Corona Isolation Method Matters: Capillary Electrophoresis Mass Spectrometry Based Comparison of Protein Corona Compositions Following On-Particle versus In-Solution or In-Gel Digestion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanoparticle Characterization
2.2. Human Plasma
2.3. Plasma Protein Corona Formation
2.4. On-Particle Protein Digestion
2.5. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE)
2.6. In-Solution Digestion
2.7. Capillary Electrophoresis with Electro Spray Ionization Mass Spectrometry (CESI-MS) Analysis
2.8. Data Analysis
3. Results and Discussion
3.1. Particle Characterization
3.2. On-Particle Digestion with Subsequent CESI-MS Analysis
3.3. Optimization of Enzymatic On-Particle Digestion
3.4. Evaluation of Protein Corona Isolation Efficiency
3.5. Comparison of On-Particle Digestion to Other Sample Preparation (Corona Isolation) Techniques
3.6. Method Validation and Comparison of Protein Coronas on NMs of Different Compositions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lynch, I.; Dawson, K.A. Protein-nanoparticle interactions. Nano Today 2008, 3, 40–47. [Google Scholar] [CrossRef]
- Tenzer, S.; Docter, D.; Rosfa, S.; Wlodarski, A.; Kuharev, J.; Rekik, A.; Knauer, S.K.; Bantz, C.; Nawroth, T.; Bier, C.; et al. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: A comprehensive quantitative proteomic analysis. ACS Nano 2011, 5, 7155–7167. [Google Scholar] [CrossRef] [PubMed]
- Ke, P.C.; Lin, S.; Parak, W.J.; Davis, T.P.; Caruso, F. A Decade of the Protein Corona. ACS Nano 2017, 11, 11773–11776. [Google Scholar] [CrossRef] [PubMed]
- Cedervall, T.; Lynch, I.; Lindman, S.; Berggard, T.; Thulin, E.; Nilsson, H.; Dawson, K.A.; Linse, S. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA 2007, 104, 2050–2055. [Google Scholar] [CrossRef] [PubMed]
- Nasser, F.; Lynch, I. Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna. J. Proteom. 2016, 137, 45–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brun, E.; Sicard–Roselli, C. Could nanoparticle corona characterization help for biological consequence prediction? Cancer Nanotechnol. 2014, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- Lundqvist, M.; Stigler, J.; Cedervall, T.; Berggård, T.; Flanagan, M.B.; Lynch, I.; Elia, G.; Dawson, K. The Evolution of the Protein Corona around Nanoparticles: A Test Study. ACS Nano 2011, 5, 7503–7509. [Google Scholar] [CrossRef] [PubMed]
- Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K.A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. USA 2008, 105, 14265–14270. [Google Scholar] [CrossRef] [Green Version]
- Docter, D.; Distler, U.; Storck, W.; Kuharev, J.; Wünsch, D.; Hahlbrock, A.; Knauer, S.K.; Tenzer, S.; Stauber, R.H. Quantitative profiling of the protein coronas that form around nanoparticles. Nat. Protoc. 2014, 9, 2030–2044. [Google Scholar] [CrossRef]
- Müller, J.; Prozeller, D.; Ghazaryan, A.; Kokkinopoulou, M.; Mailänder, V.; Morsbach, S.; Landfester, K. Beyond the protein corona – lipids matter for biological response of nanocarriers. Acta Biomater. 2018, 71, 420–431. [Google Scholar] [CrossRef]
- Eigenheer, R.; Castellanos, E.R.; Nakamoto, M.Y.; Gerner, K.T.; Lampe, A.M.; Wheeler, K.E. Silver nanoparticle protein corona composition compared across engineered particle properties and environmentally relevant reaction conditions. Environ. Sci. Nano 2014, 1, 238–247. [Google Scholar] [CrossRef]
- Casals, E.; Pfaller, T.; Duschl, A.; Oostingh, G.J.; Puntes, V. Time evolution of the nanoparticle protein corona. ACS Nano 2010, 4, 3623–3632. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.J.; Vartanian, A.M.; Geiger, F.M.; Hamers, R.J.; Pedersen, J.; Cui, Q.; Haynes, C.L.; Carlson, E.E.; Hernandez, R.; Klaper, R.D.; et al. Biological Responses to Engineered Nanomaterials: Needs for the Next Decade. ACS Cent. Sci. 2015, 1, 117–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Findlay, M.R.; Freitas, D.N.; Mobed-Miremadi, M.; Wheeler, K.E. Machine learning provides predictive analysis into silver nanoparticle protein corona formation from physicochemical properties. Environ. Sci. Nano 2018, 5, 64–71. [Google Scholar] [CrossRef]
- Walkey, C.D.; Olsen, J.B.; Song, F.; Liu, R.; Guo, H.; Olsen, D.W.H.; Cohen, Y.; Emili, A.; Chan, W.C.W. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano 2014, 8, 3439–3455. [Google Scholar] [CrossRef]
- Maiorano, G.; Sabella, S.; Sorce, B.; Brunetti, V.; Malvindi, M.A.; Cingolani, R.; Pompa, P.P. Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. ACS Nano 2010, 4, 7481–7491. [Google Scholar] [CrossRef]
- Dobrovolskaia, M.A.; Neun, B.W.; Man, S.; Ye, X.; Hansen, M.; Patri, A.K.; Crist, R.M.; McNeil, S.E. Protein corona composition does not accurately predict hematocompatibility of colloidal gold nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 1453–1463. [Google Scholar] [CrossRef] [Green Version]
- Lo Giudice, M.C.; Herda, L.M.; Polo, E.; Dawson, K.A. In situ characterization of nanoparticle biomolecular interactions in complex biological media by flow cytometry. Nat. Commun. 2016, 7, 13475. [Google Scholar] [CrossRef] [Green Version]
- Carril, M.; Padro, D.; Del Pino, P.; Carrillo-Carrion, C.; Gallego, M.; Parak, W.J. In situ detection of the protein corona in complex environments. Nat. Commun. 2017, 8, 1542. [Google Scholar] [CrossRef]
- Gianneli, M.; Polo, E.; Lopez, H.; Castagnola, V.; Aastrup, T.; Dawson, K.A. Label-free in-flow detection of receptor recognition motifs on the biomolecular corona of nanoparticles. Nanoscale 2018, 10, 5474–5481. [Google Scholar] [CrossRef]
- Kim, M.-S.; Pinto, S.M.; Getnet, D.; Nirujogi, R.S.; Manda, S.S.; Chaerkady, R.; Madugundu, A.K.; Kelkar, D.S.; Isserlin, R.; Jain, S.; et al. A draft map of the human proteome. Nature 2014, 509, 575–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, R.; Bowness, P.; Kessler, B.M. Two birds with one stone: Doing metabolomics with your proteomics kit. Proteomics 2013, 13, 3371–3386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chetwynd, A.J.; Guggenheim, E.J.; Briffa, S.M.; Thorn, J.A.; Lynch, I.; Valsami-Jones, E. Current application of capillary electrophoresis in nanomaterial characterisation and its potential to characterise the protein and small molecule corona. Nanomaterials 2018, 8, 99. [Google Scholar] [CrossRef] [PubMed]
- Faserl, K.; Kremser, L.; Müller, M.; Teis, D.; Lindner, H.H. Quantitative proteomics using ultralow flow capillary electrophoresis-mass spectrometry. Anal. Chem. 2015, 87, 4633–4640. [Google Scholar] [CrossRef]
- Desiderio, C.; Rossetti, D.V.; Iavarone, F.; Messana, I.; Castagnola, M. Capillary electrophoresis-mass spectrometry: Recent trends in clinical proteomics. J. Pharm. Biomed. Anal. 2010, 53, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- Stalmach, A.; Albalat, A.; Mullen, W.; Mischak, H. Recent advances in capillary electrophoresis coupled to mass spectrometry for clinical proteomic applications. Electrophoresis 2013, 34, 1452–1464. [Google Scholar] [CrossRef]
- Týčová, A.; Ledvina, V.; Klepárník, K. Recent advances in CE-MS coupling: Instrumentation, methodology, and applications. Electrophoresis 2017, 38, 115–134. [Google Scholar] [CrossRef]
- Pontillo, C.; Filip, S.; Borràs, D.M.; Mullen, W.; Vlahou, A.; Mischak, H. CE-MS-based proteomics in biomarker discovery and clinical application. Proteom. Clin. Appl. 2015, 9, 322–334. [Google Scholar] [CrossRef]
- Han, X.; Wang, Y.; Aslanian, A.; Bern, M.; Lavallée-Adam, M.; Yates, J.R. Sheathless capillary electrophoresis-tandem mass spectrometry for top-down characterization of pyrococcus furiosus proteins on a proteome scale. Anal. Chem. 2014, 86, 11006–11012. [Google Scholar] [CrossRef]
- Faserl, K.; Sarg, B.; Gruber, P.; Lindner, H.H. Investigating capillary electrophoresis-mass spectrometry for the analysis of common post-translational modifications. Electrophoresis 2018, 39, 1208–1215. [Google Scholar] [CrossRef]
- Sarg, B.; Faserl, K.; Lindner, H.H. Identification of Novel Site-Specific Alterations in the Modification Level of Myelin Basic Protein Isolated from Mouse Brain at Different Ages Using Capillary Electrophoresis–Mass Spectrometry. Proteomics 2017, 17, 1700269. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Hankemeier, T.; Ramautar, R. Next-generation capillary electrophoresis–mass spectrometry approaches in metabolomics. Curr. Opin. Biotechnol. 2017, 43, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Langevin, D.; Lozano, O.; Salvati, A.; Kestens, V.; Monopoli, M.; Raspaud, E.; Mariot, S.; Salonen, A.; Thomas, S.; Driessen, M.; et al. Inter-laboratory comparison of nanoparticle size measurements using dynamic light scattering and differential centrifugal sedimentation. NanoImpact 2018, 10, 97–107. [Google Scholar] [CrossRef]
- Tenzer, S.; Docter, D.; Kuharev, J.; Musyanovych, A.; Fetz, V.; Hecht, R.; Schlenk, F.; Fischer, D.; Kiouptsi, K.; Reinhardt, C.; et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 2013, 8, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Faserl, K.; Golderer, G.; Kremser, L.; Lindner, H.; Sarg, B.; Wildt, L.; Seeber, B. Polymorphism in vitamin D-binding protein as a genetic risk factor in the pathogenesis of endometriosis. J. Clin. Endocrinol. Metab. 2011, 96, E233–E241. [Google Scholar] [CrossRef] [PubMed]
- Faserl, K.; Sarg, B.; Sola, L.; Lindner, H.H. Enhancing Proteomic Throughput in Capillary Electrophoresis–Mass Spectrometry by Sequential Sample Injection. Proteomics 2017, 17, 1700310. [Google Scholar] [CrossRef] [PubMed]
- Faserl, K.; Sarg, B.; Kremser, L.; Lindner, H. Optimization and evaluation of a sheathless capillary electrophoresis-electrospray ionization mass spectrometry platform for peptide analysis: Comparison to liquid chromatography-electrospray ionization mass spectrometry. Anal. Chem. 2011, 83, 7297–7305. [Google Scholar] [CrossRef]
- Heemskerk, A.A.M.; Wuhrer, M.; Busnel, J.M.; Koeleman, C.A.M.; Selman, M.H.J.; Vidarsson, G.; Kapur, R.; Schoenmaker, B.; Derks, R.J.E.; Deelder, A.M.; et al. Coupling porous sheathless interface MS with transient-ITP in neutral capillaries for improved sensitivity in glycopeptide analysis. Electrophoresis 2013, 34, 383–387. [Google Scholar] [CrossRef]
- Klein, J.; Papadopoulos, T.; Mischak, H.; Mullen, W. Comparison of CE-MS/MS and LC-MS/MS sequencing demonstrates significant complementarity in natural peptide identification in human urine. Electrophoresis 2014, 35, 1060–1064. [Google Scholar] [CrossRef]
- Chen, E.I.; Cociorva, D.; Norris, J.L.; Yates, J.R. Optimization of Mass Spectrometry-Compatible Surfactants for Shotgun Proteomics. J. Proteome Res. 2007, 6, 2529–2538. [Google Scholar] [CrossRef] [Green Version]
- Kollipara, L.; Zahedi, R.P. Protein carbamylation: In vivo modification or in vitro artefact? Proteomics 2013, 13, 941–944. [Google Scholar] [CrossRef] [PubMed]
- Hellstrand, E.; Lynch, I.; Andersson, A.; Drakenberg, T.; Dahlbäck, B.; Dawson, K.A.; Linse, S.; Cedervall, T. Complete high-density lipoproteins in nanoparticle corona. FEBS J. 2009, 276, 3372–3381. [Google Scholar] [CrossRef] [PubMed]
- Ritz, S.; Schöttler, S.; Kotman, N.; Baier, G.; Musyanovych, A.; Kuharev, J.; Landfester, K.; Schild, H.; Jahn, O.; Tenzer, S.; et al. Protein Corona of Nanoparticles: Distinct Proteins Regulate the Cellular Uptake. Biomacromolecules 2015, 16, 1311–1321. [Google Scholar] [CrossRef] [PubMed]
- Kreuter, J.; Shamenkov, D.; Petrov, V.; Ramge, P.; Cychutek, K.; Koch-Brandt, C.; Alyautdin, R. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J. Drug Target. 2002, 10, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Müller, J.; Simon, J.; Rohne, P.; Koch-Brandt, C.; Mailänder, V.; Morsbach, S.; Landfester, K. Denaturation via Surfactants Changes Composition of Protein Corona. Biomacromolecules 2018, 19, 2657–2664. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.; Gangwar, J.; Srivastava, A.K. Multiphase TiO2 nanostructures: A review of efficient synthesis, growth mechanism, probing capabilities, and applications in bio-safety and health. RSC Adv. 2017, 7, 44199–44225. [Google Scholar] [CrossRef]
- Lindegaard, M.L.; Wassif, C.A.; Vaisman, B.; Amar, M.; Wasmuth, E.V.; Shamburek, R.; Nielsen, L.B.; Remaley, A.T.; Porter, F.D. Characterization of placental cholesterol transport: ABCA1 is a potential target for in utero therapy of Smith-Lemli-Opitz syndrome. Hum. Mol. Genet. 2008, 17, 3806–3813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, P.H.; Sun, X.; Chiu, J.F.; Sun, H.; He, Q.Y. Transferrin-mediated gold nanoparticle cellular uptake. Bioconjug. Chem. 2005, 16, 494–496. [Google Scholar] [CrossRef] [PubMed]
Accession | Description | Coverage [%] | # Unique Peptides | Prot. Abund. Rapigest | Rapigest / none | Rapigest / Urea | Rapigest / both | |||
---|---|---|---|---|---|---|---|---|---|---|
Ratio | T test | Ratio | T test | Ratio | T test | |||||
P60709 | Actin, cytoplasmic 1 | 57 | 7 | 8.13 × 108 | 14.61 | 2.14 × 10−4 | ||||
P03950 | Angiogenin | 18 | 2 | 7.50 × 106 | 2.62 | 6.21 × 10−5 | ||||
P01019 | Angiotensinogen | 16 | 6 | 1.03 × 107 | 3.60 | 7.17 × 10−3 | ||||
P02647 | Apolipoprotein A-I | 93 | 69 | 1.01 × 1010 | 0.25 | 1.52 × 10−2 | ||||
P02652 | Apolipoprotein A-II | 74 | 15 | 3.32 × 108 | 0.05 | 1.73 × 10−2 | ||||
P02654 | Apolipoprotein C-I | 51 | 10 | 1.98 × 107 | 0.03 | 7.64 × 10−4 | 0.07 | 3.32 × 10−3 | ||
P02656 | Apolipoprotein C-III | 63 | 9 | 8.25 × 107 | 0.10 | 1.54 × 10−2 | ||||
P02649 | Apolipoprotein E | 82 | 40 | 3.10 × 108 | 0.36 | 1.23 × 10−2 | ||||
P08519 | Apolipoprotein(a) | 7 | 2 | 5.99 × 106 | 0.20 | 2.78 × 10−3 | ||||
P00748 | Coagulation factor XII | 12 | 9 | 9.71 × 107 | 0.24 | 2.25 × 10−3 | 0.47 | 2.28 × 10−3 | 0.49 | 3.62 × 10−5 |
P0C0L4 | Complement C4-A | 54 | 3 | 3.13 × 107 | 0.43 | 1.41 × 10−4 | ||||
P00746 | Complement factor D | 34 | 6 | 3.55 × 107 | 0.45 | 1.58 × 10−3 | ||||
Q03591 | Complement factor H-related protein 1 | 20 | 1 | 6.77 × 107 | 3.00 | 3.51 × 10−6 | 3.70 | 1.11 × 10−8 | ||
Q86UX7 | Fermitin family homolog 3 | 23 | 12 | 3.66 × 107 | 5.82 | 4.40 × 10−3 | ||||
Q15485 | Ficolin-2 | 4 | 1 | 1.29 × 106 | 0.50 | 7.03 × 10−52 | ||||
A0A0A0MS15 | Immunoglobulin heavy variable 3-49 | 17 | 2 | 6.29 × 106 | 6.73 | 2.71 × 10−27 | ||||
A0A0C4DH25 | Immunoglobulin kappa variable 3D-20 | 22 | 1 | 3.59 × 106 | 2.23 | 2.42 × 10−3 | ||||
P24592 | Insulin-like growth factor-binding prot. 6 | 6 | 1 | 3.42 × 106 | 0.36 | 1.12 × 10−3 | ||||
P05106 | Integrin beta-3 | 10 | 6 | 2.45 × 107 | 4.60 | 5.84 × 10−3 | ||||
P35579 | Myosin-9 | 30 | 50 | 8.66 × 107 | 10.57 | 8.20 × 10−4 | ||||
P02760 | Protein AMBP | 32 | 11 | 1.03 × 108 | 0.44 | 8.91 × 10−4 | ||||
P14618 | Pyruvate kinase PKM | 18 | 6 | 7.20 × 106 | 15.66 | 8.56 × 10−15 | ||||
A0A096LPE2 | SAA2-SAA4 readthrough | 50 | 11 | 3.59 × 108 | 0.44 | 1.76 × 10−3 | 0.48 | 4.91 × 10−5 | ||
Q9Y490 | Talin-1 | 20 | 33 | 7.78 × 107 | 4.77 | 3.69 × 10−4 | ||||
P07996 | Thrombospondin-1 | 17 | 16 | 7.15 × 107 | 13.02 | 2.78 × 10−3 | ||||
P37802 | Transgelin-2 | 13 | 2 | 2.99 × 105 | 0.13 | 1.75 × 10−2 | ||||
Q9BYE2 | Transmembrane protease serine 13 | 1 | 1 | 1.56 × 107 | 0.18 | 9.79 × 10−5 | 0.30 | 1.31 × 10−4 | ||
P02766 | Transthyretin | 50 | 7 | 2.22 × 107 | 0.46 | 1.73 × 10−3 |
Experimental Component | TiO2 | TiO2-PVP | TiO2-Dispex | PS | PS-COOH | |
---|---|---|---|---|---|---|
On-particle digest | Summed MS signal intensity | 1.0 × 1011 | 1.1 × 1010 | 7.7 × 1010 | 8.9 × 109 | 3.6 × 1010 |
High confidence proteins | 80 | 81 | 83 | 77 | 86 | |
Remaining in-gel | Summed MS signal intensity | 5.1 × 107 | 3.3 × 106 | 1.2 × 108 | 1.4 × 107 | 2.6 × 108 |
% summed MS signal remaining | 0.05% | 0.03% | 0.16% | 0.15% | 0.73% | |
High confidence proteins | 0 | 0 | 0 | 2 | 3 | |
Median remaining on particle * | 0.05% | 0.10% | 0.09% | 0.15% | 0.80% |
PS-Carb | PS | TI | TI-PVP | TI-Dispex | Silica | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Protein | ppm | stdev | ppm | stdev | ppm | stdev | ppm | stdev | ppm | stdev | ppm | stdev |
Fibrinogens | 13% | 0.2% | 6% | 1.2% | 43% | 1.1% | 41% | 0.8% | 9% | 0.6% | 17% | 2.9% |
Apolipoproteins | 5% | 1.1% | 3% | 0.5% | 0% | 0.0% | 1% | 0.1% | 0% | 0.0% | 17% | 5.7% |
Complement components | 7% | 1.5% | 1% | 0.6% | 8% | 0.7% | 6% | 0.3% | 8% | 0.3% | 12% | 1.9% |
Immunoglobulin | 1% | 0.2% | 2% | 0.6% | 22% | 2.5% | 20% | 2.8% | 7% | 1.3% | 12% | 0.2% |
Serum albumin | 15% | 0.6% | 61% | 1.7% | 1% | 0.0% | 0% | 0.0% | 1% | 0.1% | 8% | 1.4% |
Vitronectin | 32% | 1.2% | 10% | 0.4% | 5% | 0.4% | 8% | 1.2% | 14% | 0.4% | 2% | 0.3% |
Clusterin | 1% | 0.2% | 10% | 0.5% | 0% | 0.0% | 0% | 0.0% | 0% | 0.0% | 1% | 0.0% |
Inter-alpha-trypsin inhibitor heavy chains | 3% | 0.3% | 1% | 0.1% | 1% | 0.5% | 1% | 0.0% | 0% | 0.1% | 4% | 0.5% |
Kininogen-1 | 3% | 0.0% | 0% | 0.0% | 1% | 0.1% | 3% | 0.6% | 2% | 0.4% | 3% | 0.3% |
Histidine-rich glycoprotein | 7% | 2.5% | 0% | 0.0% | 1% | 0.2% | 1% | 0.1% | 0% | 0.0% | 1% | 0.1% |
Alpha-2-HS-glycoprotein | 0% | 0.1% | 0% | 0.1% | 2% | 0.6% | 4% | 0.7% | 22% | 2.0% | 1% | 0.3% |
Prothrombin | 0% | 0.2% | 0% | 0.0% | 5% | 0.4% | 7% | 0.6% | 21% | 0.3% | 0% | 0.0% |
Serotransferrin | 0% | 0.0% | 0% | 0.1% | 0% | 0.0% | 0% | 0.0% | 0% | 0.0% | 4% | 1.7% |
Plasminogen | 0% | 0.1% | 0% | 0.1% | 2% | 0.0% | 2% | 0.2% | 1% | 0.1% | 2% | 0.5% |
Gelsolin | 0% | 0.2% | 0% | 0.0% | 1% | 0.3% | 2% | 0.1% | 1% | 0.0% | 1% | 0.2% |
Beta-2-glycoprotein 1 | 1% | 0.3% | 0% | 0.1% | 1% | 0.0% | 0% | 0.0% | 0% | 0.1% | 1% | 0.0% |
Vitamin D-binding protein | 0% | 0.1% | 2% | 1.6% | 0% | 0.0% | 0% | 0.0% | 0% | 0.0% | 0% | 0.0% |
Vitamin K-dependent protein S | 0% | 0.0% | 0% | 0.0% | 1% | 0.1% | 1% | 0.1% | 1% | 0.1% | 0% | 0.0% |
Plasma kallikrein | 1% | 0.1% | 0% | 0.0% | 1% | 0.1% | 1% | 0.1% | 1% | 0.2% | 0% | 0.0% |
Hemopexin | 0% | 0.0% | 0% | 0.0% | 0% | 0.0% | 0% | 0.0% | 0% | 0.0% | 2% | 0.2% |
others | 9% | 0.3% | 3% | 0.5% | 6% | 1.0% | 5% | 0.0% | 9% | 0.5% | 14% | 1.3% |
Colour code: | 0% | 5.0% | 10% | 30.0% | 60% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faserl, K.; Chetwynd, A.J.; Lynch, I.; Thorn, J.A.; Lindner, H.H. Corona Isolation Method Matters: Capillary Electrophoresis Mass Spectrometry Based Comparison of Protein Corona Compositions Following On-Particle versus In-Solution or In-Gel Digestion. Nanomaterials 2019, 9, 898. https://doi.org/10.3390/nano9060898
Faserl K, Chetwynd AJ, Lynch I, Thorn JA, Lindner HH. Corona Isolation Method Matters: Capillary Electrophoresis Mass Spectrometry Based Comparison of Protein Corona Compositions Following On-Particle versus In-Solution or In-Gel Digestion. Nanomaterials. 2019; 9(6):898. https://doi.org/10.3390/nano9060898
Chicago/Turabian StyleFaserl, Klaus, Andrew J. Chetwynd, Iseult Lynch, James A. Thorn, and Herbert H. Lindner. 2019. "Corona Isolation Method Matters: Capillary Electrophoresis Mass Spectrometry Based Comparison of Protein Corona Compositions Following On-Particle versus In-Solution or In-Gel Digestion" Nanomaterials 9, no. 6: 898. https://doi.org/10.3390/nano9060898
APA StyleFaserl, K., Chetwynd, A. J., Lynch, I., Thorn, J. A., & Lindner, H. H. (2019). Corona Isolation Method Matters: Capillary Electrophoresis Mass Spectrometry Based Comparison of Protein Corona Compositions Following On-Particle versus In-Solution or In-Gel Digestion. Nanomaterials, 9(6), 898. https://doi.org/10.3390/nano9060898