Analysis of the Substrate Effect on the Zero-Backward Scattering Condition of a Cu2O Nanoparticle under Non-Normal Illumination
Abstract
:1. Introduction
2. Theoretical Basis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Krasnok, A.E.; Miroshnichenko, A.E.; Belov, P.A.; Kivshar, Y.S. All-Dielectric Optical Nanoantennas. Opt. Express 2012, 20, 20599–20604. [Google Scholar] [CrossRef]
- Permyakov, D.; Sinev, I.; Markovich, D.; Ginzburg, P.; Samusev, A.; Belov, P.; Valuckas, V.; Kuznetsov, A.I.; Luk’Yanchuk, B.S.; Miroshnichenko, A.E.; et al. Probing magnetic and electric optical responses of silicon nanoparticles. Appl. Phys. Lett. 2015, 106, 171110. [Google Scholar] [CrossRef]
- Sinev, I.; Iorsh, I.; Bogdanov, A.; Permyakov, D.; Komissarenko, F.; Mukhin, I.; Samusev, A.; Valuckas, V.; Kuznetsov, A.I.; Miroshnichenko, A.E.; et al. Polarization control over electric and magnetic dipole resonances of dielectric nanoparticles on metallic films. Laser Photon. Rev. 2016, 10, 799–806. [Google Scholar] [CrossRef]
- Sugimoto, H.; Fujii, M. Colloidal Dispersion of Subquarter Micrometer Silicon Spheres for Low-Loss Antenna in Visible Regime. Adv. Opt. Mater. 2017, 5, 1700332. [Google Scholar] [CrossRef]
- Genevet, P.; Capasso, F.; Aieta, F.; Khorasaninejad, M.; Devlin, R. Recent advances in planar optics: From plasmonic to dielectric metasurfaces. Optica 2017, 4, 139–152. [Google Scholar] [CrossRef]
- García-Cámara, B.; Moreno, F.; Gonzalez, F.; Saiz, J.M.; Videen, G. Light scattering resonances in small particles with electric and magnetic properties. J. Opt. Soc. Am. A 2008, 25, 327–334. [Google Scholar] [CrossRef] [Green Version]
- Miroshnichenko, A.E.; Evlyukhin, A.B.; Yu, Y.F.; Bakker, R.M.; Chipouline, A.; Kuznetsov, A.I.; Luk’Yanchuk, B.; Chichkov, B.N.; Kivshar, Y.S. Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun. 2015, 6, 8069. [Google Scholar] [CrossRef] [Green Version]
- Butakov, N.A.; Schuller, J.A. Designing Multipolar Resonances in Dielectric Metamaterials. Sci. Rep. 2016, 6, 38487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terekhov, P.D.; Baryshnikova, K.V.; Artemyev, Y.A.; Karabchevsky, A.; Shalin, A.S.; Evlyukhin, A.B. Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges. Phys. Rev. B 2017, 96, 035443. [Google Scholar] [CrossRef]
- Poutrina, E.; Urbaś, A. Multipole analysis of unidirectional light scattering from plasmonic dimers. J. Opt. 2014, 16, 114005. [Google Scholar] [CrossRef] [Green Version]
- Babicheva, V.; Petrov, M.; Baryshnikova, K.; Belov, P. Reflection compensation mediated by electric and magnetic resonances of all-dielectric metasurfaces. J. Opt. Soc. Am. B 2015, 34, 18–28. [Google Scholar] [CrossRef]
- Monro, T.M.; Atakaramians, S.; Miroshnichenko, A.E.; Shadrivov, I.V.; Mirzaei, A.; Kivshar, Y.S. Strong Magnetic Response of Optical Nanofibers. ACS Photonics 2016, 3, 972–978. [Google Scholar]
- Evlyukhin, A.B.; Novikov, S.M.; Zywietz, U.; Eriksen, R.L.; Reinhardt, C.; Bozhevolnyi, S.I.; Chichkov, B.N. Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region. Nano Lett. 2012, 12, 3749–3755. [Google Scholar] [CrossRef] [PubMed]
- Sikdar, D.; Cheng, W.; Premaratne, M. Optically resonant magneto-electric cubic nanoantennas for ultra-directional light scattering. J. Appl. Phys. 2015, 117, 083101. [Google Scholar] [CrossRef] [Green Version]
- Staude, I.; Miroshnichenko, A.E.; Decker, M.; Fofang, N.T.; Liu, S.; Gonzales, E.; Dominguez, J.; Luk, T.S.; Neshev, D.N.; Brener, I.; et al. Tailoring Directional Scattering through Magnetic and Electric Resonances in Subwavelength Silicon Nanodisks. ACS Nano 2013, 7, 7824–7832. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Miroshnichenko, A.E.; Neshev, D.N.; Kivshar, Y.S. Broadband Unidirectional Scattering by Magneto-Electric Core–Shell Nanoparticles. ACS Nano 2012, 6, 5489–5497. [Google Scholar] [CrossRef]
- Shen, F.; An, N.; Tao, Y.; Zhou, H.; Jiang, Z.; Guo, Z. Anomalous forward scattering of gain-assisted dielectric shell-coated metallic core spherical particles. Nanophotonics 2017, 6, 1063–1072. [Google Scholar] [CrossRef]
- Barreda, Á.I.; Gutiérrez, Y.; Sanz, J.M.; González, F.; Moreno, F. Light guiding and switching using eccentric core-shell geometries. Sci. Rep. 2017, 7, 11189. [Google Scholar] [CrossRef]
- Liu, W.; Miroshnichenko, A.E.; Oulton, R.F.; Neshev, D.N.; Hess, O.; Kivshar, Y.S. Scattering of core-shell nanowires with the interference of electric and magnetic resonances. Opt. Lett. 2013, 38, 2621. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Schouten, H.F.; Visser, T.D. Strong suppression of forward or backward Mie scattering by using spatial coherence. J. Opt. Soc. Am. A 2016, 33, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Geffrin, J.-M.; García-Cámara, B.; Gómez-Medina, R.; Froufe-Pérez, L.; Eyraud, C.; Litman, A.; Vaillon, R.; Nieto-Vesperinas, M.; Moreno, F.; Albella, P.; et al. Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nat. Commun. 2012, 3, 1171. [Google Scholar] [CrossRef] [Green Version]
- Liu, W. Ultra-directional super-scattering of homogenous spherical particles with radial anisotropy. Opt. Express 2015, 23, 14734. [Google Scholar] [CrossRef]
- García-Cámara, B.; Moreno, F.; Gonzalez, F.; Martin, O.J.F. Light scattering by an array of electric and magnetic nanoparticles. Opt. Express 2010, 18, 10001–10015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Cámara, B.; De La Osa, R.A.; Saiz, J.M.; Gonzalez, F.; Moreno, F. Directionality in scattering by nanoparticles: Kerker’s null-scattering conditions revisited. Opt. Lett. 2011, 36, 728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Cámara, B.; Gonzalez, F.; Moreno, F.; Saiz, J.M. Exception for the zero-forward-scattering theory. J. Opt. Soc. Am. A 2008, 25, 2875–2878. [Google Scholar] [CrossRef]
- Li, Y.; Wan, M.; Wu, W.; Chen, Z.; Zhan, P.; Wang, Z. Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles. Sci. Rep. 2015, 5, 12491. [Google Scholar] [CrossRef] [Green Version]
- Kerker, M.; Wang, D.-S.; Giles, C.L. Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am. 1983, 73, 765. [Google Scholar] [CrossRef]
- Fu, Y.H.; Kuznetsov, A.I.; Yu, Y.F.; Luk’Yanchuk, B.; Miroshnichenko, A.E. Directional visible light scattering by silicon nanoparticles. Nat. Commun. 2013, 4, 1527. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.-M.; Tan, W.; Wang, Z.-G. Anomalous forward scattering of dielectric gain nanoparticles. Opt. Express 2015, 23, 2091–2100. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Nieto-Vesperinas, M.; Sáenz, J.J. Dielectric spheres with maximum forward scattering and zero backscattering: A search for their material composition. J. Opt. 2013, 17, 105612. [Google Scholar] [CrossRef]
- Person, S.; Jain, M.; Lapin, Z.; Sáenz, J.J.; Wicks, G.; Novotny, L. Demonstration of Zero Optical Backscattering from Single Nanoparticles. Nano Lett. 2013, 13, 1806–1809. [Google Scholar] [CrossRef] [PubMed]
- Algorri, J.F.; García-Cámara, B.; Cuadrado, A.; Sánchez-Pena, J.M.; Vergaz, R. Selective Dielectric Metasurfaces Based on Directional Conditions of Silicon Nanopillars. Nanomaterials 2017, 7, 177. [Google Scholar] [CrossRef]
- García-Cámara, B.; Algorri, J.F.; Cuadrado, A.; Urruchi, V.; Sanchez-Pena, J.M.; Serna, R.; Vergaz, R. All-Optical Nanometric Switch Based on the Directional Scattering of Semiconductor Nanoparticles. J. Phys. Chem. C 2015, 119, 19558–19564. [Google Scholar] [CrossRef] [Green Version]
- García-Cámara, B.; Gómez-Medina, R.; Sáenz, J.J.; Sepúlveda, B. Sensing with magnetic dipolar resonances in semiconductor nanospheres. Opt. Express 2013, 21, 23007–23020. [Google Scholar] [CrossRef]
- Optical Data from Sopra SA. Available online: http://www.sspectra.com/sopra.html (accessed on 22 December 2018).
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; Wiley: New York, NY, USA, 1983. [Google Scholar]
- Zhang, D.-F.; Zhang, H.; Guo, L.; Zheng, K.; Han, X.-D.; Zhang, Z. Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability. J. Mater. Chem. 2009, 19, 5220–5225. [Google Scholar] [CrossRef]
- Rakhshani, A.E.; Youssef, Y.A.; Abu-Zeid, M.E.; Al-Jassar, A.A.; Abu-Zeid, M.E.; Al-Jassar, A.A. Determination of the Thickness and Refractive Index of Cu2O Thin Film Using Thermal and Optical Interferometry. Phys. Status Solidi A 1986, 93, 613–620. [Google Scholar]
- Zhang, S.; Jiang, R.; Xie, Y.-M.; Ruan, Q.; Yang, B.; Wang, J.; Lin, H.-Q. Colloidal Moderate-Refractive-Index Cu2O Nanospheres as Visible-Region Nanoantennas with Electromagnetic Resonance and Directional Light-Scattering Properties. Adv. Mater. 2015, 27, 7432–7439. [Google Scholar] [CrossRef] [PubMed]
- Neuman, T.; Alonso-González, P.; Garcia-Etxarri, A.; Schnell, M.; Hillenbrand, R.; Aizpurua, J. Mapping the near fields of plasmonic nanoantennas by scattering-type scanning near-field optical microscopy. Laser Photon. Rev. 2015, 9, 637–649. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Etxarri, A.; Romero, I.; De Abajo, F.J.G.; Hillenbrand, R.; Aizpurua, J. Influence of the tip in near-field imaging of nanoparticle plasmonic modes: Weak and strong coupling regimes. Phys. Rev. B 2009, 79, 1–5. [Google Scholar] [CrossRef]
- Alonso-González, P.; Albella, P.; Schnell, M.; Chen, J.; Huth, F.; García-Etxarri, A.; Casanova, F.; Golmar, F.; Arzubiaga, L.; Hueso, L.; et al. Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots. Nat. Commun. 2012, 3, 684. [Google Scholar] [CrossRef] [Green Version]
- Schnell, M.; García-Etxarri, A.; Alkorta, J.; Aizpurua, J.; Hillenbrand, R. Phase-Resolved Mapping of the Near-Field Vector and Polarization State in Nanoscale Antenna Gaps. Nano Lett. 2010, 10, 3524–3528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habteyes, T.G.; Chong, K.E.; Dominguez, J.; Brener, I.; Staude, I.; Decker, M.; Miroshnichenko, A.; Kivshar, Y. Near-Field Mapping of Optical Modes on All-Dielectric Silicon Nanodisks. ACS Photonics 2014, 1, 794–798. [Google Scholar] [CrossRef] [Green Version]
- Barreda, Á.I.; Saleh, H.; Litman, A.; Gonzalez, F.; Geffrin, J.-M.; Moreno, F. On the scattering directionality of a dielectric particle dimer of High Refractive Index. Sci. Rep. 2018, 8, 7976. [Google Scholar] [CrossRef] [PubMed]
- Barreda, Á.I.; Gutiérrez, Y.; Sanz, J.M.; González, F.; Moreno, F. Polarimetric response of magnetodielectric core–shell nanoparticles: An analysis of scattering directionality and sensing. Nanotechnology 2016, 27, 234002. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, K.; Habib, M.; Huang, L.; Garcia-Camara, B. Analysis of the Substrate Effect on the Zero-Backward Scattering Condition of a Cu2O Nanoparticle under Non-Normal Illumination. Nanomaterials 2019, 9, 536. https://doi.org/10.3390/nano9040536
Ullah K, Habib M, Huang L, Garcia-Camara B. Analysis of the Substrate Effect on the Zero-Backward Scattering Condition of a Cu2O Nanoparticle under Non-Normal Illumination. Nanomaterials. 2019; 9(4):536. https://doi.org/10.3390/nano9040536
Chicago/Turabian StyleUllah, Kaleem, Muhammad Habib, Lujun Huang, and Braulio Garcia-Camara. 2019. "Analysis of the Substrate Effect on the Zero-Backward Scattering Condition of a Cu2O Nanoparticle under Non-Normal Illumination" Nanomaterials 9, no. 4: 536. https://doi.org/10.3390/nano9040536
APA StyleUllah, K., Habib, M., Huang, L., & Garcia-Camara, B. (2019). Analysis of the Substrate Effect on the Zero-Backward Scattering Condition of a Cu2O Nanoparticle under Non-Normal Illumination. Nanomaterials, 9(4), 536. https://doi.org/10.3390/nano9040536