Nonlinear Optical Response of Graphene Oxide Langmuir-Blodgett Film as Saturable Absorbers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of GO SAs
2.3. Characterization of GO SAs
2.4. Laser Cavity
3. Results and Discussion
3.1. Characterization of LB-GO SAs Film
3.2. Nonlinear Optical Characteristics of LB-GO SA
3.3. LB-GO Q-Switched Laser
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Goldsmith, B.R.; Mitala, J.J.; Josue, J.; Castro, A.; Lerner, M.B.; Bayburt, T.H.; Khamis, S.M.; Jones, R.A.; Brand, J.G.; Sligar, S.G.; et al. Biomimetic chemical sensors using nanoelectronic readout of olfactory receptor proteins. ACS Nano 2017, 5, 5408–5416. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Wang, Z.L. Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nat. Rev. Mater. 2016, 24, 23–24. [Google Scholar] [CrossRef]
- Nie, W.J.; Zhang, Y.X.; Yu, H.H.; Li, R.; He, R.Y.; Dong, N.N.; Wang, J.; Hübner, R.; Böttger, R.; Zhou, S.Q.; et al. Plasmonic nanoparticles embedded in single crystals synthesized by gold ion implantation for enhanced optical nonlinearity and efficient Q-switched lasing. Nanoscale 2018, 10, 4228–4236. [Google Scholar] [CrossRef] [PubMed]
- Seh, Z.W.; Kibsgaard, J.; Dickens, C.F.; Chorkendorff, I.; Nørskov, J.K.; Jaramillo, T.F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998. [Google Scholar] [CrossRef]
- Christensen, B.T.R.; Henriksen, M.R.; Schaffer, S.A.; Westergaard, P.G.; Tieri, D.; Ye, J.; Holland, M.J.; Thomsen, J.W. Nonlinear spectroscopy of Sr atoms in an optical cavity for laser stabilization. Phys. Rev. A 2015, 92, 053820. [Google Scholar] [CrossRef]
- Luu, T.T.; Garg, M.; Kruchinin, S.Y.; Moulet, A.; Hassan, M.T.; Goulielmakis, E. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 2015, 521, 498–502. [Google Scholar] [CrossRef] [PubMed]
- Ahmadivand, A.; Semmlinger, M.; Dong, L.L.; Gerislioglu, B.; Nordlander, P.; Halas, N.J. Toroidal Dipole-Enhanced Third Harmonic Generation of Deep Ultraviolet Light Using Plasmonic Meta-atoms. Nano Lett. 2019, 19, 605–611. [Google Scholar] [CrossRef]
- Chen, Z.D.; Wang, H.Y.; Wang, Y.G.; Lv, R.D.; Yang, X.Y.; Wang, J.; Li, L.; Ren, W. Improved optical damage threshold graphene Oxide/SiO2 absorber fabricated by sol-gel technique for mode-locked erbium-doped fiber Lasers. Carbon 2019, 144, 737–744. [Google Scholar] [CrossRef]
- Kim, J.; Kim, K.S.; Ryu, S.Y.; Kim, S. Degradation of optical properties of a film-type single-wall carbon nanotubes saturable absorber (SWNT-SA) with an Er-doped all-fiber laser. Opt. Express 2012, 20, 12966–12974. [Google Scholar]
- Lv, R.D.; Chen, Z.D.; Liu, S.C.; Wang, J.; Li, Y.F.; Wang, Y.G.; Wang, Y.S. Optical properties and applications of molybdenum disulfide/SiO2 saturable absorber fabricated by sol-del technique. Opt. Express 2019, 27, 6348–6356. [Google Scholar] [CrossRef]
- Song, S.J.; Shin, Y.C.; Lee, H.U.; Kim, B.; Han, D.W.; Lim, D. Dose-and Time-Dependent Cytotoxicity of Layered Black Phosphorus in Fibroblastic Cells. Nanomaterials 2018, 8, 408. [Google Scholar] [CrossRef]
- Jiang, G.; Miao, L.; Yi, J.; Huang, B.; Peng, W.; Zou, Y.; Huang, H.; Hu, W.; Zhao, C.; Wen, S. Ultrafast pulse generation from erbium-doped fifiber laser modulated by hybrid organic-inorganic halide perovskites. Appl. Phys. Lett. 2017, 110, 842. [Google Scholar] [CrossRef]
- Jhon, Y.I.; Koo, J.; Anasori, B.; Seo, M.; Lee, J.H.; Gogotsi, Y.; Jhon, Y.M. Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers. Adv. Mater. 2017, 29, 1702496. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lv, R.D.; Wang, J.; Chen, Z.D.; Wang, H.Z.; Liu, S.C.; Ren, W.; Liu, W.J.; Wang, Y.G. Optical Nonlinearity of ZrS2 and Applications in Fiber Laser. Nanomaterials 2019, 9, 315. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.G.; Chen, H.R.; Wen, X.M.; Hsieh, W.F.; Tang, J. A highly efficient graphene oxide absorber for Q-switched Nd:GdVO4 lasers. Nanotechnology 2011, 22, 455203. [Google Scholar] [CrossRef]
- Sirota, M.; Galun, E.; Sashchiuk, A.; Krupkin, V.; Glushko, A.; Lifshitz, E. IV-VI semiconductor nanocrystals for passive Q-switching of eye-safe laser. Proc. SPIE Int. Soc. Opt. Eng. 2003, 4970, 53–60. [Google Scholar]
- Luo, Z.Q.; Zhou, M.; Weng, J.; Huang, G.M.; Xu, H.Y.; Ye, C.C.; Cai, Z.P. Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser. Opt. Lett. 2010, 35, 3709–3711. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.T.; Chen, Y.; Zhao, C.J.; Zhang, H.; Wen, S.C. Switchable Dual-Wavelength Synchronously Q-Switched Erbium-Doped Fiber Laser Based on Graphene Saturable Absorber. IEEE Photonics J. 2012, 4, 869–876. [Google Scholar] [CrossRef]
- Li, L.; Jiang, S.Z.; Wang, Y.G.; Duan, L.N.; Mao, D.; Li, Z.; Man, B.Y.; Si, J.H. WS2/fluorine mica (FM) saturable absorbers for all-normal-dispersion mode-locked fiber laser. Opt. Express 2015, 23, 28698–28706. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Y.G.; Gu, Y.Z.; Li, L.; Wang, J.; Yang, X.G.; Chen, Z.D. Titanium Dioxide Langmuir–Blodgett Film Saturable Absorber for Passively Q-switched Nd:GdVO4 Laser. IEEE Photonics J. 2019, 11, 1501110. [Google Scholar] [CrossRef]
- Deng, S.; Berry, V. Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications. Mater. Today 2016, 19, 197–212. [Google Scholar] [CrossRef]
- Luo, E.; Heun, S.; Kennedy, M.; Wollschläger, J.; Henzler, M. Surface roughness and conductivity of thin Ag films. Phys. Rev. B Condens. Matter Mater. Phys. 1994, 49, 4858. [Google Scholar] [CrossRef]
- Chen, S.; Li, Q.; Zhang, Q.; Qu, Y.; Ji, H.; Ruoff, R.S.; Cai, W. Thermal conductivity measurements of suspended graphene with and without wrinkles by micro-Raman mapping. Nanotechnology 2012, 23, 365701. [Google Scholar] [CrossRef]
- Silverberg, G.J.; Mcclelland, A.A.; Griesse-Nascimento, S.; Girabawe, C.; Kadow, J.P.; Mahadevan, L.; Vecitis, C.D. Controlling the Roughness of Langmuir-Blodgett Monolayers. J. Phys. Chem. B 2017, 121, 5078–5085. [Google Scholar] [CrossRef] [PubMed]
- Kong, B.S.; Geng, J.; Jung, H.T. Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions. Chem. Commun. 2009, 16, 2174–2176. [Google Scholar] [CrossRef]
- Arco, L.G.D.; Zhang, Y.; Schlenker, C.W.; Ru, K.; Thompson, M.E.; Zhou, C.W. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics. ACS Nano 2010, 4, 2865–2873. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, G.; Hedhili, M.N.; Zhang, H.G.; Wang, P. Three-dimensional assemblies of graphene prepared by a novel chemical reduction-induced self-assembly method. Nanoscale 2012, 4, 7038–7045. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 1917, 39, 1848–1906. [Google Scholar] [CrossRef]
- Blodgett, K.B. Films Built by Depositing Successive Monomolecular Layers on a Solid Surface. J. Am. Chem. Soc. 1935, 57, 1007–1022. [Google Scholar] [CrossRef]
- Mishra, R.; Nirala, N.R.; Pandey, R.K.; Ojha, R.P.; Prakash, R. Homogenous dispersion of MoS2 nanosheets in polyindole matrix at air-water interface assisted by Langmuir technique. Langmuir 2017, 33, 13572–13580. [Google Scholar] [CrossRef]
- Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R.; Sun, Y.; Xia, Y.; Yang, P. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 2003, 3, 1229–1233. [Google Scholar] [CrossRef]
- Zheng, Q.; Lin, X.H.; Yousefi, N.; Yeung, K.K.; Li, Z.; Kim, J.K. Transparent conductive films consisting of ultralarge graphene sheets produced by Langmuir-Blodgett assembly. ACS Nano 2011, 5, 6039–6051. [Google Scholar] [CrossRef]
- Azad, I.; Ram, M.K.; Goswami, D.Y.; Stefanakos, E. Fabrication and characterization of ZnO Langmuir–Blodgett film and its use in metal–insulator–metal tunnel diode. Langmuir 2016, 32, 8307–8314. [Google Scholar] [CrossRef]
- Bonaccorso, F.; Sun, Z. Solution processing of graphene, topological insulators and other 2d crystals for ultrafast photonics. Opt. Mater. Express 2014, 4, 63–78. [Google Scholar] [CrossRef]
- Wang, K.; Wang, J.; Fan, J.; Lotya, M.; O’Neill, A.; Fox, D.; Feng, Y.; Zhang, X.; Jiang, B.; Zhao, Q.; et al. Ultrafast Saturable Absorption of Two-Dimensional MoS2 Nanosheets. ACS Nano 2013, 7, 9260–9267. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.B.; Miao, L.L.; Guo, Z.N.; Qi, X.; Zhao, C.J.; Zhang, H.; Wen, S.C.; Tang, D.Y.; Fan, D.Y. Broadband nonlinear optical response in multi-layer black phosphorus: An emerging infrared and mid-infrared optical material. Opt. Express 2015, 23, 11183–11194. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Xing, C.; Huang, W.; Fan, T.; Li, Z.; Zhao, J.; Xiang, Y.; Guo, Z.; Li, J.; Yang, Z.; et al. Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability. Adv. Funct. Mater. 2018, 28, 1705833. [Google Scholar] [CrossRef]
- Pandey, R.K.; Upadhyay, C.; Prakash, R. Pressure dependent surface morphology and Raman studies of semicrystalline poly (indole-5-carboxylic acid) by the Langmuir–Blodgett technique. RSC Adv. 2013, 3, 15712–15718. [Google Scholar] [CrossRef]
- Mishra, R.; Pandey, R.K.; Upadhyay, C.; Prakash, R. Self-Assembly of Solution-Processable Polyindole via Langmuir-Blodgett Technique: An Insight to Layer-Dependent Charge Transport and Electronic Parameters. ChemistrySelect 2017, 2, 6009–6015. [Google Scholar] [CrossRef]
- Kostiuk, D.; Bodik, M.; Siffalovic, P.; Matej, J.; Halahovets, Y.; Hodas, M.; Pelach, M.; Hulman, M.; Spitalsky, Z.; Omastova, M.; et al. Reliable determination of the few-layer graphene oxide thickness using Raman spectroscopy. J. Raman Spectrosc. 2016, 47, 391–394. [Google Scholar] [CrossRef]
- Sun, Y.J.; Tu, C.Y.; You, Z.Y.; Liao, J.H.; Wang, Y.Q.; Xu, J.L. One-dimensional Bi2Te3 nanowire based broadband saturable absorber for passively Q-switched Yb-doped and Er-doped solid state lasers. Opt. Mater. Express 2018, 8, 165–174. [Google Scholar] [CrossRef]
- Hu, M.T.; Liu, J.H.; Tian, J.R.; Dou, Z.Y.; Song, Y.R. Generation of Q-switched pulse by Bi2Se3 topological insulator in Yb:KGW laser. Laser Phys. Lett. 2014, 11, 115806. [Google Scholar] [CrossRef]
- Li, X.; Xu, J.; Wu, Y.; He, J.; Hao, X. Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser. Opt. Express 2011, 19, 9950–9955. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Chen, X.; Zhang, H.; Hu, X.; Wang, Z.; Wang, J.; Zhuang, S.; Jiang, M. Large energy pulse generation modulated by graphene epitaxially grown on silicon carbide. ACS Nano 2010, 4, 7582–7586. [Google Scholar] [CrossRef] [PubMed]
- Lou, F.; Zhao, R.; He, J.; Jia, Z.; Su, X.; Wang, Z.; Hou, J.; Zhang, B. Nanosecond-pulsed, dual-wavelength, passively Q-switched ytterbium-doped bulk laser based on few-layer MoS2 saturable absorber. Photonics Res. 2015, 3, A25–A29. [Google Scholar] [CrossRef]
- Xu, B.; Cheng, Y.J.; Wang, Y.; Huang, Y.Z.; Peng, J.; Luo, Z.Q.; Xu, H.Y.; Cai, Z.P.; Weng, J.; Moncorgé, R. Passively Q-switched Nd:YAlO3 nanosecond laser using MoS2 as saturable absorber. Opt. Express 2014, 22, 28934–28940. [Google Scholar] [CrossRef]
- Men, S.J.; Liu, Z.J.; Zhang, X.Y.; Wang, Q.P.; Shen, H.B.; Bai, F.; Gao, L.; Xu, X.G.; Wei, R.S.; Chen, X.F. A graphene passively Q-switched Nd:YAG ceramic laser at 1123 nm. Laser Phys. Lett. 2013, 10, 035803. [Google Scholar] [CrossRef]
SA Type | Laser Type | Η (%) | Λ (nm) | Τ (ns) | P (W) | E (µJ) | Frep (kHz) | Ref. |
---|---|---|---|---|---|---|---|---|
Bi2Te3 | Yb:GAB | 24.7 | 1064 | 303 | 0.213 | 1.2 | 178.2 | [41] |
Bi2Te3 | Yb:KGW | 8.8 | 1041 | 1600 | 0.439 | 2.64 | 166.7 | [42] |
Graphene | Nd:GdVO4 | 37 | 1063 | 105 | 2.3 | 3.2 | 704 | [43] |
Graphene | Nd:YAG | - | 1064 | 161 | 0.105 | 0.159 | 660 | [44] |
MoS2 | Yb:LGGG | 24 | 1025.2 | 182 | 0.6 | 1.8 | 333 | [45] |
MoS2 | Nd:YAlO3 | 38.4 | 1079.5 | 227 | 0.26 | 1.11 | 232.5 | [46] |
GO | Nd:GdVO4 | 17 | 1064 | 104 | 1.22 | 2 | 600 | [15] |
Graphene | Nd:YAG | 7.8 | 1123 | 875.7 | 0.332 | - | 46.8 | [47] |
GO-22 | Nd:YAG | 40.7 | 1064 | 202 | 1.03 | 0.89 | 1160 | Our work |
GO-38 | Nd:YAG | 43.7 | 1064 | 156 | 1.313 | 1.04 | 1256 | Our work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wang, Y.; Wang, T.; Li, G.; Lou, R.; Cheng, G.; Bai, J. Nonlinear Optical Response of Graphene Oxide Langmuir-Blodgett Film as Saturable Absorbers. Nanomaterials 2019, 9, 640. https://doi.org/10.3390/nano9040640
Wang J, Wang Y, Wang T, Li G, Lou R, Cheng G, Bai J. Nonlinear Optical Response of Graphene Oxide Langmuir-Blodgett Film as Saturable Absorbers. Nanomaterials. 2019; 9(4):640. https://doi.org/10.3390/nano9040640
Chicago/Turabian StyleWang, Jiang, Yonggang Wang, Taijin Wang, Guangying Li, Rui Lou, Guanghua Cheng, and Jing Bai. 2019. "Nonlinear Optical Response of Graphene Oxide Langmuir-Blodgett Film as Saturable Absorbers" Nanomaterials 9, no. 4: 640. https://doi.org/10.3390/nano9040640
APA StyleWang, J., Wang, Y., Wang, T., Li, G., Lou, R., Cheng, G., & Bai, J. (2019). Nonlinear Optical Response of Graphene Oxide Langmuir-Blodgett Film as Saturable Absorbers. Nanomaterials, 9(4), 640. https://doi.org/10.3390/nano9040640