A Review on Catalytic Nanomaterials for Volatile Organic Compounds VOC Removal and Their Applications for Healthy Buildings
Abstract
:1. Introduction
2. Materials
2.1. Metallic Oxides
2.1.1. Titanium Dioxide (TiO2)
2.1.2. Zinc Oxide
2.1.3. Nickel Oxide
2.1.4. Tungsten Triocide
2.1.5. Manganese Oxide
2.1.6. Bi-Based Compounds
2.1.7. Ag-Based Compounds
2.1.8. Platinum Suported Material
2.1.9. Iridium Particles
2.2. Carbon-Based Materials
2.2.1. Carbon-Based
2.2.2. Graphene and Graphene Oxide (GO)
3. Applications on Buildings
3.1. Indoor Air Treatment
3.2. Coating
3.3. Paints
3.4. Construction Materials
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Spengler, J.D.; Chen, Q. Indoor air quality factors in designing a healthy building. Annu. Rev. Energy Environ. 2000, 25, 567–600. [Google Scholar] [CrossRef]
- Jones, A.P. Indoor air quality and health. Atmos. Environ. 1999, 33, 4535–4564. [Google Scholar] [CrossRef]
- Maroni, M.; Seifert, B.; Lindvall, T. Indoor Air Quality: A Comprehensive Reference Book; Elsevier: New York, NY, USA, 1995; Volume 3. [Google Scholar]
- Weschler, C.J. Ozone’s impact on public health: Contributions from indoor exposures to ozone and products of ozone-initiated chemistry. Environ. Health Perspect. 2006, 114, 1489–1496. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Miao, G.; Pi, Y.; Xia, Q.; Wu, J.; Li, Z.; Xiao, J. Abatement of various types of VOCs by adsorption/catalytic oxidation: A review. Chem. Eng. J. 2019, 370, 1128–1153. [Google Scholar] [CrossRef]
- Li, M.; Lu, B.; Ke, Q.-F.; Guo, Y.-J.; Guo, Y.-P. Synergetic effect between adsorption and photodegradation on nanostructured TiO2/activated carbon fiber felt porous composites for toluene removal. J. Hazard. Mater. 2017, 333, 88–98. [Google Scholar] [CrossRef] [PubMed]
- González-García, P. Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renew. Sustain. Energy Rev. 2018, 82, 1393–1414. [Google Scholar] [CrossRef]
- Spokas, K.A.; Novak, J.M.; Stewart, C.E.; Cantrell, K.B.; Uchimiya, M.; DuSaire, M.G.; Ro, K.S. Qualitative analysis of volatile organic compounds on biochar. Chemosphere 2011, 85, 869–882. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, B.; Creamer, A.E.; Cao, C.; Li, Y. Adsorption of VOCs onto engineered carbon materials: A review. J. Hazard. Mater. 2017, 338, 102–123. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, J.; Gao, Y.; Ao, Z.; Li, G.; An, T.; Hu, Y.; Li, Y. A coupled technique to eliminate overall nonpolar and polar volatile organic compounds from paint production industry. J. Clean. Prod. 2018, 185, 266–274. [Google Scholar] [CrossRef]
- Tompkins, D.T.; Anderson, M.A. Evaluation of Photocatalytic Air Cleaning Capability: A Literature Review & Engineering Analysis; ASHRAE: Atlanta, GA, USA, 2001. [Google Scholar]
- Mo, J.; Zhang, Y.; Xu, Q.; Lamson, J.J.; Zhao, R. Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmos. Environ. 2009, 43, 2229–2246. [Google Scholar] [CrossRef]
- Chen, H.; Nanayakkara, C.E.; Grassian, V.H. Titanium Dioxide Photocatalysis in Atmospheric Chemistry. Chem. Rev. 2012, 112, 5919–5948. [Google Scholar] [CrossRef] [PubMed]
- Shayegan, Z.; Lee, C.-S.; Haghighat, F. TiO2 photocatalyst for removal of volatile organic compounds in gas phase—A review. Chem. Eng. J. 2018, 334, 2408–2439. [Google Scholar] [CrossRef]
- Cheng, M.; Brown, S. VOCs Identified in Australian Indoor Air and Product Emission Environments. In Proceedings of the National Clean Air Conference, Beijing, China, 4–9 September 2005; pp. 23–27. [Google Scholar]
- Wang, S.; Ang, H.M.; Tade, M.O. Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art. Environ. Int. 2007, 33, 694–705. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.H.; Choi, D.H.; Lee, S.M.; Yeo, M.S.; Kim, K.W. Effect of bake-out on reducing VOC emissions and concentrations in a residential housing unit with a radiant floor heating system. Build. Environ. 2010, 45, 1816–1825. [Google Scholar] [CrossRef]
- Kim, S.; Choi, Y.-K.; Park, K.-W.; Kim, J.T. Test methods and reduction of organic pollutant compound emissions from wood-based building and furniture materials. Bioresour. Technol. 2010, 101, 6562–6568. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Shah, K.W. Chapter 16: Electrochromic Smart Windows for Green Building Applications. In RSC Smart Materials; Royal Society of Chemistry: London, UK, 2019; pp. 494–520. [Google Scholar]
- Huseien, G.F.; Sam, A.R.M.; Shah, K.W.; Asaad, M.A.; Tahir, M.M.; Mirza, J. Properties of ceramic tile waste based alkali-activated mortars incorporating GBFS and fly ash. Constr. Build. Mater. 2019, 214, 355–368. [Google Scholar] [CrossRef]
- Seh, Z.W.; Liu, S.; Zhang, S.Y.; Shah, K.W.; Han, M.Y. Synthesis and multiple reuse of eccentric Au@TiO2 nanostructures as catalysts. Chem. Commun. 2011, 47, 6689–6691. [Google Scholar] [CrossRef]
- Hussain, M.; Akhter, P.; Iqbal, J.; Ali, Z.; Yang, W.; Shehzad, N.; Majeed, K.; Sheikh, R.; Amjad, U.; Russo, N. VOCs photocatalytic abatement using nanostructured titania-silica catalysts. J. Environ. Chem. Eng. 2017, 5, 3100–3107. [Google Scholar] [CrossRef]
- Singh, E.; Meyyappan, M.; Nalwa, H.S. Flexible Graphene-Based Wearable Gas and Chemical Sensors. ACS Appl. Mater. Interfaces 2017, 9, 34544–34586. [Google Scholar] [CrossRef]
- Andre, R.S.; Sanfelice, R.C.; Pavinatto, A.; Mattoso, L.H.C.; Correa, D.S. Hybrid nanomaterials designed for volatile organic compounds sensors: A review. Mater. Des. 2018, 156, 154–166. [Google Scholar] [CrossRef]
- Kwon, S.; Fan, M.; Cooper, A.T.; Yang, H. Photocatalytic applications of micro- and nano-TiO2 in environmental engineering. Crit. Rev. Environ. Sci. Technol. 2008, 38, 197–226. [Google Scholar] [CrossRef]
- Tsang, C.H.A.; Li, K.; Zeng, Y.; Zhao, W.; Zhang, T.; Zhan, Y.; Xie, R.; Leung, D.Y.C.; Huang, H. Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: Overview and forecast. Environ. Int. 2019, 125, 200–228. [Google Scholar] [CrossRef]
- Hu, M.; Yao, Z.; Wang, X. Graphene-based nanomaterials for catalysis. Ind. Eng. Chem. Res. 2017, 56, 3477–3502. [Google Scholar] [CrossRef]
- Pan, Y.; Yuan, X.; Jiang, L.; Yu, H.; Zhang, J.; Wang, H.; Guan, R.; Zeng, G. Recent advances in synthesis, modification and photocatalytic applications of micro/nano-structured zinc indium sulfide. Chem. Eng. J. 2018, 354, 407–431. [Google Scholar] [CrossRef]
- Sharma, R.; Sharma, S.; Dutta, S.; Zboril, R.; Gawande, M.B. Silica-nanosphere-based organic–inorganic hybrid nanomaterials: Synthesis, functionalization and applications in catalysis. Gr. Chem. 2015, 17, 3207–3230. [Google Scholar] [CrossRef]
- Huang, H.; Xu, Y.; Feng, Q.; Leung, D.Y. Low temperature catalytic oxidation of volatile organic compounds: A review. Catal. Sci. Technol. 2015, 5, 2649–2669. [Google Scholar] [CrossRef]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O’Shea, K.; et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 2012, 125, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Truppi, A.; Petronella, F.; Placido, T.; Striccoli, M.; Agostiano, A.; Curri, M.; Comparelli, R. Visible-light-active TiO2-based hybrid nanocatalysts for environmental applications. Catalysts 2017, 7, 100. [Google Scholar] [CrossRef]
- Maira, A.J.; Yeung, K.L.; Lee, C.Y.; Yue, P.L.; Chan, C.K. Size Effects in Gas-Phase Photo-oxidation of Trichloroethylene Using Nanometer-Sized TiO2 Catalysts. J. Catal. 2000, 192, 185–196. [Google Scholar] [CrossRef]
- Maira, A.J.; Coronado, J.M.; Augugliaro, V.; Yeung, K.L.; Conesa, J.C.; Soria, J. Fourier Transform Infrared Study of the Performance of Nanostructured TiO2 Particles for the Photocatalytic Oxidation of Gaseous Toluene. J. Catal. 2001, 202, 413–420. [Google Scholar] [CrossRef]
- Lee, H.J.; Seo, H.O.; Kim, D.W.; Kim, K.-D.; Luo, Y.; Lim, D.C.; Ju, H.; Kim, J.W.; Lee, J.; Kim, Y.D. A high-performing nanostructured TiO2 filter for volatile organic compounds using atomic layer deposition. Chem. Commun. 2011, 47, 5605–5607. [Google Scholar] [CrossRef] [PubMed]
- Weon, S.; Choi, W. TiO2 Nanotubes with Open Channels as Deactivation-Resistant Photocatalyst for the Degradation of Volatile Organic Compounds. Environ. Sci.Technol. 2016, 50, 2556–2563. [Google Scholar] [CrossRef] [PubMed]
- Weon, S.; Choi, J.; Park, T.; Choi, W. Freestanding doubly open-ended TiO2 nanotubes for efficient photocatalytic degradation of volatile organic compounds. Appl. Catal. B Environ. 2017, 205, 386–392. [Google Scholar] [CrossRef]
- Wu, C.; Yue, Y.; Deng, X.; Hua, W.; Gao, Z. Investigation on the synergetic effect between anatase and rutile nanoparticles in gas-phase photocatalytic oxidations. Catal. Today 2004, 93–95, 863–869. [Google Scholar] [CrossRef]
- Chen, K.; Zhu, L.; Yang, K. Tricrystalline TiO2 with enhanced photocatalytic activity and durability for removing volatile organic compounds from indoor air. J. Environ. Sci. 2015, 32, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Brancho, J.J.; Batterman, S.; Bartlett, B.M.; Godwin, C. Experimental and modeling study of visible light responsive photocatalytic oxidation (PCO) materials for toluene degradation. App. Catal. B Environ. 2017, 216, 122–132. [Google Scholar] [CrossRef]
- Qiu, X.; Miyauchi, M.; Sunada, K.; Minoshima, M.; Liu, M.; Lu, Y.; Li, D.; Shimodaira, Y.; Hosogi, Y.; Kuroda, Y.; et al. Hybrid CuxO/TiO2 nanocomposites as risk-reduction materials in indoor environments. ACS Nano 2012, 6, 1609–1618. [Google Scholar] [CrossRef] [PubMed]
- Weon, S.; Kim, J.; Choi, W. Dual-components modified TiO2 with Pt and fluoride as deactivation-resistant photocatalyst for the degradation of volatile organic compound. Appl. Catal. B Environ. 2018, 220, 1–8. [Google Scholar] [CrossRef]
- Li, J.J.; Cai, S.C.; Yu, E.Q.; Weng, B.; Chen, X.; Chen, J.; Jia, H.P.; Xu, Y.J. Efficient infrared light promoted degradation of volatile organic compounds over photo-thermal responsive Pt-rGO-TiO2composites. Appl. Catal. B Environ. 2018, 233, 260–271. [Google Scholar] [CrossRef]
- Suárez, S.; Jansson, I.; Ohtani, B.; Sánchez, B. From titania nanoparticles to decahedral anatase particles: Photocatalytic activity of TiO2/zeolite hybrids for VOCs oxidation. Catal. Today 2019, 326, 2–7. [Google Scholar] [CrossRef]
- Li, X.; Zhu, Z.; Zhao, Q.; Wang, L. Photocatalytic degradation of gaseous toluene over ZnAl2O4 prepared by different methods: A comparative study. J. Hazard. Mater. 2011, 186, 2089–2096. [Google Scholar] [CrossRef]
- Jiang, S.; Handberg, E.S.; Liu, F.; Liao, Y.; Wang, H.; Li, Z.; Song, S. Effect of doping the nitrogen into carbon nanotubes on the activity of NiO catalysts for the oxidation removal of toluene. Applied Catal. B Environ. 2014, 160–161, 716–721. [Google Scholar] [CrossRef]
- Kim, H.I.; Kim, H.N.; Weon, S.; Moon, G.H.; Kim, J.H.; Choi, W. Robust Co-catalytic performance of nanodiamonds loaded on WO3 for the decomposition of volatile organic compounds under visible light. ACS Catal. 2016, 6. [Google Scholar] [CrossRef]
- Genuino, H.C.; Dharmarathna, S.; Njagi, E.C.; Mei, M.C.; Suib, S.L. Gas-phase total oxidation of benzene, toluene, ethylbenzene, and xylenes using shape-selective manganese oxide and copper manganese oxide catalysts. J. Phys. Chem. C 2012, 116, 12066–12078. [Google Scholar] [CrossRef]
- Miyawaki, J.; Lee, G.H.; Yeh, J.; Shiratori, N.; Shimohara, T.; Mochida, I.; Yoon, S.H. Development of carbon-supported hybrid catalyst for clean removal of formaldehyde indoors. Catal. Today 2012, 185, 278–283. [Google Scholar] [CrossRef]
- Qian, X.; Yue, D.; Tian, Z.; Reng, M.; Zhu, Y.; Kan, M.; Zhang, T.; Zhao, Y. Carbon quantum dots decorated Bi2WO6 nanocomposite with enhanced photocatalytic oxidation activity for VOCs. Appl. Catal. B Environ. 2016, 193, 16–21. [Google Scholar] [CrossRef]
- Cao, J.; Luo, B.; Lin, H.; Chen, S. Photocatalytic activity of novel AgBr/WO3 composite photocatalyst under visible light irradiation for methyl orange degradation. J. Hazard. Mater. 2011, 190, 700–706. [Google Scholar] [CrossRef]
- Abbasi, Z.; Haghighi, M.; Fatehifar, E.; Saedy, S. Synthesis and physicochemical characterizations of nanostructured Pt/Al2O3–CeO2 catalysts for total oxidation of VOCs. J. Hazard. Mater. 2011, 186, 1445–1454. [Google Scholar] [CrossRef]
- Chen, Z.; Mao, J.; Zhou, R. Preparation of size-controlled Pt supported on Al2O3 nanocatalysts for deep catalytic oxidation of benzene at lower temperature. Appl. Surf. Sci. 2019, 465, 15–22. [Google Scholar] [CrossRef]
- Wang, L.; Sakurai, M.; Kameyama, H. Study of catalytic decomposition of formaldehyde on Pt/TiO2 alumite catalyst at ambient temperature. J. Hazard. Mater. 2009, 167, 399–405. [Google Scholar] [CrossRef]
- Schick, L.; Sanchis, R.; González-Alfaro, V.; Agouram, S.; López, J.M.; Torrente-Murciano, L.; García, T.; Solsona, B. Size-activity relationship of iridium particles supported on silica for the total oxidation of volatile organic compounds (VOCs). Chem. Eng. J. 2019, 366, 100–111. [Google Scholar] [CrossRef]
- Joung, H.-J.; Kim, J.-H.; Oh, J.-S.; You, D.-W.; Park, H.-O.; Jung, K.-W. Catalytic oxidation of VOCs over CNT-supported platinum nanoparticles. Appl. Surf. Sci. 2014, 290, 267–273. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Z.-R.; Fu, X.; Xu, Y.-J. TiO2−Graphene Nanocomposites for Gas-Phase Photocatalytic Degradation of Volatile Aromatic Pollutant: Is TiO2−Graphene Truly Different from Other TiO2−Carbon Composite Materials? ACS Nano 2010, 4, 7303–7314. [Google Scholar] [CrossRef]
- Roso, M.; Boaretti, C.; Pelizzo, M.G.; Lauria, A.; Modesti, M.; Lorenzetti, A. Nanostructured Photocatalysts Based on Different Oxidized Graphenes for VOCs Removal. Ind. Eng. Chem. Resour. 2017, 56, 9980–9992. [Google Scholar] [CrossRef]
- Demeestere, K.; Dewulf, J.; Van Langenhove, H. Heterogeneous Photocatalysis as an Advanced Oxidation Process for the Abatement of Chlorinated, Monocyclic Aromatic and Sulfurous Volatile Organic Compounds in Air: State of the Art. Crit. Rev Environ. Sci. Technol. 2007, 37, 489–538. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Di Paola, A.; Bellardita, M.; Palmisano, L. Brookite, the least known TiO2 photocatalyst. Catalysts 2013, 3, 36–73. [Google Scholar] [CrossRef]
- Monai, M.; Montini, T.; Fornasiero, P. Brookite: Nothing New under the Sun? Catalysts 2017, 7, 304. [Google Scholar] [CrossRef]
- Jo, W.-K.; Kim, J.-T. Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds. J. Hazard. Mater. 2009, 164, 360–366. [Google Scholar] [CrossRef]
- Elfalleh, W.; Assadi, A.A.; Bouzaza, A.; Wolbert, D.; Kiwi, J.; Rtimi, S. Innovative and stable TiO2 supported catalytic surfaces removing aldehydes under UV-light irradiation. J. Photochem. Photobiol. A Chem. 2017, 343, 96–102. [Google Scholar] [CrossRef]
- Assadi, A.A.; Bouzaza, A.; Wolbert, D.; Petit, P. Isovaleraldehyde elimination by UV/TiO2 photocatalysis: Comparative study of the process at different reactors configurations and scales. Environ. Sci. Pollut. Res. 2014, 21, 11178–11188. [Google Scholar] [CrossRef] [PubMed]
- Palau, J.; Assadi, A.A.; Penya-Roja, J.; Bouzaza, A.; Wolbert, D.; Martínez-Soria, V. Isovaleraldehyde degradation using UV photocatalytic and dielectric barrier discharge reactors, and their combinations. J. Photochem. Photobiol. A Chemis. 2015, 299, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Azzouz, I.; Habba, Y.G.; Capochichi-Gnambodoe, M.; Marty, F.; Vial, J.; Leprince-Wang, Y.; Bourouina, T. Zinc oxide nano-enabled microfluidic reactor for water purification and its applicability to volatile organic compounds. Microsyst. Nanoengin. 2018, 4. [Google Scholar] [CrossRef]
- Chen, J.; Chen, X.; Yan, D.; Jiang, M.; Xu, W.; Yu, H.; Jia, H. A facile strategy of enhancing interaction between cerium and manganese oxides for catalytic removal of gaseous organic contaminants. Appl. Catal. B Environ. 2019, 250, 396–407. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, Q.; Song, C.; Ji, N.; Ma, D.; Lu, X. Enhanced catalytic performance for VOCs oxidation on the CoAlO oxides by KMnO4 doped on facile synthesis. Chemosphere 2019, 218, 895–906. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, B.; Yamamoto, R.; Ohkita, H.; Mizushima, T.; Hiraishi, A.; Kakuta, N. Photocatalytic Activity of AgBr as an Environmental Catalyst. Top Catal. 2013, 56, 618–622. [Google Scholar] [CrossRef]
- Samaddar, P.; Son, Y.-S.; Tsang, D.C.W.; Kim, K.-H.; Kumard, S. Progress in graphene-based materials as superior media for sensing, sorption, and separation of gaseous pollutants. Coord. Chem. Rev. 2018, 368, 93–114. [Google Scholar] [CrossRef]
- Munafò, P.; Quagliarini, E.; Goffredo, G.B.; Bondioli, F.; Licciulli, A. Durability of nano-engineered TiO2 self-cleaning treatments on limestone. Constr. Build. Mater. 2014, 65, 218–231. [Google Scholar] [CrossRef]
- Toro, C.; Jobson, B.T.; Haselbach, L.; Shen, S.; Chung, S.H. Photoactive roadways: Determination of CO, NO and VOC uptake coefficients and photolabile side product yields on TiO2 treated asphalt and concrete. Atmos. Environ. 2016, 139, 37–45. [Google Scholar] [CrossRef]
- Huseien, G.F.; Shah, K.W.; Sam, A.R.M. Sustainability of nanomaterials based self-healing concrete: An all-inclusive insight. J. Build. Eng. 2019, 23, 155–171. [Google Scholar] [CrossRef]
- Li, L.; Zhang, F.; Zhong, Z.; Zhu, M.; Jiang, C.; Hu, J.; Xing, W. Novel Synthesis of a High-Performance Pt/ZnO/SiC Filter for the Oxidation of Toluene. Ind. Eng. Chem. Res. 2017, 56, 13857–13865. [Google Scholar] [CrossRef]
- Zadi, T.; Assadi, A.A.; Nasrallah, N.; Bouallouche, R.; Tri, P.N.; Bouzaza, A.; Azizi, M.M.; Maachi, R.; Wolbert, D. Treatment of hospital indoor air by a hybrid system of combined plasma with photocatalysis: Case of trichloromethane. Chem. Eng. J. 2018, 349, 276–286. [Google Scholar] [CrossRef]
- Li, F.B.; Li, X.Z.; Ao, C.H.; Lee, S.C.; Hou, M.F. Enhanced photocatalytic degradation of VOCs using Ln3+–TiO2 catalysts for indoor air purification. Chemosphere 2005, 59, 787–800. [Google Scholar] [CrossRef] [PubMed]
- Boyjoo, Y.; Sun, H.; Liu, J.; Pareek, V.K.; Wang, S. A review on photocatalysis for air treatment: From catalyst development to reactor design. Chem. Eng. J. 2017, 310, 537–559. [Google Scholar] [CrossRef]
- Chabas, A.; Lombardo, T.; Cachier, H.; Pertuisot, M.H.; Oikonomou, K.; Falcone, R.; Verità, M.; Geotti-Bianchini, F. Behaviour of self-cleaning glass in urban atmosphere. Build. Environ. 2008, 43, 2124–2131. [Google Scholar] [CrossRef]
- Oladipo, H.; Garlisi, C.; Al-Ali, K.; Azar, E.; Palmisano, G. Combined photocatalytic properties and energy efficiency via multifunctional glass. J. Environ. Chem. Eng. 2019, 7. [Google Scholar] [CrossRef]
- Monteiro, R.A.R.; Lopes, F.V.S.; Silva, A.M.T.; Ângelo, J.; Silva, G.V.; Mendes, A.M.; Boaventura, R.A.R.; Vilar, V.J.P. Are TiO2-based exterior paints useful catalysts for gas-phase photooxidation processes? A case study on n-decane abatement for air detoxification. Appl. Catal. B Environ. 2014, 147, 988–999. [Google Scholar] [CrossRef]
- Martinez, T.; Bertron, A.; Escadeillas, G.; Ringot, E.; Simon, V. BTEX abatement by photocatalytic TiO2-bearing coatings applied to cement mortars. Build. Environ. 2014, 71, 186–192. [Google Scholar] [CrossRef]
- Zhong, L.; Haghighat, F.; Lee, C.S.; Lakdawala, N. Performance of ultraviolet photocatalytic oxidation for indoor air applications: Systematic experimental evaluation. J. Hazard. Mater. 2013, 261, 130–138. [Google Scholar] [CrossRef]
- Jiang, Q.; Qi, T.; Yang, T.; Liu, Y. Ceramic tiles for photocatalytic removal of NO in indoor and outdoor air under visible light. Build. Environ. 2019, 158, 94–103. [Google Scholar] [CrossRef]
- Guo, M.-Z.; Maury-Ramirez, A.; Poon, C.S. Photocatalytic activities of titanium dioxide incorporated architectural mortars: Effects of weathering and activation light. Build. Environ. 2015, 94, 395–402. [Google Scholar] [CrossRef]
- Guo, M.-Z.; Maury-Ramirez, A.; Poon, C.S. Self-cleaning ability of titanium dioxide clear paint coated architectural mortar and its potential in field application. J. Clean. Product. 2016, 112, 3583–3588. [Google Scholar] [CrossRef]
- Baudys, M.; Krýsa, J.; Zlámal, M.; Mills, A. Weathering tests of photocatalytic facade paints containing ZnO and TiO2. Chem. Eng. J. 2015, 261, 83–87. [Google Scholar] [CrossRef]
- Amorim, S.M.; Suave, J.; Andrade, L.; Mendes, A.M.; José, H.J.; Moreira, R.F.P.M. Towards an efficient and durable self-cleaning acrylic paint containing mesoporous TiO2 microspheres. Prog. Org. Coat. 2018, 118, 48–56. [Google Scholar] [CrossRef]
- Galenda, A.; Visentin, F.; Gerbasi, R.; Favaro, M.; Bernardi, A.; El Habra, N. Evaluation of self-cleaning photocatalytic paints: Are they effective under actual indoor lighting systems? Appl. Catal. B Environ. 2018, 232, 194–204. [Google Scholar] [CrossRef]
- Paolini, R.; Borroni, D.; Pedeferri, M.; Diamanti, M.V. Self-cleaning building materials: The multifaceted effects of titanium dioxide. Constr. Build. Mater. 2018, 182, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Diamanti, M.V.; Del Curto, B.; Ormellese, M.; Pedeferri, M. Photocatalytic and self-cleaning activity of colored mortars containing TiO2. Constr. Build. Mater. 2013, 46, 167–174. [Google Scholar] [CrossRef]
- Nath, R.K.; Zain, M.F.M.; Jamil, M. An environment-friendly solution for indoor air purification by using renewable photocatalysts in concrete: A review. Renew. Sustain. Energy Rev. 2016, 62, 1184–1194. [Google Scholar] [CrossRef]
No. | Catalytic | Category | VOC | Nanomaterial | Morphology | Medium | Doping Concentration | Synthesis | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | Photo- | TiO2 | Trichloro-ethylene | nanostructured TiO2 particles | Primary particle size: 2.3–30 nm, secondary particle size: 100–900 nm | titanium isopropoxide | water concentrations: 2.3, 0.3, 0.27, and 0.18 M | low-temperature synthesis, modified sol–gel method | [33] |
2 | Photo- | TiO2 | Toluene | Titanium isopropoxide | Primary particle size:11 nm | isopropanol–water solution | 2.5 mL H2O, 25 mL ethanol, 150-mL (hydrothermal) | sol–gel synthesis, thermal & hydrothermal methods | [34] |
3 | Photo- | TiO2 | Toluene | TiO2 thin films | particle sizes less than 100 nm, monocrystalline nanodiamond | Titanium (IV) tetraisopropoxide (TTIP) (Ti(OCH(CH3)2)4) and water | detonation method (purchased from microdiamant) | [35] | |
4 | Photo- | TiO2 | Toluene, acetaldehyde | TiO2 nanotubes (TNT) & nanopartcles (TNP) film; commercial TiO2 (P25) | average surface area of 50 m2 g−1, primary particle size: 20–30 nm, channel pores diameter: 40–60 nm, tube length: 9.5 (±0.9) μm. | [TNP] Ethanol [TNT] ethylene glycol electrolyte | [TNP] 0.15 g/mL [TNT] 1st anodization: 0.5 wt% NH4F and 3 wt% H2O; 2nd: 0.3 wt% NH4F and 1 wt% H2O. | [TNP] doctor-blade method [TNT]two-step electrochemical anodization | [36] |
5 | Photo- | TiO2 | Toluene | Ti-foil (99.7%,0.25 mm, Aldrich, USA) | top and bottom opened structure of which thediameters are 100 nm and 50 nm, respectively NP@DNT films of 15 (±2) μm | ethylene glycol solution containing 0.25 wt% NH4F and 0.3 vol% distilled water | potentiostatic anodization method | [37] | |
6 | Photo- | TiO2 | Hexane, methanol | anatase and rutile TiO2 (0.1 mol) | Surface area between 39 to 84 m2/g (given in table) | 1.5 mol anhydrous Ethanol, water–ethanol solution containing 1 mol ethanol with a ratio of water:butoxide = 50:1. | aqueous HNO3 solution of various concentration (0.1–1.0 mol/L) with the ratio of solid (g): liquid (mL) = 1:10 | hydrothermal method | [38] |
7 | Photo- | TiO2 | Toluene | Anatase/brookite/rutile tricrystalline TiO2 | amorphous TiO2 suspension | HNO3 solution (65%) | The molar ratios of HNO3 to TBOT (RHNO3) were varied from 0.2 to 1.2 at intervals of 0.2 by varying the volume of HNO3 solution. | low-temperature hydrothermal method | [39] |
8 | Photo- | TiO2 | Toluene | co-alloying TiO2 | fine bright yellow powder, primary particles diameter: 1–2 μm | TiCl4 reacted with NbCl5 and urea in an ethanol solution | toluene concentrations: 1~5 ppm; relative humidity: 25~65%; air velocity: 0.78~7.84 cm/s; irradiancy: 42~95 W/m2. | urea-glass synthesis | [40] |
9 | Photo- | TiO2 | Isopropyl alcohol | Hybrid CuxO/TiO2 Nanocomposites | Commercial TiO2 (rutile phase, 15 nm grain size, 90 m2/g specific surface area) | CuCl2 solution, NaOH and glucose solutions (reduce & control the CuI/CuII ratio | 10 mL of CuCl2 solution. Weight fraction of Cu: TiO2 is 1 × 103: 2 × 102. | simple impregnation method | [41] |
10 | Photo- | TiO2 | Toluene | commercial TiO2 (P25) | Platinum nanoparticles in the size of 1–3 nm were clearly deposited on the surface of TiO2 | 0.5 wt% Pt and 30 mM fluoride for VOC degradation | sodium fluoride (10, 30, and 50 mM) and Pt (0.1, 0.5, and 1 wt%) | photo deposition method | [42] |
11 | Photo- | TiO2 | Toluene | hybrid nanomaterial Pt-rGO-TiO2 | TiO2 nanopowder: commercial P25 (Degussa). | ethanol-water | 0.1, 0.5, 1 and 2 wt% Pt-rGO-TiO2 nanocomposite catalysts | solvothermal method | [43] |
12 | Photo- | TiO2 | Toluene | Composites ACFF 0.5 mL tetra-butyl titanate (97 wt%) | Diameter: 12 μm, pore size: 32 μm. | Polytetrafluoroethylene (Teflon)-lined stainless-steel autoclaves | 1.0, 2.0, 3.5 and 5.0 l of toluene were injected into the above reactor | Purchased ACFF, | [6] |
13 | Photo- | TiO2 | Formaldehyde, trichloro-ethylene | TiO2 nanoparticles | BET area:392 m2 g−1, micro mean pore size: 0.6 nm | 8 wt% DAPs | incipient wetness impregnation, freeze-drying, or mechanical mixing | [44] | |
14 | Photo- | Zinc oxide | Toluene | ZnAl2O4 nanoparticles | commercial P25 powder (reference) TiO2 nanoballs in anatase phase | [solvothermal synthetic] Al(NO3)3·9H2O (2 mmol), Zn(NO3)2·6H2O (1 mmol), ethylene glycol (30 mL) [citrate precursors] 0.01 M Zn(NO3)2·6H2O, 0.02 M Al(NO3)3·9H2O, 100 mL DI water [hydrothermal] an equimolar amount of Zn(NO3)3·6H2O (2 mmol), Al(NO3)3·9H2O (4 mmol), urea[CO(NH2)2] (20 mmol) and deionized water (80 mL) | solvothermal, citrate precursor, hydrothermal methods | [45] | |
15 | Photo- | Ni oxide | Toluene | Nitrogen-doped carbon nanotubes (NCNTs) supported NiO(NiO/NCNTs) | NCNTs: tubular structure, 20 nm-diameter; NiO: crystallite, 3–10 nm | catalyst and pyridine and/or 3-(aminomethyl)pyridine | volume ratio of pyridine to 3-(aminomethyl)pyridine: 5, 3, 1 and 0 | Chemical vapor deposition method | [46] |
16 | Photo- | WO3 | H2O2 | Nano-diamonds combined with WO3 | ND: ca. 4–6 nm diameter | WO3 (Aldrich) | 0.5–16 wt% ND contents | Simple dehydration condensation | [47] |
17 | Photo- | Manganese Oxide | Benzene, Toluene, Ethylbenzene, Xylenes | Manganese Oxide and Copper | KMnO4 solution (OMS-2); Mn(CH3COO)2 4H2O (AMO) | Mn(CH3COO)2 solution (OMS-2); KMnO4 (AMO); | a simple refluxing method | [48] | |
18 | Photo- | Manganese Oxide | Formaldehyde indoors | manganese oxide | Shown in SEM images | ethanol solution of manganese acetate tetrahydrate (Mn(CH3COO)2·4H2O | Mn(CH3COO)2·4H2O:PAN-ACNF 0.5–20 wt.% | [49] | |
19 | Photo- | Bi-based compounds | Acetone, toluene | Bi2WO6 | CQDs: high dispersion, uniform size of 3–5 nm in diameter | carbon quantum dots (CQDs) | adding 1.0–6.0 g of CQDs | Hydrothermal synthesis | [50] |
20 | Photo- | AgBr | methyl orange | AgBr | monoclinic WO3 substrate, face-centered cubic AgBr nanoparticles: crystalline sizes less than 56.8 nm. | WO3 | AgBr contents were respectively obtained and defined as TA-0.05, TB-0.10, TC-0.15, TD-0.20, TE-0.25, TF-0.30 and TG-0.40. | deposition–precipitation method | [51] |
21 | Thermal | Platinum | Toluene | Pt/Al2O3–CeO2 nanocatalysts | average size: 5–20 nm. | CeO2(10%)/Al2O3, 2.8 g Ce(NO3)3·6H2O, 100 mL distilled water | ceria loading of 10, 20 and 30% | wet impregnation method | [52] |
22 | Thermal | Platinum | benzene | Pt/Al2O3 | Pt particle sizes between 1.2–2.2 nm | H2PtCl6·6H2O | Pt/A l2O3−x, x: pH value of 7.0, 9.0 and 11.0 | modified ethylene glycol (EG) reduction approach | [53] |
23 | Thermal | Platinum | Formaldehyde (HCHO) | Pt/TiO2/Al2O3 | BET area from 16.5 to 182.5 m2/g | (NH4)[TiO(C2O4)2] | The platinum loading: 0.62, 1.26,1.19 and 1.25 gm−2 | Electro-deposition technology | [54] |
24 | Thermal | Silica-iridium | Toluene | chloride-ion free iridium acetylacetonate, Ir(AcAc)3 | ∼5 to 27 nm | SiO2 Degussa Aerosil 200 | Size of iridium particles: ~5 to 27 nm (calcination temperature 350~750 °C) | incipient wetness impregnation | [55] |
25 | Thermal | Carbon | benzene, toluene, ethylbenzene, and oxylene | Pt/carbon nanotube (CNT) Multiwalled carbon nanotubes (MWCNT) | CNTs: 20–50 nm column diameters MWCNTs: 20–50 nm diameters | acid treatment using HF, H2SO4, and HNO3 | Pt content in the catalysts ranging from 10 to 30 wt%. | a molecular-level mixing method | [56] |
26 | Photo- | Carbon based | Volatile Aromatic Pollutant | TiO2_graphene | Shown in SEM image | An ethanol-water solvent | P25_GR with weight addition ratios of 0.2, 0.5, 1, 2, 5, 10, and 30% GR. | facile hydrothermal reaction | [57] |
27 | Photo- | Carbon-based | methanol | graphene oxide, reduced graphene oxide, and few-layer graphene | BET area (m2/g): rGO+TiO2: 49.34, GO+TiO2: 43.79, G+TiO2: 41.54 | Polyacrylonitrile | a polymer concentration of 5% (w/w) in N,N-dimethylformamide. | hydrothermal method (reduced graphene oxide); others purchased | [58] |
No. | Catalytic | Applications | Materials | Comparison & Experiments | Pollutants | Performance | Ref. |
---|---|---|---|---|---|---|---|
1 | Thermal | Indoor air purification | Pt/ZnO/SiC | Toluene concentration: 100~500 ppm Loading of Pt nanoparticles:0.030 wt% (Pt/ZnO/SiC) ~0.017 wt% (Pt/SiC). | Toluene | Toluene was used as a model volatile organic compound and reached complete conversion of up to 100% over the porous tubular Pt/ZnO/SiC material at a filtration velocity of 0.72 m/min within 240 h at 210 °C maintained within 24 h | [75] |
2 | Photo- | Indoor air purification | Glass fiber tissue supported TiO2 | Inlet pollutant concentrations (25–300 mg m−3), flow rates (2–8 m3 h−1), relative humidity of effluent (5, 30, 50 and 90%), input of the plasma discharge (9–21 kV) | Trichloromethane (CHCl3) | Combination of plasma DBD and photocatalysis enhances the removal efficiency | [76] |
3 | Photo- | Indoor air purification | Ln3+–TiO2 | La3+–TiO2 and Nd3+–TiO2 Lanthanide ion dosage of 0.7%, 1.2%, 1.6% and 2.0% | benzene, toluene, ethylbenzene and o-xylene (BTEX) | Highest adsorption ability: 0.7% Ln3+–TiO2 catalysts. TiO2 photocatalytic efficiency with the lanthanide ion doping was remarkably enhanced by BTEX removal. The 1.2% Ln3+–TiO2 catalysts achieved the highest photocatalytic activity. Residence time: 72 s using 1.2% La3+–TiO2 catalyst | [77] |
4 | Photo- | Coating | TiO2 thin films | Commercial glasses: Pilkington Activ™ Blue PAB) and Pilkington Activ™ Clear (PAC). | 2-propanol | For the 2-propanol oxidation, PAC was found to be more active under UV light due to the larger surface area and higher TiO2 particle concentration. | [67] |
5 | Photo- | Coating | TiO2 coated on fiberglass fibers | TiO2 coated on carbon cloth fibres, a pilot duct system for experiment | polytetrafluoroethylene | The single-pass removal efficiency ranks: alcohols > ketones > aromatics > alkanes. | [69] |
6 | Photo- | Coating | TiO2 | single-layer coating & multilayer TiO2 coating | rhodamine B | Degrading self-cleaning ability of analysed coatings caused by ageing processes, and no significant difference between single-layer and multilayer coatings in the long-term | [63] |
7 | Photo- | Paint | Three self-cleaning photocatalytic paints | Three white commercial photocatalytic paints; expose to UVC lamp, Xenon lamp, LED and fluorescent lamps for 10 h | methyl red, methylene blue | Limited photocatalytic action under visible light | [74] |
8 | Photo- | Paint | commercial AEROXIDE_TiO2 P25 powder | Matrix with nitric acid and H2SO4 | rhodamine b | Nitric acid causes a decrease in crystallinity and photocatalytic activity, which drops by almost 20%; H2SO4 the best candidate for TiO2 nanoparticles acid treatment | [75] |
9 | Photo- | Paint | TiO2 microspheres | commercial TiO2 particles P25 | methylene blue solution | MTiO2: more stable and better photoactivity | [73] |
10 | Photo- | Paint | TiO2 | 5% P25-TiO2-intermixed and dip-coated SCAM samples | rhodamine b | TiO2/SCAM: high self-cleaning ability and a robust weathering resistance under UV-A and visible light irradiations. | [71] |
11 | Photo- | Paint | TiO2 coating (PC-S7, Cristal Active) | TiO2 (P25) intermixed nanopowder. Experiments: air purifying (indicated by NOx removal) and self-cleaning (indicated by Rhodamine b removal). | Rhodamine b NOx | TiO2 coating on mortar shows better photocatalytic performances than TiO2 intermixed samples on air purifying and self-cleaning properties under both UV-A and visible light (VL) irradiation conditions. | [70] |
12 | Photo- | Paint | TiO2 P25 | ZnO Experiments: Paints were exposed to simulated weathering tests in a QUV panel | dye Acid Orange 7 | Photocatalytic activity of TiO2 increases with weathering time. ZnO: significantly higher photocatalytic activity for initial photoactivity of the unweathered paints but decreased after weathering. | [72] |
13 | Photo- | Mortar | Mortars containing TiO2 and iron oxide pigments | Atmospheric exposure tests and photocatalytic degradation tests were performed. | 2-propanol | Iron oxide pigments caused lower photocatalytic activity compared to white mortars. TiO2 + mortars has lower soiling in atmospheric exposure | [76] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, K.W.; Li, W. A Review on Catalytic Nanomaterials for Volatile Organic Compounds VOC Removal and Their Applications for Healthy Buildings. Nanomaterials 2019, 9, 910. https://doi.org/10.3390/nano9060910
Shah KW, Li W. A Review on Catalytic Nanomaterials for Volatile Organic Compounds VOC Removal and Their Applications for Healthy Buildings. Nanomaterials. 2019; 9(6):910. https://doi.org/10.3390/nano9060910
Chicago/Turabian StyleShah, Kwok Wei, and Wenxin Li. 2019. "A Review on Catalytic Nanomaterials for Volatile Organic Compounds VOC Removal and Their Applications for Healthy Buildings" Nanomaterials 9, no. 6: 910. https://doi.org/10.3390/nano9060910
APA StyleShah, K. W., & Li, W. (2019). A Review on Catalytic Nanomaterials for Volatile Organic Compounds VOC Removal and Their Applications for Healthy Buildings. Nanomaterials, 9(6), 910. https://doi.org/10.3390/nano9060910