Guided Mode Resonance Sensors with Optimized Figure of Merit
Abstract
:1. Introduction
2. Analytical Model for GMR Sensors
3. Simulation Results and Analysis
3.1. Angular Shift Detection Scheme for “Grating–Waveguide” GMR Sensors
3.2. Wavelength Shift Detection Scheme for “Grating–Waveguide” GMR Sensors
3.3. Optimized FOM for “Waveguide–Grating” GMR Sensors
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sharon, A.; Rosenblatt, D.; Friesem, A.A.; Weber, H.G.; Engel, H.; Steingrueber, R. Light modulation with resonant grating-waveguide structures. Opt. Lett. 1996, 21, 1564–1566. [Google Scholar] [CrossRef]
- Liu, Z.S.; Magnusson, R. Concept of multiorder multimode resonant optical filters. IEEE Photonics Technol. Lett. 2002, 14, 1091–1093. [Google Scholar] [CrossRef]
- Quaranta, G.; Basset, G.; Martin, O.J.F.; Gallinet, B. Recent Advances in Resonant Waveguide Gratings. Laser Photonics Rev. 2018, 12, 1800017. [Google Scholar] [CrossRef]
- Wawro, D.; Tibuleac, S.; Magnusson, R. Optical waveguide-mode resonant biosensors. In Optical Imaging Sensors and Systems for Homeland Security Applications; Javidi, B., Ed.; Springer: New York, NY, USA, 2006; pp. 367–384. [Google Scholar]
- Magnusson, R.; Wang, S.S. New Principle for Optical Filters. Appl. Phys. Lett. 1992, 61, 1022–1024. [Google Scholar] [CrossRef]
- Cunningham, B.; Li, P.; Lin, B.; Pepper, J. Colorimetric resonant reflection as a direct biochemical assay technique. Sens. Actuators B-Chem. 2002, 81, 316–328. [Google Scholar] [CrossRef]
- Cunningham, B.; Lin, B.; Qiu, J.; Li, P.; Pepper, J.; Hugh, B. A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions. Sens. Actuators B-Chem. 2002, 85, 219–226. [Google Scholar] [CrossRef]
- Block, I.D.; Chan, L.L.; Cunningham, B.T. Photonic crystal optical biosensor incorporating structured low-index porous dielectric. Sensor Actuators B-Chem. 2006, 120, 187–193. [Google Scholar] [CrossRef]
- Zhang, W.; Ganesh, N.; Block, I.D.; Cunningham, B.T. High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area. Sens. Actuators B-Chem. 2008, 131, 279–284. [Google Scholar] [CrossRef]
- Shafiee, H.; Lidstone, E.A.; Jahangir, M.; Inci, F.; Hanhauser, E.; Henrich, T.J.; Kuritzkes, D.R.; Cunningham, B.T.; Demirci, U. Nanostructured Optical Photonic Crystal Biosensor for HIV Viral Load Measurement. Sci. Rep. 2014, 4, 4116. [Google Scholar] [CrossRef] [Green Version]
- Tu, Y.K.; Tsai, M.Z.; Lee, I.C.; Hsu, H.Y.; Huang, C.S. Integration of a guided-mode resonance filter with microposts for in-cell protein detection. Analyst 2016, 141, 4189–4195. [Google Scholar] [CrossRef] [Green Version]
- Tsai, M.Z.; Hsiung, C.T.; Chen, Y.; Huang, C.S.; Hsu, H.Y.; Hsieh, P.Y. Real-time CRP detection from whole blood using micropost-embedded microfluidic chip incorporated with label-free biosensor. Analyst 2018, 143, 503–510. [Google Scholar] [CrossRef]
- Cunningham, B.T.; Zhang, M.; Zhuo, Y.; Kwon, L.; Race, C. Recent Advances in Biosensing With Photonic Crystal Surfaces: A Review. IEEE Sens. J. 2016, 16, 3349–3366. [Google Scholar] [CrossRef]
- Ku, Y.F.; Li, H.Y.; Hsieh, W.H.; Chau, L.K.; Chang, G.E. Enhanced sensitivity in injection-molded guided-mode-resonance sensors via low-index cavity layers. Opt. Express 2015, 23, 14850–14859. [Google Scholar] [CrossRef]
- Wan, Y.H.; Krueger, N.A.; Ocier, C.R.; Su, P.; Braun, P.V.; Cunningham, B.T. Resonant Mode Engineering of Photonic Crystal Sensors Clad with Ultralow Refractive Index Porous Silicon Dioxide. Adv. Opt. Mater. 2017, 5, 1700605. [Google Scholar] [CrossRef]
- Hermannsson, P.G.; Sorensen, K.T.; Vannahme, C.; Smith, C.L.C.; Klein, J.J.; Russew, M.M.; Grutzner, G.; Kristensen, A. All-polymer photonic crystal slab sensor. Opt. Express 2015, 23, 16529–16539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.F.; Wang, C.M.; Ding, T.J.; Tsai, Y.L.; Yang, T.H.; Chen, W.Y.; Chang, J.Y. Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution. Opt. Express 2012, 20, 14584–14595. [Google Scholar] [CrossRef] [PubMed]
- Mizutani, A.; Urakawa, S.; Kikuta, H. Highly sensitive refractive index sensor using a resonant grating waveguide on a metal substrate. Appl. Opt. 2015, 54, 4161–4166. [Google Scholar] [CrossRef]
- Sader, E.; Sayyed-Ahmad, A. Design of an optical water pollution sensor using a single-layer guided-mode resonance filter. Photonic Sens. 2013, 3, 224–230. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Weiss, S.M. Guided mode biosensor based on grating coupled porous silicon waveguide. Opt. Express 2011, 19, 11330–11339. [Google Scholar] [CrossRef]
- Li, H.Y.; Hsu, W.C.; Liu, K.C.; Chen, Y.L.; Chau, L.K.; Hsieh, S.; Hsieh, W.H. A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities. Sens. Actuators B-Chem. 2015, 206, 371–380. [Google Scholar] [CrossRef]
- Nazirizadeh, Y.; Bog, U.; Sekula, S.; Mappes, T.; Lemmer, U.; Gerken, M. Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers. Opt. Express 2010, 18, 19120–19128. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.C.; Hsieh, W.H.; Chau, L.K.; Chang, G.E. Intensity-detection-based guided-mode-resonance optofluidic biosensing system for rapid, low-cost, label-free detection. Sens. Actuators B-Chem. 2017, 250, 659–666. [Google Scholar] [CrossRef]
- Jahns, S.; Brau, M.; Meyer, B.O.; Karrock, T.; Gutekunst, S.B.; Blohm, L.; Selhuber-Unkel, C.; Buhmann, R.; Nazirizadeh, Y.; Gerken, M. Handheld imaging photonic crystal biosensor for multiplexed, label-free protein detection. Biomed. Opt. Express 2015, 6, 3724–3736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takashima, Y.; Haraguchi, M.; Naoi, Y. High-sensitivity refractive index sensor with normal incident geometry using a subwavelength grating operating near the ultraviolet wavelength. Sens. Actuators B-Chem. 2018, 255, 1711–1715. [Google Scholar] [CrossRef]
- Magnusson, R.; Lee, K.J.; Wawro, D. Guided-mode resonance biosensors employing phase detection. In Proceedings of the Diffractive Optics and Micro-Optics, Rochester, NY, USA, 10–13 October 2004; pp. 52–57. [Google Scholar]
- Kuo, W.K.; Huang, N.C.; Weng, H.P.; Yu, H.H. Tunable phase detection sensitivity of transmitted-type guided-mode resonance sensor in a heterodyne interferometer. Opt. Express 2014, 22, 22968–22973. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, P.K.; Sarkar, S.; Joseph, J. High sensitivity guided-mode-resonance optical sensor employing phase detection. Sci. Rep. 2017, 7, 7607. [Google Scholar] [CrossRef] [PubMed]
- Kuo, W.K.; Syu, S.H.; Lin, P.Z.; Yu, H.H. Tunable sensitivity phase detection of transmitted-type dual-channel guided-mode resonance sensor based on phase-shift interferometry. Appl. Opt. 2016, 55, 903–907. [Google Scholar] [CrossRef] [PubMed]
- Boonruang, S.; Mohammed, W.S. Multiwavelength guided mode resonance sensor array. Appl. Phys. Express 2015, 8, 092004. [Google Scholar] [CrossRef]
- Wang, Z.S.; Sang, T.; Zhu, J.T.; Wang, L.; Wu, Y.G.; Chen, L.Y. Double-layer resonant Brewster filters consisting of a homogeneous layer and a grating with equal refractive index. Appl. Phys. Lett. 2006, 89, 241119. [Google Scholar] [CrossRef]
- El Beheiry, M.; Liu, V.; Fan, S.H.; Levi, O. Sensitivity enhancement in photonic crystal slab biosensors. Opt. Express 2010, 18, 22702–22714. [Google Scholar] [CrossRef] [PubMed]
- Szeghalmi, A.; Kley, E.B.; Knez, M. Theoretical and Experimental Analysis of the Sensitivity of Guided Mode Resonance Sensors. J. Phys. Chem. C 2010, 114, 21150–21157. [Google Scholar] [CrossRef]
- Sang, T.; Wang, Z.S.; Zhu, J.T.; Wang, L.; Wu, Y.G.; Chen, L.Y. Linewidth properties of double-layer surfacerelief resonant Brewster filters with equal refractive index. Opt. Express 2007, 15, 9659–9665. [Google Scholar] [CrossRef]
- Lin, S.F.; Wang, C.M.; Tsai, Y.L.; Ding, T.J.; Yang, T.H.; Chen, W.Y.; Yeh, S.F.; Chang, J.Y. A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors. Sens. Actuators B-Chem. 2013, 176, 1197–1203. [Google Scholar] [CrossRef]
- Ju, J.; Han, Y.A.; Kim, S.M. Design Optimization of Structural Parameters for Highly Sensitive Photonic Crystal Label-Free Biosensors. Sensors 2013, 13, 3232–3241. [Google Scholar] [CrossRef]
- Lu, H.; Huang, M.; Kang, X.B.; Liu, W.X.; Dong, C.; Zhang, J.; Xia, S.Q.; Zhang, X.Z. Improving the sensitivity of compound waveguide grating biosensor via modulated wavevector. Appl. Phys. Express 2018, 11, 082202. [Google Scholar] [CrossRef]
- Zhang, M.; Lu, M.; Ge, C.; Cunningham, B.T. Plasmonic external cavity laser refractometric sensor. Opt. Express 2014, 22, 20347–20357. [Google Scholar] [CrossRef] [Green Version]
- Pitruzzello, G.; Krauss, T.F. Photonic crystal resonances for sensing and imaging. J. Opt. 2018, 20, 073004. [Google Scholar] [CrossRef]
- Huang, Q.L.; Peh, J.; Hergenrother, P.J.; Cunningham, B.T. Porous photonic crystal external cavity laser biosensor. Appl. Phys. Lett. 2016, 109, 071103. [Google Scholar] [CrossRef] [Green Version]
- Ge, C.; Lu, M.; George, S.; Flood, T.A.; Wagner, C.; Zheng, J.; Pokhriyal, A.; Eden, J.G.; Hergenrother, P.J.; Cunningham, B.T. External cavity laser biosensor. Lab Chip 2013, 13, 1247–1256. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Ge, C.; Lu, M.; Zhang, Z.X.; Cunningham, B.T. A self-referencing biosensor based upon a dual-mode external cavity laser. Appl. Phys. Lett. 2013, 102, 213701. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Peh, J.; Hergenrother, P.J.; Cunningham, B.T. Detection of Protein-Small Molecule Binding Using a Self-Referencing External Cavity Laser Biosensor. J. Am. Chem. Soc. 2014, 136, 5840–5843. [Google Scholar] [CrossRef] [PubMed]
- Lan, G.L.; Zhang, S.; Zhang, H.; Zhu, Y.H.; Qing, L.Y.; Li, D.M.; Nong, J.P.; Wang, W.; Chen, L.; Wei, W. High-performance refractive index sensor based on guided-mode resonance in all-dielectric nano-silt array. Phys. Lett. A 2019, 383, 1478–1482. [Google Scholar] [CrossRef]
- Abutoama, M.; Abdulhalim, I. Self-referenced biosensor based on thin dielectric grating combined with thin metal film. Opt. Express 2015, 23, 28667–28682. [Google Scholar] [CrossRef] [PubMed]
- Priambodo, P.S. Theoretical analysis, design, fabrication and characterization of dielectric and nonlinear guided-mode resonance optical filters. Diss. Abstr. Intern. 2003, 26, 203–208. [Google Scholar]
- Norton, S.M.; Erdogan, T.; Morris, G.M. Coupled-mode theory of resonant-grating filters. J. Opt. Soc. Am. A 1997, 14, 629–639. [Google Scholar] [CrossRef]
dg (nm) | dwg (nm) | FWHM (Degree) | S (Degree/RIU) | FOM |
---|---|---|---|---|
10 | 40 | 0.018 | 20.854 | 1158.567 |
20 | 30 | 0.058 | 19.138 | 329.959 |
30 | 20 | 0.083 | 14.934 | 179.923 |
40 | 10 | Not a value | Not a value | Not a value |
dg (nm) | dwg (nm) | FWHM (nm) | S (nm/RIU) | FOM |
---|---|---|---|---|
10 | 40 | 0.25 | 89.00 | 356 |
20 | 30 | 0.90 | 83.25 | 92.5 |
30 | 20 | 1.49 | 70.00 | 46.98 |
40 | 10 | 0.79 | 36.75 | 46.52 |
Λ (nm) | dg (nm) | FWHM (nm) | S (nm/RIU) | FOM |
---|---|---|---|---|
330 | 306.44 | 0.12 | 195 | 1625 |
410 | 380.00 | 0.15 | 242.75 | 1618.333 |
450 | 417.50 | 0.16 | 266.00 | 1662.500 |
550 | 509.74 | 0.20 | 325.25 | 1626.250 |
Λ (nm) | dg (nm) | FWHM (Degree) | S (Degree/RIU) | FOM |
---|---|---|---|---|
260 | 380 | 3.3 × 10−3 | 67.921 | 2.058 × 104 |
280 | 302 | 1.7 × 10−5 | 48.322 | 2.486 × 106 |
290 | 274 | 4.9 × 10−4 | 37.902 | 7.735 × 104 |
310 | 225 | 3.9 × 10−3 | 30.927 | 7.930 × 103 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Wang, B.; Guo, Z.; Wu, X. Guided Mode Resonance Sensors with Optimized Figure of Merit. Nanomaterials 2019, 9, 837. https://doi.org/10.3390/nano9060837
Zhou Y, Wang B, Guo Z, Wu X. Guided Mode Resonance Sensors with Optimized Figure of Merit. Nanomaterials. 2019; 9(6):837. https://doi.org/10.3390/nano9060837
Chicago/Turabian StyleZhou, Yi, Bowen Wang, Zhihe Guo, and Xiang Wu. 2019. "Guided Mode Resonance Sensors with Optimized Figure of Merit" Nanomaterials 9, no. 6: 837. https://doi.org/10.3390/nano9060837
APA StyleZhou, Y., Wang, B., Guo, Z., & Wu, X. (2019). Guided Mode Resonance Sensors with Optimized Figure of Merit. Nanomaterials, 9(6), 837. https://doi.org/10.3390/nano9060837