden, M.C.M. Hard graphitelike hydrogenated amorphous carbon grown at high rates by a remote plasma. J. Appl. Phys. 2010, 107, 013305. [Google Scholar] [CrossRef]
- Pei, Y.T.; Galvan, D.; De Hosson, J.T.M. Nanostructure and properties of TiC/a-C:H composite coatings. Acta Mater. 2005, 53, 4505–4521. [Google Scholar] [CrossRef]
- Chowdhury, D.; Ghose, D.; Satpati, B. Production of ordered and pure Si nanodots at grazing ion beam sputtering under concurrent substrate rotation. Mater. Sci. Eng. B 2014, 179, 1–5. [Google Scholar] [CrossRef]
- Shan, D.; Ji, Y.; Li, D.; Xu, J.; Qian, M.; Xu, L.; Chen, K. Enhanced carrier mobility in Si nano-crystals via nanoscale phosphorus doping. Appl. Surf. Sci. 2017, 425, 492–496. [Google Scholar] [CrossRef]
- Tamulevičius, S.; Meškinis, Š.; Tamulevičius, T.; Rubahn, H.-G. Diamond like carbon nanocomposites with embedded metallic nanoparticles. Rep. Prog. Phys. 2018, 81, 024501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Siegal, M.P.; Tallant, D.R.; Martinez-Miranda, L.; Barbour, J.C.; Simpson, R.L.; Overmyer, D.L. Nanostructural characterization of amorphous diamondlike carbon films. Phys. Rev. B 2000, 61, 10451. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Ji, L.; Zhao, F.; Liu, X.; Kong, Q.; Wang, Y.; Quan, W.; Zhou, H.; Chen, J. The effect of duty cycle on the microstructure and properties of graphite-like amorphous carbon films prepared by unbalanced magnetron sputtering. J. Phys. D Appl. Phys. 2010, 43, 505401. [Google Scholar] [CrossRef]
- Irmer, G.; Dorner-Reisel, A. Micro-Raman studies on DLC coatings. Adv. Eng. Mater. 2005, 7, 694–705. [Google Scholar] [CrossRef]
- Ong, S.-E.; Zhang, S.; Du, H.; Sun, D. Relationship between bonding structure and mechanical properties of amorphous carbon containing silicon. Diam. Relat. Mater. 2007, 16, 1628–1635. [Google Scholar] [CrossRef]
- Leyland, A.; Matthews, A. On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behaviour. Wear 2000, 246, 1–11. [Google Scholar] [CrossRef]
- Charitidis, C.A. Nanomechanical and nanotribological properties of carbon-based thin films: A review. Int. J. Refract. Met. Hard Mater. 2010, 28, 51–70. [Google Scholar] [CrossRef]
- Musil, J.; Jirout, M. Toughness of hard nanostructured ceramic thin films. Surf. Coat. Technol. 2007, 201, 5148–5152. [Google Scholar] [CrossRef]
- Jiang, J.; Hao, J.; Wang, P.; Liu, W. Superlow friction of titanium/silicon codoped hydrogenated amorphous carbon film in the ambient air. J. Appl. Phys. 2010, 108, 033510. [Google Scholar] [CrossRef]
- Liu, X.; Yang, J.; Hao, J.; Zheng, J.; Gong, Q.; Liu, W. Microstructure, mechanical and tribological properties of Si and Al co-doped hydrogenated amorphous carbon films deposited at various bias voltages. Surf. Coat. Technol. 2012, 206, 4119–4125. [Google Scholar] [CrossRef]
- Grill, A. Tribology of diamondlike carbon and related materials: An updated review. Surf. Coat. Technol. 1997, 94–95, 507–513. [Google Scholar] [CrossRef]
- Yang, S.H.; Kong, H.; Lee, K.-R.; Park, S.; Kim, D.E. Effect of environment on the tribological behavior of Si-incorporated diamond-like carbon films. Wear 2002, 252, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Lanigan, J.L.; Wang, C.; Morina, A.; Neville, A. Repressing oxidative wear within Si doped DLCs. Tribol. Int. 2016, 93, 651–659. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Kato, K.; Adachi, K. Friction and wear properties of CNx/SiC in water lubrication. Tribol. Lett. 2005, 18, 153–163. [Google Scholar] [CrossRef]
Items | Values |
---|---|
Negative bias voltage on substrates | −200 V |
Duty cycle of negative bias voltage | 70% |
Bias frequency of negative bias voltage | 40 kHz |
Working pressure | 0.5 Pa |
Target current | 2.0 A |
Target voltage | 570 V |
Substrate temperature | 60–65 °C (Without heating) |
Deposition duration | 60 min |
C2H2/Ar flow rate ratio | Film 1: 1/6.0 |
Film 2: 1/6.5 | |
Film 3: 1/7.0 | |
Film 4: 1/7.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Hao, J.; Lv, Y.; Cui, X. The Effects of Precursor C2H2 Fraction on Microstructure and Properties of Amorphous Carbon Composite Films Containing Si and Ag Prepared by Magnetron Sputtering Deposition. Nanomaterials 2019, 9, 528. https://doi.org/10.3390/nano9040528
Liu X, Hao J, Lv Y, Cui X. The Effects of Precursor C2H2 Fraction on Microstructure and Properties of Amorphous Carbon Composite Films Containing Si and Ag Prepared by Magnetron Sputtering Deposition. Nanomaterials. 2019; 9(4):528. https://doi.org/10.3390/nano9040528
Chicago/Turabian StyleLiu, Xiaoqiang, Junying Hao, Yongjun Lv, and Xuejun Cui. 2019. "The Effects of Precursor C2H2 Fraction on Microstructure and Properties of Amorphous Carbon Composite Films Containing Si and Ag Prepared by Magnetron Sputtering Deposition" Nanomaterials 9, no. 4: 528. https://doi.org/10.3390/nano9040528
APA StyleLiu, X., Hao, J., Lv, Y., & Cui, X. (2019). The Effects of Precursor C2H2 Fraction on Microstructure and Properties of Amorphous Carbon Composite Films Containing Si and Ag Prepared by Magnetron Sputtering Deposition. Nanomaterials, 9(4), 528. https://doi.org/10.3390/nano9040528