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Abstract: Here, we report the extraordinary electrochemical energy storage capability of
NiMoO4@NiMoO4 homogeneous hierarchical nanosheet-on-nanowire arrays (SOWAs), synthesized
on nickel substrate by a two-stage hydrothermal process. Comparatively speaking, the SOWAs
electrode displays superior electrochemical performances over the pure NiMoO4 nanowire arrays.
Such improvements can be ascribed to the characteristic homogeneous hierarchical structure, which
not only effectively increases the active surface areas for fast charge transfer, but also reduces the
electrode resistance significantly by eliminating the potential barrier at the nanowire/nanosheet
junction, an issue usually seen in other reported heterogeneous architectures. We further evaluate
the performances of the SOWAs by constructing an asymmetric hybrid supercapacitor (ASC)
with the SOWAs and activated carbon (AC). The optimized ASC shows excellent electrochemical
performances with 47.2 Wh/kg in energy density of 1.38 kW/kg at 0–1.2 V. Moreover, the specific
capacity retention can be as high as 91.4% after 4000 cycles, illustrating the remarkable cycling stability
of the NiMoO4@NiMoO4//AC ASC device. Our results show that this unique NiMoO4@NiMoO4

SOWA has great prospects for future energy storage applications.
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1. Introduction

Supercapacitors (SCs) have shown great promise as the next-generation power devices because of
their extraordinary properties, including high-power density, rapid charging, and prolonged cycling
life. Electrochemical double layer capacitors and pseudocapacitors are the two major types of SCs
with different storage mechanisms [1,2]. The electrochemical double layer capacitors store energy
mainly via ion adsorptions at the interface between the electrodes and electrolyte. In comparison,
pseudocapacitors have shown advantages in achieving higher energy density and specific capacitance,
owing to the quick and reversible redox reactions at the surface of the electrodes [3]. The most widely
known pseudocapacitors are fabricated with MnO2 and RuO2. However, the high resistance and
dissolution of MnO2 [4,5] in aqueous electrolytes as well as the high cost and toxicity of RuO2 [6,7]
hinder them from being used on a large scale. In this context, hybrid devices consisting of faradaic
and capacitive electrodes arise as a potential candidate that can draw on the advantages of both types
of supercapacitors. To fully exploit the strengths of the hybrid devices, the choice of materials and
device structures have to be carefully optimized. In terms of material choice, binary metal oxides
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such as MnMoO4, NiMoO4, NiCo2O4, and CoMoO4 have been extensively investigated, owing to
their multiple oxidation states as well as significantly better electrical conductivity compared with
single-component oxides, rendering them ideal for high-performance charge storage devices [8,9].
Among these binary metal oxides, NiMoO4 has attracted intense research interest, due to the superior
electrochemical activity of Ni [3,10]. Although Mo does not contribute to the faradaic redox reactions
that play the most significant role in the overall capacitance/capacity of the device, its high electrical
conductivity facilitates the efficient transfer of charges during the process. SCs with respectable specific
capacity have been demonstrated with NiMoO4 based nanosheets [11] and nanobundles [12]. To
further enhance the electrochemical performances of NiMoO4, a more efficient device architecture is
highly desired.

Among various device structures, well-aligned nanoarrays of electrochemically active materials
like hydroxides and metal oxides grown on conductive substrates have shown superior advantages
in energy storage, especially for SCs [13,14]. Specifically, the nanoarray architecture can provide a
large specific surface area for ion diffusion and electron transport, thus resulting in high specific
capacity [15–19]. Additionally, growing the active materials directly on the conductive substrates
can ensure that the former can adhere to the substrate firmly. This makes the active materials more
mechanically stable during the charge/discharge process [20,21]. Three-dimensional (3D) structures
have been introduced to further enhance the energy storing capability of nanoarrays by increasing the
active area for redox reactions [22–25]. Heterogeneous nanosheet-on-nanowire arrays (SOWAs), a type
of hierarchical nanoarrays constructed with different materials in the nanowire core and nanosheet
shell, have been widely studied for realizing high-performing SCs [26–28].

Compared with the heterogenous architecture, homogeneous SOWAs, with their entire hierarchical
architecture made of the same materials, show great promise in lowering the intrinsic resistance by
eliminating the surface potential barrier at the core/shell junction [29,30]. In spite of the potential
advantages, very few works have been reported on the rational design of homogeneous SOWAs for
SCs. Therefore, the pioneering study of such architecture on NiMoO4 is highly desirable. In this
paper, we report the fabrication and characterizations of novel homogeneous NiMoO4@NiMoO4

hierarchical SOWAs supercapacitors. The SOWAs, comprising NiMoO4 nanowires covered with
NiMoO4 nanosheets, are realized on a Ni substrate by a two-stage hydrothermal treatment. Impressively,
the SOWAs show over 30% enhancements in specific capacity and noticeably better electrochemical
behaviors comparing with the electrodes formed by pure NiMoO4 nanowire arrays. We do believe that
the significative reduction in series resistance of our homojunction material is a benefit for charge carrier
transport along the interconnected nanowire network. Observing these extraordinary properties, we
further utilized the homogeneous SOWAs structure to fabricate a asymmetric hybrid supercapacitor
(ASC), which displays excellent cycling stability and electrochemical performances superior to other
reported devices with heterogeneous hierarchical structures. These promising results fully demonstrate
the potential for the NiMoO4@NiMoO4 SOWAs to be used in energy storage applications, which
require low resistive loss, fast operations, and good mechanical stability.

2. Experimental Section

2.1. Materials Synthesis

Rectangular nickel conductive substrates (2.4 cm × 3 cm) were ultrasonically cleaned with 6 M
HCl acid (99% pure, Alfa Aesar, Ward Hill, MA, USA), ethanol (99% pure, Alfa Aesar, Ward Hill, MA,
USA), and deionized (DI) water, each for fifteen minutes sequentially. NiMoO4 nanowire arrays were
grown on a Ni substrate, using a single-step hydrothermal treatment. The synthesis typically starts
with adding an aqueous solution of 0.05 M Ni(NO3)2·6H2O (99% pure, Alfa Aesar, Ward Hill, MA,
USA) and 0.05 M Na2MoO4 (99% pure, Alfa Aesar, Ward Hill, MA, USA) solution under constant
magnetic stirring. Nanowires with the desired density and aspect ratio were found to grow when
a 25% v/v (ethanol/DI water) solvent was added. Then, the Ni substrate was immersed into 40 mL
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mixture precursor in an autoclave and kept at 140 ◦C for 6 h. Subsequently, the substrate was removed
from the solution and washed with DI water. Finally, the sample was annealed for 2 h at 400 ◦C in
flowing argon afterwards. The sample obtained with this process is denoted as Sample I.

2.2. Preparation of SOWAs

To synthesize the aligned SOWAs, the nanowire arrays in Sample I were utilized as the backbone
for the growth of nanosheets via a secondary hydrothermal reaction. Briefly, Sample I was loaded into
an autoclave containing 40 mL mixture of 0.0029 M of Ni(NO3)2·6H2O and 0.0029 M of Na2MoO4. The
reactants were then kept for 3 h at 140 ◦C, followed by washing and annealing in conditions similar to
those used in Sample I. These SOWAs are denoted as Sample II.

2.3. Preparation of Nanowire Arrays with Same Mass as Sample II

To illustrate that the difference in electrochemical performance between Samples I and II is not
due to the slight mass increase of NiMoO4 in the latter, we fabricated another nanowire array with the
same nominal mass as Sample II. The process started with loading a Ni substrate into a solution that
consisted of Ni(NO3)2·6H2O and Na2MoO4 equally at 0.0529 M in 40 mL precursor, then heated up for
9 h at 140 ◦C. The resulting nanowire arrays were then washed and annealed in conditions similar to
those used in Sample I. The obtained sample was denoted as Sample III.

2.4. Preparation of an AC Electrode

Commercial activated carbon, acetylene black, and conducting graphite with mass fractions of
80 wt%, 7.5 wt%, and 7.5 wt%, respectively, were mixed to obtain a homogeneous black powder. 25 µL
poly (tetrafluoroethylene) in 325 µL ethanol was added subsequently. The final paste was then fixed
onto a Ni substrate under 10 MPa and dried for 12 h at 80 ◦C.

2.5. Materials Characterization

The morphology and crystal structure were characterized by field emission scanning electron
microscopy (FESEM, Sigma, Zeiss, Oberkochen, Germany), X-ray diffraction (XRD, Smartlab, Rigaku,
Tokyo, Japan), and transmission electron microscopy (TEM, Talos F200X, FEI, Hillsboro, OR, USA). The
surface area was calculated using the Brunauer-Emmett-Teller (BET, 3Flex, Micromeritics, Norcross,
GA, USA) method within a relative pressure (P/P0) range of 0.05–0.45.

2.6. Electrochemical Measurements

Electrochemical performances such as the cyclic voltammetry (CV) and galvanostatic
charge–discharge profiles (GCD) were obtained with an electrochemical analyzer (CHI 760E, Shanghai
Chenhua, Shanghai, China) at ambient temperature. The measurements were performed in a
three-electrode electrochemical cell, which contained a 1 M KOH aqueous solution (electrolyte),
a standard Hg/HgO (reference electrode), and Pt foil (counter electrode). We carried out the
electrochemical impedance spectroscopy (EIS) measurements utilizing an alternating-current (AC)
source which could generate a voltage of 10 mV amplitude, varying in a frequency ranging between
0.01 kHz and 100 kHz. Several CV cycles were performed as an activation step before the actual
data collection. Samples I, II, and III were employed directly as the working electrodes. The effective
working area of the electrode, i.e., the area of immersion inside the electrolyte, was fixed at 1 cm2. We
estimated the mass loading to be approximately 1.2 mg/cm2, 1.4 mg/cm2, 1.4 mg/cm2, respectively.
Specific capacity (CSC, mA h/g) and areal capacity (CAC, mA h/cm2) of the three electrodes were
examined in a three-electrode system by Equations (1) and (2):

CSC =
2I ×
∫

vdt
mV

(1)
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CAC =
2I ×
∫

vdt
SV

(2)

where m and S are the mass and area of the active electrodes, I is the discharge current, and
∫

vdt
represents the area enclosed under the discharge curves. For the two-electrode ASC systems, Equations
(3) and (4) were used to calculate the energy and power densities, respectively. The mass loading of
AC was around 2.8 mg/cm2, according to Equation (5).

E =
I ×
∫

vdt
m× 3.6

(3)

P =
E
t
× 3600 (4)

m+

m−
=

CS−∆V−
CS+∆V+

(5)

3. Results and Discussion

The crystallographic phase of the three samples is first assessed using XRD (Figure 1a). Owing
to the strong signal coming from the Ni substrate, the diffractions of the SOWAs cannot be readily
resolved in Figure 1a. When zooming in to the regime between 20◦ and 35◦ (Figure 1b), one can
clearly identify three diffractions which can be assigned to monoclinic NiMoO4. These diffractions are
consistent with JCPDS data (Card No.86-0361) [31], exemplifying the purity of the NiMoO4 synthesized
with the hydrothermal processes in all samples.
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Figure 1. (a) X-ray diffraction (XRD) of Sample, Sample II, and Sample III grown on Ni foam; (b) Zoom-in
view of XRD peaks from 20◦ to 35◦.

It is well known that rod-like morphology can provide more reaction sites and improve ion
transport [32–34]. To verify that our samples are indeed in the desired architecture, we extensively
studied their morphology with SEM and TEM. Figure 2a,c shows representative SEM images revealing
the morphologies of the three samples. From Figure 2a, we can see that NiMoO4 in Sample I grows
into rods that generally align with the vertical direction and form an open network, which covers the
entire substrate surface uniformly. Such nanowire framework provides a large area for redox reactions
and charge storage. These capabilities are further enhanced by introducing the extra secondary
NiMoO4 nano-flakes in Sample II. Impressively, as shown in Figure 2b, the NiMoO4 nanowire surface
is completely covered with NiMoO4 nanosheet layers. These nanosheets significantly increase the
density of active sites, thus enabling the full utilization of the active materials for energy storage.
In Sample III, the extra mass of NiMoO4 for forming the 3D nanocomposite shell in Sample II is
incorporated into the growth of nanowire arrays. As illustrated in Figure 2c, the nanowires become too
long and lose the desired orthostatic morphology. The results here confirm that Sample II, an orthostatic
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nanowire network decorated with ultra-thin nanosheets, should present the ideal morphology for
SC applications.Nanomaterials 2019, 9, x FOR PEER REVIEW 5 of 13 
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Figure 2. Field emission scanning electron microscopy (FESEM) images (a–c) of Samples I, II, and III.
The insets show a large-area view of each sample. Transmission electron microscopy (TEM) images
(d–f) of three samples. The insets in each TEM image show the corresponding selective area electron
diffraction (SAED) pattern and high-resolution TEM (HRTEM) image.

To get a clearer idea of the nanoscopic crystallinity of the hierarchical structures, we performed
extensive TEM analysis. Figure 2d shows a typical 100-nm-thick NiMoO4 nanowire obtained from
Sample I. The high-resolution TEM (HRTEM) image in the inset reveals clear lattice fringes exhibiting
a periodicity of around 0.41 nm, which is in excellent agreement with the interplanar distance of
the (111) planes of NiMoO4. The single-crystalline nature is further demonstrated with the selective
area electron diffraction (SAED) pattern in Figure 2d. The excellent crystallinity is crucial for an
efficient charge exchange and transport along the wires. Figure 2e demonstrates the architecture of
Sample II comprising overlapping thin nanosheets, which agrees well with the SEM image in Figure 2b.
Moreover, the SAED in Figure 2e exemplifies the polycrystallinity of Sample II with clearly indexable
422, 041, and 131 diffraction rings. The HRTEM image further confirms the short-term crystallinity
of the nanosheets, which display lattice fringes separated by around 0.698 nm, which matches the
(001) interplanar spacing NiMoO4. The lattice in Sample III (Figure 2f) is similar to those in Sample I,
except that nanowires of Sample III are longer. Elemental mapping and line-scan by energy dispersive
X-ray spectroscopy (Figure S1) of the central region of Sample II demonstrates that the nanostructures
are chemically composed of Mo, O, and Ni, which are uniformly distributed over the entire sample.
The TEM studies elucidate the crystalline properties of the NiMoO4 SOWAs, which are crucial to the
electrochemical performances of the novel material system. The electron microscopy investigations
imply that the SOWAs should possess the largest surface areas for charge exchange. We verify this by
measuring the surface areas of the three samples quantitatively by BET measurement and the results
are plotted in Figure S2. A BET surface area of 33.2 m2/g was observed for Sample II, which is over
20% larger than the surface areas of Sample I (26.2 m2/g) and Sample III (27.7 m2/g), as shown in the
N2 adsorption–desorption profiles. The narrow hysteresis loops that appeared at different relative
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pressures are characteristics of hierarchical pores [35]. The relatively high specific surface area in
Sample II not only increases the electrode/electrolyte contact area but also provides a lot more effective
sites for redox reactions. These unique properties indicate that the SOWAs should exhibit superior
electrochemical performance, which is to be discussed in more detail below.

Based on the electron microscopy studies, we developed a growth mechanism as illustrated
in Figure 3. First of all, a calcination process after a hydrothermal reaction gives rise to a densely
packed nanowire array in Sample I. Subsequently, interconnected NiMoO4 nanosheets with various
lateral sizes are grown on the NiMoO4 nanowire framework via a secondary hydrothermal treatment,
resulting in the hierarchical structure in Sample II after a secondary calcination process. If all the
reactants were supplied at the same time, the resulting nanowires would lose the desirable orthostatic
property as in Sample III.
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Hydrothermal reaction time and the concentration of reactants undoubtedly play an important
role in the morphology of the metal oxide electrodes, and thus affect their electrochemical performance.
To validate the advantages of NiMoO4@NiMoO4 SOWAs, we investigated the electrochemical
performances of the three samples. Electrodes I, II, and III were fabricated with Samples I, II,
and III, respectively. Figure 4a displays the representative cyclic voltammetry (CV) profiles of the three
electrodes within the voltage range of 0–0.8 V (vs. Hg/HgO) at 30 mV/s. Notably, Electrodes I and III
show similar CV behaviors, indicating that the slightly larger mass in Electrode III does not have a big
impact on the capacitance. In contrast, Electrode II shows more distinct redox peaks in its CV curve;
besides, the obviously larger enclosed CV curve area in Electrode II than those in Electrodes I and III
at identical sweep speed implies that the former has a much respectably higher specific capacitance.
Indeed, the discharging time is –60% longer in Electrode II compared with the other two at 1 A/g in the
GCD plot in Figure 4b. Although the CVs in Figure 4a were scanned within a voltage range of 0 to
0.8V, we set the voltage range for GCD at 0–0.52 V because considerable polarization is observed at
voltage higher than 0.52 V [3,36]. To avoid such an undesirable effect, it is a usual practice to offset the
voltage range of GCD from that used in the CV profiles [36–39].



Nanomaterials 2019, 9, 1033 7 of 14
Nanomaterials 2019, 9, x FOR PEER REVIEW 7 of 13 

 

 
Figure 4. (a) Cyclic voltammetry (CV) profiles of Electrodes I, II, and III at 30 mV/s; (b) galvanostatic 
charge–discharge profiles (GCD) profiles of Electrodes I, II, and III at 1 A/g; (c) CV profiles of 
Electrode II at different sweep speeds; (d) GCD profiles of Electrode II at various current density. 

Based on the above GCD behaviors, we calculate the areal capacity and specific capacity of the 
three electrodes and plot out their dependences on the current densities, as shown in Figure 5a,b. 
Since the effective contact area between the active materials and the electrolyte significantly 
diminishes at a high sweep rate, the capacity drops upon increasing current density [43–45]. The 
capacity of Electrode II can reach up to 413 mA h/g (578 µA h/cm2) at 1 A/g and drops to around 
46.7% of the maximum value, i.e., 220 mA h/g (308 µA h/cm2) at 20 A/g. The maximum capacities of 
Electrodes I and III are much lower and can only reach 309 mA h/g (371 µA h/cm2) and 324 mA h/g 
(453 µA h/cm2), respectively, over 25% and 21% lower than that of Electrode II. Notably, the specific 
capacity of our homogeneous architecture here is favorably comparable with those of previously 
reported nanostructures, including CoMoO4@Co(OH)2 core-shell structures (265 mA h/cm2 at 2 
mA/cm2) [46], as well as CoMoO4 nanoflakes (32.40 mA h/g; 492.48 µAh/cm2) [47], Ni–Mo–S 
nanosheets (312 mA h/g at 1 mA/cm2) [48], and flower-like Mn–Co oxysulfide (136 mA h/g at 2 A/g) 
[49]. Detailed comparisons in electrochemical performances among these devices and our structure 
can be found in Table S1. The superior energy storage performance of the NiMoO4@NiMoO4 SOWAs 
might be due to the larger specific surface area as well as more efficient charge carrier transport across 
the homojunction in our homogeneous hierarchical architecture. 

The cycling stability of the three electrodes was assessed by GCD with the voltage ranging from 
0 to 0.52 V, as displayed in Figure 5c. The capacity of Electrodes I, II, and III respectively drops by 
1.5%, 4.3%, and 6.9% to 300.3 mA h/g, 361.2 mA h/g, and 262.3 mA h/g after 3000 cycles at a discharge 
current density of 1 A/g. Surprisingly, Electrode II experienced a relatively large cycling degradation, 
which could be attributed to the lack of stability in the structure of the NiMoO4 nanosheets upon high 
current operations. Nevertheless, the specific capacity of Electrode II stabilizes after around 3000 
cycles and this value is still respectably higher than those of Electrodes I and III. 

Figure 4. (a) Cyclic voltammetry (CV) profiles of Electrodes I, II, and III at 30 mV/s; (b) galvanostatic
charge–discharge profiles (GCD) profiles of Electrodes I, II, and III at 1 A/g; (c) CV profiles of Electrode
II at different sweep speeds; (d) GCD profiles of Electrode II at various current density.

The ultra-long discharge time elucidates the excellent electrochemical performance of Electrode
II in accordance with Equations (1) and (2). To further investigate the electrochemical properties
of Electrode II, we measured its CV at various sweep rates and GCD at various current levels.
As represented in Figure 4c, all the CV profiles reveal meristic and clear redox peaks, which are strong
indications that the specific capacitance characteristics predominantly originate from the faradic redox
reactions of Ni2+/Ni3+ (Figure 4a,c) [40,41]. In addition, the redox peaks are prominent under low
scanning rates (5 and 10 mV/s) but weaken at high sweep rates, due to the slow diffusion of OH−1 at
the interface of electrolyte/electrode [42]. Hence, CSC and CAC obtained at the lowest scan rate can be
considered as the closest to complete utilization of the electrode. Nevertheless, no significant change in
the shape of the CV curves is observed when the scan rate increases and the peak current still increases
proportionally, indicating that Electrode II can facilitate fast redox reactions. Additionally, the highly
symmetric GCD profiles obtained at different current densities varying from 1 to 20 A/g (Figure 4d)
clearly elucidate the excellent electrochemical behavior and reversible redox reaction activity.

Based on the above GCD behaviors, we calculate the areal capacity and specific capacity of the
three electrodes and plot out their dependences on the current densities, as shown in Figure 5a,b. Since
the effective contact area between the active materials and the electrolyte significantly diminishes at a
high sweep rate, the capacity drops upon increasing current density [43–45]. The capacity of Electrode
II can reach up to 413 mA h/g (578 µA h/cm2) at 1 A/g and drops to around 46.7% of the maximum value,
i.e., 220 mA h/g (308 µA h/cm2) at 20 A/g. The maximum capacities of Electrodes I and III are much
lower and can only reach 309 mA h/g (371 µA h/cm2) and 324 mA h/g (453 µA h/cm2), respectively,
over 25% and 21% lower than that of Electrode II. Notably, the specific capacity of our homogeneous
architecture here is favorably comparable with those of previously reported nanostructures, including
CoMoO4@Co(OH)2 core-shell structures (265 mA h/cm2 at 2 mA/cm2) [46], as well as CoMoO4

nanoflakes (32.40 mA h/g; 492.48 µAh/cm2) [47], Ni–Mo–S nanosheets (312 mA h/g at 1 mA/cm2) [48],
and flower-like Mn–Co oxysulfide (136 mA h/g at 2 A/g) [49]. Detailed comparisons in electrochemical
performances among these devices and our structure can be found in Table S1. The superior energy



Nanomaterials 2019, 9, 1033 8 of 14

storage performance of the NiMoO4@NiMoO4 SOWAs might be due to the larger specific surface
area as well as more efficient charge carrier transport across the homojunction in our homogeneous
hierarchical architecture.
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The cycling stability of the three electrodes was assessed by GCD with the voltage ranging from 0
to 0.52 V, as displayed in Figure 5c. The capacity of Electrodes I, II, and III respectively drops by 1.5%,
4.3%, and 6.9% to 300.3 mA h/g, 361.2 mA h/g, and 262.3 mA h/g after 3000 cycles at a discharge current
density of 1 A/g. Surprisingly, Electrode II experienced a relatively large cycling degradation, which
could be attributed to the lack of stability in the structure of the NiMoO4 nanosheets upon high current
operations. Nevertheless, the specific capacity of Electrode II stabilizes after around 3000 cycles and
this value is still respectably higher than those of Electrodes I and III.

Aside from surface area, the impedance of the electrode also has an important effect on the overall
behavior of SCs. The impedance properties of the electrodes were investigated in an open-circuit
voltage with 5 mV amplitude, utilizing an EIS measurement [15,29,50,51]. Figure 5d displays the
Nyquist plots measured in the frequency range of 0.01–100 kHz and the equivalent circuit is shown
in the inset. Rs, CPE, Rct, and Zw correspond to the equivalent series resistance (ESR), constant
phase element, charge-transfer resistance, and Warburg impedance, respectively. These elements
basically define the various resistances that arose in the redox reactions. From the Nyquist plot, one can
obtain the ESR from the x-intercept at the high frequency regime, which is a combined effect from the
electrolyte resistance, the active material resistance, and the contact resistance between the electrode
and electrolyte [50]. Apparently, Electrode II displays the smallest ESR, which is only 0.16 Ω. This very
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small ESR is more than 10 times lower than those of Electrode I (1.74 Ω) and Electrode III (2.03 Ω). It
was also observed that the ESR of our homogeneous structure decreased by at least 68% compared
with other heterogeneous structures or different morphologies of NiMoO4 (Table S1). Moreover, the
diameter of the semicircle represents the interfacial charge-transfer resistance (Rct) [51]. In our case,
the Rct of Electrodes I, II, and III are 3.0 Ω, 2.35 Ω, and 2.65 Ω, respectively, exemplifying that Electrode
II has the best charge-transfer characteristics. Finally, the Nyquist plot of Electrode II exhibits a slope
drastically steeper than those of Electrodes I and III at low frequencies. This validates the much better
capacitive performance of Electrode II as a result of respectably lower diffusion resistance. These
results suggest that the significantly better capability and stability of our homogeneous hierarchical
structure can mainly be ascribed to the low resistances.

To assess the feasibility of the superior electrochemical properties of NiMoO4@NiMoO4 SOWAs
for practical applications, we fabricated an asymmetric hybrid supercapacitor using the AC and
optimized SOWAs as the negative and positive electrodes, respectively. The CV profiles of the ASC
within 0 and 1.2 V at various sweep rates (5 to 50 mV/s) were displayed in Figure 6a. The CV profiles
were tested at a constant scan rate of 30 mV/s within various ranges of voltage (see Figure S3). The
peak tail, which appears as a consequence of an undesirable oxygen evolution reaction-induced peak
in the CV profiles when the voltage is broadened to 1.5 V or higher, indicates that the maximum
working voltage of the ASC should be around 1.2 V. Such a phenomenon was explained in a similar
way in the previous literatures [52–54]. For example, Xu et al. reported that the optimized operating
voltage range of the ZIF-LDH/GO//ZIF-C/G device was 0–1.6 V in order to avoid the oxygen evolution
reaction at 1.6–1.8 V [55]. Elshahawy et al. reported that 1.6 V was utilized to be the upper limit of
the operating voltage since, when the voltage went above 1.7 V, the oxygen evolution started [56].
It can be clearly seen that the overall capacitance of the NiMoO4@NiMoO4//AC ASC is composed
of two components, namely the electrochemical double layer capacitors (EDLC)-type capacitance
and Faradaic pseudocapacitance [50]. The shape of CV profiles show no distortion as the scan
rate increases, indicating the desirable charging and discharging behaviors. The performance of
GCD (Figure 6b) was also evaluated, while the voltage of ASC reached 1.2 V at a current density
in between 2 and 40 A/g. The areal and specific capacity of the ASC are estimated on the basis of
the discharge profiles, which are substantially higher than those ASCs reported before; for instance,
ZnCo2O4@MnO2//α-Fe2O3 (0.40 F/cm2 at 2.5 mA/cm2), Co0.85Se//AC (0.33 F/cm2 at 1 mA/cm2), and
NiCo2O4@Co0.33Ni0.67(OH)2//CMK-3 (0.89 F/cm2 at 5 mA/cm2) [57,58].
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Figure 6. Electrochemical performance of NiMoO4@NiMoO4 nanosheet-on-nanowire arrays
(SOWAs)//alternating-current (AC) asymmetric hybrid supercapacitor (ASC). (a) CV curves at various
scan rates; (b) GCD curves at various current densities.

Cycling characteristics are another crucial factor that influences the performance of SCs. Figure 7a
elucidates that the ASC device shows outstanding cycling stability. In particular, a 91.4% retention
rate of the initial capacitance is obtained after 4000 cycles at a current density of 5 A/g. Furthermore,
the repeated GCD profiles of the last four cycles show identical shape to the profiles of the first
four cycles, as displayed in the inset of Figure 7a. The excellent capacitance stability of the ASC
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reveals that the NiMoO4@NiMoO4 SOWAs are suitable as stable electrode material. To obtain a
more comprehensive assessment of electrochemical SCs, energy and power densities are also two
important components that should be taken into account. Figure 7b shows the Ragone plot, which
correlates the energy density with the power density of ASC devices. The energy density of Sample
II, i.e., NiMoO4//AC ASC, can achieve 47.2 Wh/kg at 1.38 KW/kg, and still retains 25.7 Wh/kg at
9.25 KW/kg. Additionally, the energy density of our devices is compared with NiMoO4//AC ASC, as
reported previously. As seen in Figure 7b, our devices show considerably higher energy density than
NiMoO4·H2O//AC (17.72 Wh/kg) [59], CoMoO4-NiMoO4 nanotube//AC (33 Wh/kg at 375 W/kg) [60],
and β-NiMoO4-CoMoO4·xH2O composites//AC (28 Wh/kg at 100 W/kg) [61]. The inset image of
Figure 7b shows a demonstration of our ASC used in real operations. Two ASCs connected in series
were encapsulated in a battery case and used to light up 64 red light emitting diodes connected in
parallel for 137 s. The exciting results presented here fully elucidate the extraordinary electrochemical
energy storage capability of the NiMoO4@NiMoO4//AC ASC.Nanomaterials 2019, 9, x FOR PEER REVIEW 10 of 13 
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4. Conclusions

In summary, uniform 3D NiMoO4@NiMoO4 SOWAs have been successfully demonstrated using a
two-step hydrothermal and calcination process. The unique hierarchical architecture exhibits enhanced
electrochemical behaviors, which can be ascribed to the increased reaction area and lower series
resistance for carrier transport. In addition, the ASC device constructed with the SOWA demonstrates
an impressive energy density of 47.2 Wh/kg at a power density of 1.38 kW/kg. These exciting results
clearly indicate that the homogeneous SOWAs system can be used practically in constructing SCs with
superior performance. In addition, the extraordinary synthesis tactics may give good guidance as
to the construction of 3D nanostructures for implementing electrodes, which hold great promise for
practical applications in electrochemical energy storage.
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